
sensors

Article

MoHRiPA—An Architecture for Hybrid Resources
Management of Private Cloud Environments

Gabriel Tomiatti Andreazi 1,†, Júlio Cezar Estrella 1, Sarita Mazzini Bruschi 1, Roger Immich 2 , Daniel Guidoni 3,
Lourenço Alves Pereira Júnior 4,* and Rodolfo Ipolito Meneguette 1,†

����������
�������

Citation: Andreazi, G.T.; Estrella,

J.C.; Bruschi, S.M.; Immich, R.;

Guidoni, D.; Alves Pereira Júnior, L.;

Meneguette, R.I. MoHRiPA—An

Architecture for Hybrid Resources

Management of Private Cloud

Environments. Sensors 2021, 21, 6857.

https://doi.org/10.3390/s21206857

Academic Editors: Ramón Agüero

and Josu Bilbao

Received: 19 August 2021

Accepted: 21 September 2021

Published: 15 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Computer System Division, Institute of Mathematics and Computer Science, University of São Paulo,
São Paulo 13560-970, SP, Brazil; tomiatti@usp.br (G.T.A.); jcezar@icmc.usp.br (J.C.E.);
sarita@icmc.usp.br (S.M.B.); meneguette@icmc.usp.br (R.I.M.)

2 Computer Science Division, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil;
roger@imd.ufrn.br

3 Computer Science Division, Federal University of São João del-Rei, São João del-Rei 36301-360, MG, Brazil;
guidoni@ufsj.edu.br

4 Computer Science Division, Aeronautics Institute of Technology (ITA),
São José dos Campos 12228-900, SP, Brazil

* Correspondence: ljr@ita.br
† These authors contributed equally to this work.

Abstract: The high demand for data processing in web applications has grown in recent years due to
the increased computing infrastructure supply as a service in a cloud computing ecosystem. This
ecosystem offers benefits such as broad network access, elasticity, and resource sharing, among oth-
ers. However, properly exploiting these benefits requires optimized provisioning of computational
resources in the target infrastructure. Several studies in the literature improve the quality of this
management, which involves enhancing the scalability of the infrastructure, either through cost man-
agement policies or strategies aimed at resource scaling. However, few studies adequately explore
performance evaluation mechanisms. In this context, we present the MoHRiPA—Management of
Hybrid Resources in Private cloud Architecture. MoHRiPA has a modular design encompassing
scheduling algorithms, virtualization tools, and monitoring tools. The proposed architecture solution
allows assessing the overall system’s performance by using complete factorial planning to identify the
general behavior of architecture under high demand of requests. It also evaluates workload behavior,
the number of virtualized resources, and provides an elastic resource manager. A composite metric
is also proposed and adopted as a criterion for resource scaling. This work presents a performance
evaluation by using formal techniques, which analyses the scheduling algorithms of architecture and
the experiment bottlenecks analysis, average response time, and latency. In summary, the proposed
MoHRiPA mapping resources algorithm (HashRefresh) showed significant improvement results
than the analyzed competitor, decreasing about 7% percent in the uniform average compared to
ListSheduling (LS).

Keywords: cloud computing; service provider; resource management

1. Introduction

The quantity and quality of information are crucial for the decision-making process.
However, some problems require high processing time, resulting in excessive spending in
terms of cost. Therefore, proper data processing and information generation must consider
a High Performance and Distributed Computing environment. To this end, it is necessary
to consider the availability of computational resources, the workload imposed on the
applications, and resource scaling mechanisms in conjunction with the computational
infrastructure model of the adopted environment.

Infrastructure as a service (IaaS) has been one of the fastest-growing areas in the
past [1], enabling on-demand infrastructure provisioning. For an administrator, this opens

Sensors 2021, 21, 6857. https://doi.org/10.3390/s21206857 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-2483-6382
https://orcid.org/0000-0002-9682-0075
https://orcid.org/0000-0003-2982-4006
https://doi.org/10.3390/s21206857
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21206857
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21206857?type=check_update&version=2


Sensors 2021, 21, 6857 2 of 17

up an opportunity to store some service or data set, as it considers the cost of only con-
tracting the service without the need to worry about energy [2], equipment maintenance,
refrigeration, and connectivity, among other resources [3].

Cloud computing centers entail high investment for both companies and users. There-
fore, it is necessary to have responsible infrastructure management; after all, the customer
must receive satisfactory service and look for more efficient, conscious, and economical
methods of using the resources [4–9]. The customer is making a large investment in this
type of service and will always seek the best cost relative to benefits received. The service
provider will also seek to perform a service in the best possible way in order to serve with
the highest quality [7,10–13]. Any business must serve better, especially when there is a
contract on the provider’s part to guarantee services, allocate resources, map resources,
and adapt resources. Therefore, the cloud infrastructure must have efficient resource
management in order to not break contracts and lose customers.

This work proposes the Management of Hybrid Resources in Private Cloud Architec-
ture (MoHRiPA) that provides services through distributed modules designed for high-
performance allocation using different scheduling techniques. MoHRiPA has resource
management modules such as Resource Provider (RP) and the Manager of Elastic Re-
source (MER) responsible for acquiring and allocating resources in the cloud. Furthermore,
the architecture features a component that performs the monitoring of the Log Server (LS)
system and monitors the use of available resources with Resource Monitor (RM). Unlike
other solutions, MoHRiPA uses the metric composed of performance index, which equates
to different data such as CPU, memory, disk, and network data (because of that, there are
more opportunities to analyze heterogeneous metrics and to provide a richer mapping con-
sistent with resources’ current performance). Thus, MoHRiPA can act with the provision of
services and allocation of virtual machines. By running a comparison with architecture
using ListScheduling to MoHRiPA using HashRefresh, the proposed solution performed
better because HashRefresh updates the resource pool by updates and hashes. Its update is
performed by request and not by time scheduling, such as the ListScheduling.

Therefore, the major contributions of this investigation are as follows:

• Propose an architecture of cloud resources that operate in IaaS and PaaS environments;
• Propose a mapping algorithm that considers the total performance of the physical

machine to improve the overall system execution;
• The study and application of different algorithms of resource mapping as ListSchedul-

ing and HashRefresh for resource allocation and management;
• Discuss the approaches in the literature concerning our solution, considering differ-

ences and similarities in monitoring processes and policies;
• Survey requirements for implementing heterogeneous ranking algorithms for other

platforms.

This work is structured as follows. Section 2 present the related work. The proposed
architecture and principal solution concepts are discussed in Section 3. Section 4 provides
performance evaluation. Finally, Section 6 discusses the conclusion of the paper and
future investigations.

2. Related Work

There are several works in the literature about scalability [5,14–25]. However, they
tend to focus on mechanisms that contribute to infrastructure robustness [14] since carrying
out economic management of resources directly impacts the service’s quality. Management
policies of consumption encourage clients to use the infrastructure, such as the architectural
model presented.

The authors of [15] propose a method of scheduling by prioritizing tasks in parallel.
This approach uses the concept of master/slave as a technique. The proposed algorithm
improves performance and resource utilization, in addition to reducing execution time
during load balancing. There is the master who receives all tasks through the task manager
and distributes them to the slave machines that perform these jobs on their virtual machines.



Sensors 2021, 21, 6857 3 of 17

However, the scheduling of tasks by the master node can utilize two scheduling algorithms,
Round-Robin and First In, First Out (FIFO), when considering only the delivery of tasks
and not the states of the slave nodes. Such an approach can overload the computational re-
sources available. After all, in a real-world environment, only considering task distribution
is not ideal, and it is essential to consider the workload imposed on slave nodes.

In [16], the authors propose a framework for the allocation of automated resources
via task scheduler based on deep learning. The scheduler worked according to SLA’s
feedback, prioritizing the requests and increasing the response performance. However,
non-adaptive SLAs bound the architecture capacity as faulty specification potentially results
in inaccurate allocations. Therefore, to work without this obstacle, the solution should have
an infrastructure reconfiguration module. If the configurations are not available, there is a
reconfiguration of the components, thus scheduling the tasks again. The neural network is
dependent on feedback so that an auxiliary solution can solve this problem.

The authors [17] use different algorithms for routing and non-preemptive scheduling
jobs with variable and unknown sizes in a cloud-computing data center. The focus is the
usability of these algorithms, choosing a MaxWeight schedule in either local or global
refresh times. Nevertheless, the paper demonstrates the effectiveness of different refresh
times by equations and methods. However, the method focused on routing and scheduling
algorithms, while our proposal contemplates resource management.

In [19], the authors proposed a heuristic approach that combines a modified an-
alytical hierarchy process analysis (MAHP), bandwidth-aware divisible programming
(BATS) + BAR optimization, divide-and-conquer methods to perform a task, and resource
scheduling. These different approaches process each task before allocating resources in
the cloud using the combined optimization BATS + BAR. Another approach is a divide-
and-conquer approach that compares existing BATS by the evolution algorithm differential
(IDEA) to determine the turnaround and response times. However, this approach relies
on task prediction allocation. Therefore, when a task is missing available VMs until the
task is assigned to run, the process will be waiting for a response; in worst cases, this could
take time.

The work in [20] seeks to optimize task scheduling and resource allocation by using
a combination of Taguchim’s method and the differential evolutionary algorithm (DEA).
Thus, the referred method optimizes the allocation of tasks by the resource provider.
However, the strategy of the article was aimed at optimizing the tasks and neither included
an economic policy of resources nor did it present a method of reducing idleness based
on resources. The approach in our proposal addresses the concept of the policy of saving
virtual resources by utilizing heterogeneous information ranking methods for the allocation
of services.

The authors of [21] establish the reduction in keeping physical machines connected
in their work, as providers leave physical machines connected and allocate Virtual Ma-
chines (VMs) according to demand. The demand is elastic, as it may occur at certain times
of the day, and the demand decreases, leaving idle resources. This work uses the Markov
chain to optimize the use of the infrastructure by determining, through the use of CPU,
which machines could perform a migration of VM’s to decrease the number of physical ma-
chines connected simultaneously. The environment used was CloudSim, and the concept
behind the proposal presents some critical issues. Using CPU as a decision metric may not
be the only metric needed to determine which machines consume more or fewer resources.
There are different types of applications, and some consume more RAM than a CPU. How-
ever, when considering a composite metric as the performance index proposed by [26],
this would have a more volatile metric for the optimization of any scheduling considering
performance. Another point is about shutting down physical machines in the simulation
environment. They were considered feasible in real solutions such as the datacenter cloud,
as they require an operation of 24/7 availability. Only particular events (programmed
maintenance or component replacement) resulted in machine turn off. Specific solutions
use virtual images downloaded to their volatile disk. It incurs an overhead during the boot



Sensors 2021, 21, 6857 4 of 17

time due to the network overhead and operating system image propagation. Consequently,
it requires a mechanism to avoid the on and off behavior.

The work [23] proposes a hierarchical framework for allocating virtual resources and
cloud energy management through a decision-making system with Deep Reinforcement
Learning (DRL). This work has a policy that aims to minimize energy consumption while
maintaining performance viable within the infrastructure. The learning model consists
of mapping all available servers and over the current jobs, helping the determination
of which job to submit to a server with a lower load, thus not generating overhead to
the server. Nevertheless, reinforcement via deep learning happens with each interaction
that maintains a greater consistency in the quality and speed of the mappings. Using the
neural network as an index, what will be performed is established based on the previous
interactions. However, this method did not address an architectural model, and it only
addressed the resource provider’s profound learning actuator module.

The challenge addressed by [24] is to carry out a trade-off between load balancing and
Quality of Service (QoS). The priority was to balance load without compromising these
operations, provided resource allocation and migration policies. One segment deals with
the ordering of tasks based on the size of the task and the limit that the infrastructure can
provide without losing performance. Therefore, the other segment applies the change in
the use of physical hosts in demand to migrate workloads to other machines; thus, a load
of an overloaded physical host migrates virtual machines to another provider, decreasing
the workload consequently. Both methodologies show promising results. Nevertheless,
the simulation approach precludes the insertion of realistic scenarios, such as the time
needed to update the mapping of resources and ordering and updating them with a list
scheduling algorithm as needed.

In [5], a model was proposed to encourage the use of resources at a reduced cost
due to processing demand, with a bonus made from the moment the infrastructure can
increase the workload as there is no shortage of resources. The model is attractive because
it generates an advantage in reducing customer costs and deals with the provider’s idleness
due to the incentive to use the architecture. However, the model does not portray the
architectural model, generating particular concerns about its functioning, such as the
following: How would the control of resource scarcity be carried out? Furthermore, since
monitoring is essential in this model, it is rarely mentioned, and issues about the granularity
of monitoring information, which theoretically can impact the model, are not adequately
described. Thus, the control of scarcity of resources demands information that corroborates
with the deepening of this method.

In [25], the authors perform the expansion of resource allocation according to demand
via automated exchanges between providers. The main factor is the collaboration between
the providers, which forces transactions on idle resources to occur among themselves.
Agents select the provider with the lower workload to meet the new demand, allowing
proper load balancing between providers. The decision-making process relies on scoring
metrics, and the provider is chosen based on the response time, performance, elasticity,
availability, and compliance with the Service Level Agreement (SLA). However, the model
still presents a charging system based on the provider transaction and weighs the urgency,
transaction time, and resource consolidation variables. The model showed satisfactory
results during task scheduling and measuring a reduced fee concerning what the providers
charge for the transaction of resources. If the providers have no candidate providers to be
elected, the architecture concept would be paralyzed or escalate unreliable tasks, interfering
in the SLA. Consequently, if there is a prediction of when the providers will have completed
jobs, it could be pre-allocated to a queue; thus, there would be no architecture downtime.

Concerning the management of resources, the proposed work adopts the provision
of services (SaaS) or the provision of virtual machines (IaaS). The works found in the
literature studied this concept differently as resource management begins in requisition,
and fluctuations in demand shape the computing infrastructure needs with respect to mon-
itoring metrics, such as CPU or power consumption. Some jobs make decisions only based



Sensors 2021, 21, 6857 5 of 17

on applications executing CPU-bound operations, making specific solutions ineffective
considering that many applications have high memory consumption or high memory and
CPU consumption. Composed metrics such as those used in the proposal of [27] add more
information such as network and disk; thus, they tend to provide richer management
information, enabling the management of infrastructure resources more professionally.

Table 1 shows a compilation of the discussed resource management approaches,
showing the economic policies and the category of resource manager and monitor adopted.

Table 1. Resource management approaches.

Author
Approaches

Resource Management Resource Monitor Economic Policies Scheduler Environment

[15] Service no no FIFO, Round-Robin Simulator

[16] Allocation no no Deep Learning Simulator

[17] Allocation no no Queueing Theory Simulator

[19] Allocation no no Analytic hierarchy
system Simulator

[20] Allocation no yes
Differential
Evolutionary
Algorithm (DEA)

Simulator

[21] Migration yes no Markov chain Simulator

[23] Allocation yes yes Deep Reinforcement
Learning Simulator

[24] Allocation/Migration yes yes List Scheduling Simulator

[25] Allocation/Migration yes yes Leader Election Simulator

MoHRiPA Allocation yes yes HashRefresh
(proposed) Prototype

Compared with literature solutions, the proposed architecture concerning economic
policies has the principle of generating a reduction in idleness and resource consumption.
However, idle reduction consists of several techniques, such as assigning tasks in a dis-
tributed manner, thus avoiding host overload. This control is essential to determine what
and where it is being executed. Another example includes loads: if an application starts
loading data, its load will increase with the processing of that data. Thus, the granularity
of information on jobs performed and information collected by the resource monitor is
required in order to deal with idleness. Thus, one of the main points to be analyzed to
establish an economic policy is the consumption of heterogeneous resources. Resource
scheduling is one of the crucial factors when assigning tasks to the infrastructure. It requires
proper task scheduling; otherwise, the solution cannot respond to all tasks or result in an
overloaded system. In the worst cases, violating service contracts with the user may occur,
decreasing the processing capacity and generating bottlenecks in the network. Numerous
techniques use algorithms that provide the best information to allocate in the best possible
way. In some cases, migration is the post-allocation step, and it is necessary to migrate
processing from one place to another. The suggested proposal is to allocate resources that
observe the entire infrastructure so that the infrastructure scales according to demand.

3. Proposed Architecture

This section describes MoHRiPA—An Architecture for Hybrid Resources Manage-
ment of Private Cloud Environments—which follows service-oriented architecture [26]
and focuses on attending requests from clients by using a broker selector for services while
considering the dynamic provisioning of computational resources in the service providers.
On the other hand, the MoHRiPA model can control which services are offered efficiently.



Sensors 2021, 21, 6857 6 of 17

MoHRiPA has four modules, as demonstrated in Figure 1. First, the client has the re-
sponsibility for requesting and accessing services or VM. A request results in a resource
provider (RP), which acts as a broker. The RP is responsible for service orchestration and
management of configurations such as carrier service and allocation. Finally, the manager
of elastic resources (MER) is responsible for auditing the performance metrics. These
metrics are monitored by the Resource Monitor(RM), and the aggregation of these metrics
consists in mapping the pools of resources consumed by RP; mapping algorithms calculate
these pools.

LogServer

MER

Cloud 

Request
Service/VM

Monitor 
Resources 

Delegate Acess
to Service

Atribute 
Resource
 Metrics

LogLog

AlocatorCarrier

Resource
Provider

Acess Service or VM

Alocate VM
 to User

Request Map of
Resources

Response Map

Execute

Acess 
Service

Request
Acess

VM

Client

Resource
Monitor

Monitor

Ranking

Figure 1. MoHRiPA architecture.

MoHRiPA consists of a distributed components architecture; thus, the servers of
a company can attend to simultaneous clients. Figure 2 demonstrates the topology of
components of MoHRiPA. Thus, the scheduling algorithms are on the Manager of Elastic
Resources (MER) module. Virtualization tools were installed on each infrastructure ma-
chine in the architecture and manipulated by the Resource Provider (RP) module that is
responsible for commands such as switching on, switching off, pausing, and returning.

Figure 2. Conceptual model of MoHRiPA.



Sensors 2021, 21, 6857 7 of 17

MoHRiPA has two flows: one from the client’s point of view and the other in the
provider’s internal processes. The first one comprises the client’s service request process,
as shown in Figure 3a. It begins with the request for some service. It finishes with the client
accessing the service by using the link access generated by MoHRiPA architecture once the
provider has the service available.

Figure 3b depicts the second flow. They were considering the hosts monitored by an
agent deployed in the infrastructure and the performance metrics stored on a relational
database for which its elastic resource manager performs the auditing and mapping of the
performance metrics of this database by using the proposed algorithm called HashRefresh.
This algorithm is a hash table sorter updated by request to select the best host with the
lowest CPU or memory usage. Nevertheless, the provider assigns service from the client,
and this flow ends when the client has services allocated.

(a) (b)

Figure 3. Flow of the system. (a) Client interaction flow, (b) Flow of internal server processes.

Figure 4 describes the communication and interaction of both Client Interaction and
Internal Server Process flows. It demonstrates the actions of each independent module.
The implemented solution performs an accurate performance analysis under the operations
of the architecture in order to collect metrics of the infrastructure (RM), analyze resource
mapping (MER), and then to provide services to the client (RP).

Figure 4. Sequence diagram of architecture.



Sensors 2021, 21, 6857 8 of 17

3.1. Resource Provider (RP)

The RP’s role is to receive requests and respond to them based on the MER schedule.
This entity has some assistants responsible for allocating the resources (virtual machines)
and provisioning the services. The allocation component works in a hybrid manner
independent of the virtualization tool, which allows the execution of basic commands such
as switching on, switching off, pausing, and returning. The service provider as a carrier
component is responsible for providing the link of any service requested by the user or
assigning a virtual machine.

3.2. Manager of Elastic Resources (MER)

The MER component controls how auditing resources and scales according to the
performance metrics collected by the resource monitor functions. CPU-load generates this
performance metric imposed in infrastructure, and after MER generates the list of least
utilized resources, it forwards it to the Broker, which dispatches the requests according to
the availability of resources of the MER list.

MER generates a rank comprising the least utilized resource and forwards it to the
Broker, dispatching the requests accordingly. The algorithm for sorting the available
resources is up to the user’s choice and serves as a scheduling list in the Broker. Therefore,
the execution time requires an algorithm to operate. For this purpose, we proposed
tHashRefresh, which is responsible for classifying the physical and virtual hosts and runs
on MER.

The HashRefresh is an ad hoc sorting algorithm developed to map the infrastructure
resources refreshed by request in terms of complexity, equals an O(log n), depending
on the size of the hash table. This algorithm performs a query on a database (line 2 in
Algorithm 1) for which its architectural performance information (Performance Index;
host) is stored by ordering the best resources and saving it in the hash table. However,
the table update occurs for every request that arrives in the architecture, thus maintaining
an updated database (lines 3–5). Therefore, there is no waiting on the Broker’s part for a
mapping. Furthermore, after hashSort (line 6), the algorithm always keeps the resource
pool; therefore, there is no need to wait.

Algorithm 1 HashRefresh.
Input: Performance Metrics
Output: Sorted HashMap

1: for all Request do
2: data← SQLQuerry
3: while data.next() do
4: hash← host, Per f ormanceIndex
5: end while
6: hash.Sort(value.Per f ormanceIndex)
7: end for

In addition to the HashRefresh, MER may also run other algorithms such as ListSchedul-
ing, which is an algorithm used to rank resources in heterogeneous environments, thus
assessing a consistent resource pool even with an infrastructure with different capaci-
ties [28]. ListScheduling updates the resource pool in terms of periodic time or when the
list is empty (line one) in our solution, and then this resource list is valid only for 10 s.
The Algorithm 2 performs a SQL search for performance information (Performance Index;
host); then, when a resource mapping is performed (line 2), the list can be consumed in
those 10 s. After that, the list is sorted and updated (line 3), and we can analyze the cadence
of the list of resources.



Sensors 2021, 21, 6857 9 of 17

Algorithm 2 ListScheduling.
Input: Performance Metrics
Output: Sorted List

1: while list.isnotEmpty OR cadencelistTime <= 10 s do
2: list← SQLQuerry(host, Per f ormanceIndex)
3: list.Sort(value.Per f ormanceIndex)
4: end while

3.3. Log Server (LS)

The LS component records the system log. The log server in a cloud infrastructure
is crucial, as all the information is needed to identify possible problems and is needed to
store the results of interactions between the components. The information processing time,
the number of requests processed, and providers that answered those requests are saved
into a relational database. This log is responsible for analyzing the performance evaluation
section data, as will be discussed in the following sections of this paper.

3.4. Resource Monitor (RM)

The RM component is responsible for monitoring resources such as CPU, memory,
disk, and network. In addition, this module collects performance metrics used by the
resource auditor (MER) in order to calculate the metrics of the hosts available in the private
cloud and define which will be the best host within the provider in order to meet the
client’s request.

An essential point in this work is related to the performance metrics used to classify
computational resources. Metrics such as CPU and Memory are generally used in most
classification and ranking systems as a specific set of data and do not consider the total
performance of a physical machine.

ID =
√

I2
CPU + I2

MEM + I2
NET + I2

DISK (1)

In this manner, we used the metric represented by Equation (1) of [27] for the correct
mapping of computational resources in the index. The proposed performance metric gener-
ates a performance index in both homogeneous and heterogeneous resource environments.
The Equation (1) performs a normalization of N performance metrics (in our case, CPU,
MEM, NET, and DISK). These metrics measure their Euclidean distance from the idle state
(all indicators with value zeroes); therefore, we can obtain a weighted performance index
vector (PIV) by squaring all the terms to describe the resource’s overall utilization rate.
As more values near one in the PIV, the more busy the resource is; if there are more zeroes,
then the resource is idler. After this normalization, we obtain a number representing the
composite metric and prioritize it, obtaining more accurate information regarding the
computational resources consumption of the physical host. In this manner, the assumption
is to perform precise scheduling to improve the architectural resources.

4. Performance Assessment

The performance evaluation aims to analyze the behavior of the workload in any
architecture; for this end, our evaluation method followed the foundation of [29]. Therefore,
the experimental design, factors, and levels were defined and studied very carefully,
exploring the main points of analysis, such as the correlation of the mapping algorithms
and the communication of the architecture modules. We have to use the CPU-Bound
application in this experiment, which is fundamental for composing the metrics necessary
for generating the workload. This load emulates the CPU-load in the architecture and
generates the ranking.

The main metrics to be analyzed are average response time, throughput, individual
request time, and individual time for all independent modules. When obtaining these



Sensors 2021, 21, 6857 10 of 17

times, it is possible to analyze the data and measure where architectural bottlenecks occur,
the behaviors of the different experiments, and how they are related, among others.

Thus, the design of experiments can obtain accurate information about the whole
system which consists in open discussion about what causes low-performance and what
influences most systems [29]. As it is a service-oriented architecture, the impact of requests
can impair service at the provider [30]. As a result, it is essential to set up a suitable
testing environment and model the primary factors and levels to be analyzed by using the
complete factorial model.

The factors are defined to analyze service attendance so that the workload will test the
performance of algorithms. A time of three seconds between requests time was assigned as
an analysis parameter to determine how the system behaves with less time. In the case of 5 s
between requests, the interval is more significant, generating minor system overhead, which
allows measuring how much the arrival time between requests impacts the architecture.
Table 2 shows the fixed parameters used to configure Jmeter for all experiments.

Table 2. Fixed parameters that define all experiments.

Fixed Parameters

Number of Clients 1
Ramp-Up Period 1 s

Number of Iterations Per Thread 100
Number of Replication 10

The margin of confidence of experiments was performed ten times, with 100 requests
for each execution of eight experiments. The confidence interval is applied and defined by
Minitab adjusting the Bonferroni correction to maintain the simultaneous confidence level
at 95%. This value corresponds to the limit of homogeneous virtual machines with a con-
figuration in which each VM has one VCPU and 4Gb RAM. This configuration is based on
Amazon (https://aws.amazon.com/en/ec2/instance-types/ acessed in 19 August 2021)
instances and follows as an example of m6g.medium and Google Cloud instances
(https://cloud.google.com/compute/docs/instances acessed in 19 August 2021) that
correspond to n1-standard-1.

4.1. Algorithms Used

Two statistical distributions were selected to assess the arrival behavior of requests:
a uniform distribution due to regularity and the other exponential distribution due to
exponential behavior. Another factor is the time between requests, which determines the
behavior of the distributions. Finally, two mapping algorithms were adopted, namely
ListScheduling and the proposed HashRefresh (Table 3).

Table 3. Table of factors and levels.

Factor Level

Statistical Distribution Uniform; Exponential
Time between Requests 3 s, 5 s
Mapping Algorithm Hashrefresh; ListScheduling

This design produces a result of the complete factorial, so we performed eight exper-
iments (23—3 factors with two levels each) that were defined to accurately analyze the
architecture results, as shown in Table 4. MoHRiPA has two aspects of service, service
assignment and allocation of virtual machines. In this analysis, we executed the service
attendance scenario. Among the architecture’s services, we have to use the CPU-Bound
application in this experiment, which is fundamental for composing the metrics necessary
for generating the workload. This load emulated the CPU load in the architecture and
generated the ranking [31].

https://aws.amazon.com/en/ec2/instance-types/
https://cloud.google.com/compute/docs/instances


Sensors 2021, 21, 6857 11 of 17

Table 4. Table of Experiments.

Experiment Distribution Time Between Requests Algorithm

A Uniform 3 s HashRefresh
B Uniform 5 s HashRefresh
C Exponential 3 s HashRefresh
D Exponential 5 s HashRefresh
E Uniform 3 s ListScheduling
F Uniform 5 s ListScheduling
G Exponential 3 s ListScheduling
H Exponential 5 s ListScheduling

We defined the adoption of the 3 and 5 s on time request during the pre-test phase. We
carried it out before the execution of the experiments. This warm up helped determining
the time intervals that the architecture would have a higher or lower load. Based on this
reflection, we defined the heavy load as 3 s and the light load corresponds to 5 s.

4.2. Environment Configuration

The experiments were conducted in the Laboratory of Distributed Systems and Concur-
rent Programming at the University of São Paulo, Brazil (http://infra.lasdpc.icmc.usp.br/
acessed in 19 August 2021), which was equipped with the clusters Andromeda and Halley.
Table 5 shows the cluster’s description.

Table 5. Configurations of infrastructure.

Clusters

Andrômeda Halley

Processor AMD Vishera 4.2 Ghz Intel Core I7 3.60 Ghz
Storage 32 GB RAM, SSD 480 GB and HDD 2 TB 32 GB RAM, SSD 480 GB and HDD 2 TB
Nodes 13 13

The infrastructure host has a total of 26 independent nodes. Four of them are reserved
for MER, Broker, Monitor, and logServer. The other 22 nodes hosted VMs. A total of eight
virtual machines per node were used and distributed between clusters Andrômeda and
Halley. There is a module in each VMS called ClusterLoader that stores different types
of applications. Each application focused on a specific type of processing (CPU-bound,
Memory-bound, or Hybrid-bound).

The execution of these applications is fundamental to the functioning of the prototype.
These executions influence the provider’s monitoring, a variation in the consumption of
resources necessary for ranking the MER. A monitoring tool called Dstat (http://dag.wiee
.rs/home-made/dstat/ acessed in 19 August 2021) was also used, which queries about the
performance metrics in /proc . By using another tool developed for the work (MonitorAPi),
it performs the treatment of data from Dstat. MonitorAPi aims at performing the treatment
in any monitoring tool when configuring the specific string treatment for each tool.

The workload generation comprises statistical distribution, assignment of requests,
and time between requests performed by Apache Jmeter (https://jmeter.apache.org/ acessed
in 19 August 2021). This tool generated the workload and made supplementary resources
available as a monitor of individual requests, which made it possible to obtain information
related to the flow and response time of the providers. We used jmeter to request a service
from an existing VM in infrastructure.

5. Result Analysis

Figure 5 shows a bar graph referring to the exponential distribution. The HashRefresh (HR)
and ListSheduling (LS) Exp 5 s presented longer average time in all modules. These approaches
have constant request updates, corroborating with the increase in average time.

http://infra.lasdpc.icmc.usp.br/
http://dag.wiee.rs/home-made/dstat/
http://dag.wiee.rs/home-made/dstat/
https://jmeter.apache.org/


Sensors 2021, 21, 6857 12 of 17

112
52 26 25

142
65 39 27

789

208

27

186150
68 35 31

0

250

500

750

1000

Client Broker MER Carrier

LS Exp 3 sec HR Exp 3 sec LS Exp 5 sec HR Exp 5 sec

M
i
l
l
i
s
e
c
o
n
d
s

Figure 5. Average uniform exponential time.

Figure 6 depicts the uniform distribution bar graph. Due to the behavior of this load
concerning the average time, it is observed that HashRefresh spent a longer period of time
in broker and MER and is close to ListScheduling in the Client (request-response) and
Carrier due to the number of requests. ListScheduling demonstrates that the exponential
distribution overloads the broker. ListScheduling demonstrated a superior response time in
Client and Carrier due to the load distribution in the uniform distribution. The algorithm
adapts the requests depending on the periodic list update time. To extend the analysis,
Figures 7 and 8 represent the boxplot of the experiments carried out.

144

57

33 37

158

71

41 33

184

69

27
40

157

69

41
32

0

50

100

150

200

250

Client Broker MER Carrier

LS Uni 3 sec HR Uni3 sec LS Uni 5 sec HR Uni 5 sec

M
i
l
l
i
s
e
c
o
n
d
s

Figure 6. Average Uniform Response Time.

Figures 9a,b show the total latency. We highlight that, as the time between requests
increases, the module MER heavily influences the client since all the mapping centralized
in this module generates a bottleneck in the customer’s response time. In ListScheduling,
the update rate, when the time between requests is 5 s, corresponds to a high latency; this
behavior is due to how the algorithm works, which concludes that the list’s rate can be
very high. Table 6 demonstrates the dispersion of the mean and the variance concerned
and the required latency to meet an allocation request in which we can observe that the
ListScheduling methods have a higher mean. However, HashRefresh has a greater variance
due to the frequency of updating the map.



Sensors 2021, 21, 6857 13 of 17

Figure 7. Average of ListScheduling time distribution.

Figure 8. Average of HashRefresh time distribution.



Sensors 2021, 21, 6857 14 of 17

(a) (b)

Figure 9. Total latency. (a) Latency time distribution: exponential, (b) Latency time distribution: uniform.

Eventually, requests can arrive during this period of the list, thus increasing the
time to fulfill the request. Meanwhile, compared with the HashRefresh algorithm, is
does not have high latency. After all, this algorithm does update by requests to keep the
mapping continuously updated, thus increasing the service capacity for not having this
periodical mechanism.

Table 6. Experiment latency statistical metrics.

Experiment Mean Variation Standard Deviation

LS Exp 3 s 110 93.3 11.8

HR Exp 3 s 140 305.5 117.0

LS Exp 5 s 789.5 505.7 200.6

HR Exp 5 s 150 515.9 258.7

LS Uni 3 s 144 371 160.5

HR Uni 3 s 155.5 275.1 84.5

LS Uni 5 s 184 528.7 243.7

HR Uni 5 s 153 440.8 203.5

Regarding the attribution of services, after due analysis, the most significant bottleneck
point of the architecture was identified, which was MER, and it responsible for the mapping
of resources. MER is very requested and generates much latency due to its response to the
broker, which may represent an increase in service time. With respect to resource mapping
algorithms, the LS’s performance was 7% lower in the high-cadence uniform list scenario
than the HR due to its update difference. While LS has a list with time to update the
map, HR updates its hash table at each request, overloading broker modules (Carrier;
Allocator) in 24% in the uniform scenario and 25.5% in the exponential scenario due to its
high demand. Regarding overall performance, HR has a higher performance in responding
to the broker and generates much overhead than compared to LS. When we analyzed the
bar graph, HR increased compared to LS when the time variation is less because LS updates
less during HR. To finalize the HR, a 50% increase in total MER/Broker latency due to the
refresh method was observed.

6. Conclusions

The need for intelligent resource management is increasingly evident due to the
massive adoption of infrastructure automated provisioning. The bottleneck identification
plays a crucial role in improving existing cloud computing architectures, enabling services
to reach new scalability levels. Our work demonstrated how the workload impacted



Sensors 2021, 21, 6857 15 of 17

the computing architecture; individual modules present a viable approach to isolating
computing functions and mapping them to resources to achieve scalability. Our solution
assumes a resource provider to allocate computing units and a manager to control elasticity.
We demonstrated that the MER module is responsible for mapping the resource pool
and influences the total response time. Therefore, this module can also be considered the
biggest bottleneck in the architecture. This work proposes the HashRefresh mechanism for
mapping resources.

Two resource mapping algorithms were analyzed, namely ListScheduling and HashRe-
fresh. The ListScheduling algorithm performance was inferior to HashRefresh due to their
differences in approach. While ListScheduling has a list with time to update the map,
HashRefresh performs updates to its hash table with each request. Thus, HashRefresh
presents better results regarding overall performance, but it also generates more overhead
than the ListScheduling algorithm. Despite the subtleties of the resource mapping algo-
rithms, the periodic time of the ListSchdeuling list is a factor that significantly influences
response time. However, it is worth mentioning that HashRefresh had a shorter period
of time due to its constant updating structure. Our approach presents an exploratory
study on scalability issues on cloud computing architectures, aspects of related work, and
the modularization of architecture. We also employed formal performance evaluation
techniques and designed a complete factorial experiment to identify the influences of
levels and factors that were essential for assessing the behavior of architecture concerning
specific configurations.

As future work, we aim to analyze a different number of customers and distributed
brokers. Our analysis considered only one JMeter client in this work, which impacts the
broker from the same source of requests. Regarding the analysis of the impact of factors,
we concluded that the customer was severely affected. A new configuration of experiments
to distribute the JMeter on more machines can help create better services. As a complement,
we aim to analyze the impact of implementing a load balancing module that replicates a
set of requests for more than one broker.

Author Contributions: Conceptualization, G.T.A., J.C.E. and S.M.B.; methodology, G.T.A., J.C.E.,
S.M.B. and R.I.M.; formal analysis, G.T.A., R.I., D.G. and J.C.E.; writing—original draft preparation,
G.T.A., J.C.E., S.M.B. and L.A.P.J.; writing—review and editing, G.T.A., R.I., D.G. and L.A.P.J. All
authors have read and agreed to the published version of the manuscript.

Funding: This work was developed using the computational infrastructure of the Distributed
Computing Lab of ICMC-USP—University of São Paulo—present in http://infra.lasdpc.icmc.usp.br/
acessed in 19 August 2021 and also with resources from the Center for Mathematical Sciences Applied
to Industry (CeMEAI http://www.cemeai.icmc.usp.br/ acessed in 19 August 2021) funded by the
São Paulo Research Foundation FAPESP (grant #2013/07375-0 and #11/09524-7), FAPESP under
grant #2020/05126-6, and FAPEMIG under grant #APQ-03120-17 and #APQ-02675-21. Rodolfo Ipolito
Meneguette would like to thank the FAPESP for their financial support through grant #2020/07162-0
in his research. This work was supported in part by ITA’s Programa de Pós-graduação em Aplicações
Operacionais (ITA/PPGAO)).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data sharing can be found on https://github.com/Tomiatti/Mohripa-
msc/, accessed on 19 August 2021.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Younge, A.J.; Von Laszewski, G.; Wang, L.; Lopez-Alarcon, S.; Carithers, W. Efficient resource management for cloud computing

environments. In Proceedings of the International Conference on Green Computing, Chicago, IL, USA, 15–18 August 2010;
pp. 357–364.

2. Mao, S.; Wu, J.; Liu, L.; Lan, D.; Taherkordi, A. Energy-efficient cooperative communication and computation for wireless
powered mobile-edge computing. IEEE Syst. J. 2020. [CrossRef]

http://infra.lasdpc.icmc.usp.br/
http://www.cemeai.icmc.usp.br/
https://github.com/Tomiatti/Mohripa-msc/
https://github.com/Tomiatti/Mohripa-msc/
http://doi.org/10.1109/JSYST.2020.3020474


Sensors 2021, 21, 6857 16 of 17

3. Etro, F. The economic impact of cloud computing on business creation, employment and output in Europe. Rev. Bus. Econ. 2009,
54, 179–208.

4. Bittencourt, L.; Immich, R.; Sakellariou, R.; Fonseca, N.; Madeira, E.; Curado, M.; Villas, L.; DaSilva, L.; Lee, C.; Rana, O. The
Internet of Things, Fog and Cloud continuum: Integration and challenges. Internet Things 2018, 3–4, 134–155. [CrossRef]

5. Bauer, E.; Adams, R. Reliability and Availability of Cloud Computing; John Wiley & Sons: Hoboken, NJ, USA, 2012.
6. Pereira, L.A.; Choquehuanca Mamani, E.L.; Santana, M.J.; Monaco, F.J.; Nobile, P.N. Extending discrete-event simulation

frameworks for non-stationary performance evaluation: Requirements and case study. In Proceedings of the 2015 Winter
Simulation Conference (WSC), Huntington Beach, CA, USA, 6–9 December 2015; pp. 3150–3151. [CrossRef]

7. Meneguette, R.I.; Boukerche, A. A cooperative and adaptive resource scheduling for Vehicular Cloud. In Proceedings of the 2017
IEEE Symposium on Computers and Communications (ISCC), Heraklion, Greece, 3–6 July 2017; pp. 398–403. [CrossRef]

8. Zhu, Q.H.; Tang, H.; Huang, J.J.; Hou, Y. Task Scheduling for Multi-Cloud Computing Subject to Security and Reliability
Constraints. IEEE/CAA J. Autom. Sin. 2021, 8, 848–865. [CrossRef]

9. Meneguette, R.I.; Boukerche, A.; Pimenta, A.H.M. AVARAC: An Availability-Based Resource Allocation Scheme for Vehicular
Cloud. IEEE Trans. Intell. Transp. Syst. 2019, 20, 3688–3699. [CrossRef]

10. Mei, J.; Li, K.; Li, K. Customer-satisfaction-aware optimal multiserver configuration for profit maximization in cloud computing.
IEEE Trans. Sustain. Comput. 2017, 2, 17–29. [CrossRef]

11. Curado, M.; Madeira, H.; da Cunha, P.R.; Cabral, B.; Abreu, D.P.; Barata, J.; Roque, L.; Immich, R. Internet of Things—Next
Generation Cyber-Physical Systems. In Cyber Resilience of Systems and Networks; Springer: Berlin/Heidelberg, Germany, 2019;
pp. 381–401._16. [CrossRef]

12. Zhang, P.; Zhou, M.; Wang, X. An intelligent optimization method for optimal virtual machine allocation in cloud data centers.
IEEE Trans. Autom. Sci. Eng. 2020, 17, 1725–1735. [CrossRef]

13. Kamoi, R.N.; Júnior, L.A.P.; Verri, F.A.N.; Marcondes, C.A.C.; Ferreira, C.H.G.; Meneguette, R.I.; Cunha, A.M.D. Platoon Grouping
Network Offloading Mechanism for VANETs. IEEE Access 2021, 9, 53936–53951. [CrossRef]

14. Mao, S.; Zhang, N.; Liu, L.; Wu, J.; Dong, M.; Ota, K.; Liu, T.; Wu, D. Computation Rate Maximization for Intelligent Reflecting
Surface Enhanced Wireless Powered Mobile Edge Computing Networks. IEEE Trans. Veh. Technol. 2021. [CrossRef]

15. Mhatre, M.; Shree, P.; Sharma, S.K. Prioritized job scheduling algorithm using parallelization technique in cloud computing.
In Proceedings of the 2017 2nd International Conference for Convergence in Technology (I2CT), Mumbai, India, 7–9 April
2017; pp. 576–581. [CrossRef]

16. Hassan, M.; Chen, H.; Liu, Y. DEARS: A Deep Learning Based Elastic and Automatic Resource Scheduling Framework
for Cloud Applications. In Proceedings of the 2018 IEEE International Conference on Parallel Distributed Processing with
Applications, Ubiquitous Computing Communications, Big Data Cloud Computing, Social Computing Networking, Sustainable
Computing Communications (ISPA/IUCC/BDCloud/SocialCom/SustainCom), Melbourne, VIC, Australia, 11–13 December
2018; pp. 541–548. [CrossRef]

17. Maguluri, S.T.; Srikant, R. Scheduling jobs with unknown duration in clouds. IEEE/ACM Trans. Netw. 2013, 22, 1938–1951.
[CrossRef]

18. Pereira, R.S.; Lieira, D.D.; da Silva, M.A.; Pimenta, A.H.; da Costa, J.B.; Rosário, D.; Meneguette, R.I. A novel fog-based resource
allocation policy for vehicular clouds in the highway environment. In Proceedings of the 2019 IEEE Latin-American Conference
on Communications (LATINCOM), Salvador, Brazil, 11–13 November 2019; pp. 1–6. [CrossRef]

19. Gawali, M.B.; Shinde, S.K. Task scheduling and resource allocation in cloud computing using a heuristic approach. J. Cloud
Comput. 2018, 7, 4. [CrossRef]

20. Tsai, J.T.; Fang, J.C.; Chou, J.H. Optimized task scheduling and resource allocation on cloud computing environment using
improved differential evolution algorithm. Comput. Oper. Res. 2013, 40, 3045–3055. [CrossRef]

21. Sayadnavard, M.H.; Toroghi Haghighat, A.; Rahmani, A.M. A reliable energy-aware approach for dynamic virtual machine
consolidation in cloud data centers. J. Supercomput. 2019, 75, 2126–2147. [CrossRef]

22. Meneguette, R.I.; Madeira, E.R.M.; Bittencourt, L.F. Multi-network packet scheduling based on vehicular ad hoc network
applications. In Proceedings of the 2012 8th International Conference on Network and Service Management (CNSM) and 2012
Workshop on Systems Virtualiztion Management (SVM), Las Vegas, NV, USA, 22–26 October 2012; pp. 214–218.

23. Liu, N.; Li, Z.; Xu, J.; Xu, Z.; Lin, S.; Qiu, Q.; Tang, J.; Wang, Y. A Hierarchical Framework of Cloud Resource Allocation and
Power Management Using Deep Reinforcement Learning. In Proceedings of the 2017 IEEE 37th International Conference on
Distributed Computing Systems (ICDCS), Atlanta, GA, USA, 5–8 June 2017; pp. 372–382. [CrossRef]

24. Arif, H.; Sahoo, P.K. Threshold Scheme Approach to Balance Virtual Machines Load in Private Cloud. In Proceedings of the 2018
International Conference on Applied Engineering (ICAE), Batam, Indonesia, 3–4 October 2018; pp. 1–6. [CrossRef]

25. Goher, S.Z.; Bloodsworth, P.; Rasool, R.U.; McClatchey, R. Cloud provider capacity augmentation through automated resource
bartering. Future Gener. Comput. Syst. 2018, 81, 203–218. [CrossRef]

26. Estrella, J.; Santana, R.; Santana, M.; Bruschi, S. WSARCH: A service-oriented architecture with QoS. In Handbook of Research
on Service-Oriented Systems and Non-Functional Properties: Future Directions; IGI Global: Hershey, PA, USA, 2011; pp. 352–380.
[CrossRef]

http://dx.doi.org/10.1016/j.iot.2018.09.005
http://dx.doi.org/10.1109/WSC.2015.7408444
http://dx.doi.org/10.1109/ISCC.2017.8024562
http://dx.doi.org/10.1109/JAS.2021.1003934
http://dx.doi.org/10.1109/TITS.2018.2880298
http://dx.doi.org/10.1109/TSUSC.2017.2667706
http://dx.doi.org/10.1007/978-3-319-77492-3_16
http://dx.doi.org/10.1109/TASE.2020.2975225
http://dx.doi.org/10.1109/ACCESS.2021.3071085
http://dx.doi.org/10.1109/TVT.2021.3105270
http://dx.doi.org/10.1109/I2CT.2017.8226195
http://dx.doi.org/10.1109/BDCloud.2018.00086
http://dx.doi.org/10.1109/TNET.2013.2288973
http://dx.doi.org/10.1109/LATINCOM48065.2019.8937912
http://dx.doi.org/10.1186/s13677-018-0105-8
http://dx.doi.org/10.1016/j.cor.2013.06.012
http://dx.doi.org/10.1007/s11227-018-2709-7
http://dx.doi.org/10.1109/ICDCS.2017.123
http://dx.doi.org/10.1109/INCAE.2018.8579406
http://dx.doi.org/10.1016/j.future.2017.09.080
http://dx.doi.org/10.4018/978-1-61350-432-1.ch016


Sensors 2021, 21, 6857 17 of 17

27. Branco, K.R.; Santana, M.J.; Santana, R.H.C.; Bruschi, S.M. Piv and wpiv: Performance index for heterogeneous systems
evaluation. In Proceedings of the 2006 IEEE International Symposium on Industrial Electronics, Montreal, QC, Canada, 9–13 July
2006; Volume 1, pp. 323–328.

28. Arabnejad, H.; Barbosa, J.G. List scheduling algorithm for heterogeneous systems by an optimistic cost table. IEEE Trans. Parallel
Distrib. Syst. 2013, 25, 682–694. [CrossRef]

29. Jain, R. The Art of Computer Systems Performance Analysis: Techniques for Experimental Design, Measurement, Simulation, and Modeling;
John Wiley & Sons: Hoboken, NJ, USA, 1990.

30. Bieberstein, N.; Bose, S.; Walker, L.; Lynch, A. Impact of service-oriented architecture on enterprise systems, organizational
structures, and individuals. IBM Syst. J. 2005, 44, 691–708. [CrossRef]

31. Ferreira, C.H.; Nunes, L.H.; Pereira, L.A.; Nakamura, L.H.; Estrella, J.C.; Reiff-Marganiec, S. PEESOS-Cloud: A Workload-Aware
Architecture for Performance Evaluation in Service-Oriented Systems. In Proceedings of the 2016 IEEE World Congress on
Services (SERVICES), San Francisco, CA, USA, 27 June–2 July 2016; pp. 118–125. [CrossRef]

http://dx.doi.org/10.1109/TPDS.2013.57
http://dx.doi.org/10.1147/sj.444.0691
http://dx.doi.org/10.1109/SERVICES.2016.25

	Introduction
	Related Work
	Proposed Architecture
	Resource Provider (RP)
	Manager of Elastic Resources (MER)
	Log Server (LS)
	Resource Monitor (RM)

	Performance Assessment
	Algorithms Used
	Environment Configuration

	Result Analysis
	Conclusions
	References

