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Abstract: This paper deals with analytical modelling of piezoelectric energy harvesting systems for
generating useful electricity from ambient vibrations and comparing the usefulness of materials
commonly used in designing such harvesters for energy harvesting applications. The kinetic energy
harvesters have the potential to be used as an autonomous source of energy for wireless applications.
Here in this paper, the considered energy harvesting device is designed as a piezoelectric cantilever
beam with different piezoelectric materials in both bimorph and unimorph configurations. For both
these configurations a single degree-of-freedom model of a kinematically excited cantilever with
a full and partial electrode length respecting the dimensions of added tip mass is derived. The
analytical model is based on Euler-Bernoulli beam theory and its output is successfully verified with
available experimental results of piezoelectric energy harvesters in three different configurations.
The electrical output of the derived model for the three different materials (PZT-5A, PZZN-PLZT
and PVDF) and design configurations is in accordance with lab measurements which are presented
in the paper. Therefore, this model can be used for predicting the amount of harvested power in a
particular vibratory environment. Finally, the derived analytical model was used to compare the
energy harvesting effectiveness of the three considered materials for both simple harmonic excitation
and random vibrations of the corresponding harvesters. The comparison revealed that both PZT-5A
and PZZN-PLZT are an excellent choice for energy harvesting purposes thanks to high electrical
power output, whereas PVDF should be used only for sensing applications due to low harvested
electrical power output.

Keywords: energy harvesting; vibrations; piezoelectric; analytical model; beam model; equivalent
model; power prediction

1. Introduction

Energy harvesting is more than 20 years a hot topic in the field of wireless sensing [1]
since it allows for converting various energy types from ambient sources into an electrical
one. Although the amount of such harvested energy is usually small (tens of µW up to sev-
eral mW), it can be used as a source of electrical power for modern, low power-consuming
sensors that are typically used in wearable electronics and industrial applications [2] where
powering using cables is not feasible (either due to a hazardous environment or complex
setup). Piezoelectric kinetic energy harvesters in the form of a vibrating multilayer structure
with piezoelectric layers [3] are commonly used in vibration energy harvesting applications,
where the structure is excited by an ambient source of vibrations. The main task of kinetic
energy harvesters is then to transform the mechanical energy of ambient vibrations, mainly
those of machine frames or human body movement, into useful electrical energy by means
of the direct piezoelectric phenomenon.

The main goal in the field of energy harvesting is to design a kinetic energy harvester
which is capable to generate a sufficient amount of electrical energy in a particular vibratory
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environment [4] in order to power some other electronic equipment. However, each
application has its requirements or limits for dimensions and weight of the harvester; the
principle of energy harvesting can be used practically everywhere, for example in the field
of medicine [5], wearables [6], portables [7], aircrafts [8], structural health monitoring of
railways [9] or bridges [10].

It has been proved many times that for harvesting energy from ambient vibrations the
kinematically excited cantilever beam is one of the most effective designs of a piezoelectric
energy harvester. The fundamental and also the most important issue of this solution is
the choice of a suitable piezoelectric material for effective electromechanical conversion.
The review of commonly used piezoelectric materials and structures for energy harvesting
purposes is summarized in publication [11], where it is shown that not only the material
itself but also the intended operational mode significantly affects the amount of harvested
power due to a great variation in piezoelectric coefficients. The highest piezoelectric
coefficients (generally, the higher the coefficients, the higher the amount of harvested
power) are provided by piezoceramic materials [12], especially those based on lead (PZT).
As a non-toxic alternative, new lead-free piezoceramic materials have been developed
which are based on multifunctional Perovskite [13] or structured layers made of Barium
and Titanate [14]. Besides these piezoceramic materials which are inherently very brittle
and stiff, there are also more flexible materials such as macro-fiber composites which are
very promising in the area of strain energy harvesting [15] and piezopolymers which are
summarized in review paper [16]. An example of a cantilever harvesting device based on
a piezoelectric polymer (PVDF) is presented in paper [17] and the effectivity of PVDF in
energy harvesting applications is nowadays widely discussed [6].

In conclusion, the two most important factors that determine the effectiveness of a
vibrational energy harvesting device are the used piezoelectric material and the harvester’s
geometry. Many recent works were concerned about the optimal harvester’s geometry
for selected piezoelectric material, e.g., [18], but the effectivity of various piezoelectric
materials has not been widely discussed yet. Both the selection of efficient piezoelectric
material and suitable geometry of the harvester can be solved with an appropriate model
of the piezoelectric resonator. For this reason, the presented paper is organized as follows.
First, derivation of an analytical beam model of a kinematically excited piezoelectric
cantilever in both bimorph/unimorph configurations which also respects the dimensions
of used tip mass. This beam model is subsequently reduced to a single degree-of-freedom
(DOF) system using the first mode shape function. Although, the derivation of a coupled
electromechanical model was published several times, e.g., [19–23], here, we also show
the effect of chosen mode shape function which is used in reducing the beam model
into single DOF model. Then, the model is verified with 3 different experimental results.
Finally, the main aim of this paper is to provide a methodology based on a verified
model that can be used to compare the effectivity of materials commonly used in energy
harvesting applications.

2. Model of Piezoelectric Vibration Energy Harvester

In order to harvest as much energy from vibrations as possible, it is paramount to
properly design dimensions of the harvester and optimize its electrical impedance. This
goal can easily be achieved with an analytical model which is able to predict electromechan-
ical response of piezoelectric energy harvesters. Therefore, here in this paper a single DOF
model of a kinematically excited cantilever in both bimorph/unimorph configurations is
derived. This analytical model is based on Euler-Bernoulli (thin) beam theory and its out-
put is compared with results from experiments conducted with three different piezoelectric
harvesters described further in the following section. Then, the derived model is used in a
comparative study to compare the piezoelectric materials used in the experiments in terms
of energy harvesting efficiency.
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2.1. Bimorph Cantilever Beam with Piezoelectric Layers in Series

A piezoelectric cantilever beam harvester in a bimorph configuration is shown in
Figure 1. This beam model with dimensions L × B × H, where H = 2 hp + hs, is used for
obtaining a single DOF analytical model. The clamped end is kinematically excited with a
time-harmonic base acceleration a(t) from an external source of vibrations. Piezoelectric
layers are in operational mode 31 (in-thickness polarization of piezoelectric layers and axial
bending deformation of the harvester) whose polarization is denoted by arrow symbols in
the figure. These layers have electrodes present over a region of dimensions LE × B which
is mentioned further in the text as section VE; the remaining portion of piezoelectric layers
is not polarized (mentioned as section VR), and thus is not affected by the piezoelectric
effect. A tip mass Mt of negligible rotary inertia is attached to the free end of the beam
spanning over the length LMt—this section is denoted as VR, Mt. The bimorph model is
reduced to a single DOF model which describes the movement of the bimorph’s free end q
relative to the moving clamped end.
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Figure 1. Geometric model of a piezoelectric bimorph in operational mode 31.

The assumptions of Euler-Bernoulli beam theory combined with those of the classi-
cal laminate theory concerning continuous strain throughout the layers of a multilayer
structure imply that the strain εx within bimorph’s layers can be expressed as

εx= −
∂2w
∂x2 z, (1)

where w is transverse displacement of the beam’s centerline relative to the movement of
the excited clamped end. Since the beam is split into a section VE which is affected by
the piezoelectric effect, section VR which is not affected by the piezoelectric effect and
section VR, Mt with distributed tip mass attached, the displacement needs to be a piecewise
function defined as

w(x, t) =


w1(x, t) for x ∈[0, LE]

w2(x, t) for x ∈(LE, L − LMt]

w3(x, t) for x ∈(L − LMt, L]

. (2)
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For these functions it must hold that they are continuous and smooth at intersection
points, i.e., they must satisfy following conditions:

w1(x = LE, t)= w2(x = LE, t)
w2(x = L − LMt, t)= w3(x = L − LMt, t)

∂w1
∂x (x = LE, t) = ∂w2

∂x (x = LE, t)
∂w2
∂x (x = L − LMt, t) = ∂w3

∂x (x = L − LMt, t)

. (3)

The piezoelectric constitutive relations, which are required further in the derivation of
the analytical model, take the following form for the uniaxial stress state [23]:

εx= sE
11σx+d31Ez, (4)

Dz = d31σx + εT
33Ez, (5)

where εx represents normal strain, sE
11 is mechanical compliance measured at constant

electric field, σx is normal stress, d31 is the mode-31 component of the piezoelectric charge
coefficient matrix, Ez is the z-component of electric field intensity, Dz is the z-component of
electric flux density and εT

33 is permittivity in direction of the polarization axis measured at
constant mechanical stress. From Equation (4) the expression for the stress σx is extracted as

σx =
(

sE
11

)−1
εx −

(
sE

11

)−1
d31Ez . (6)

Note that the reciprocal value of sE
11 equals to the elastic modulus Yp of used piezo-

electric material. Equation (6) can then be rewritten as

σx= Ypεx −Ypd31︸ ︷︷ ︸
e31

Ez= Ypεx − e31Ez , (7)

where e31 is the piezoelectric modulus. Substituting (7) into (5) yields

Dz = d31Yp︸ ︷︷ ︸
e31

εx +
(

εT
33 − d31e31

)
︸ ︷︷ ︸

εS
33

Ez= e31εx + εS
33Ez, (8)

where εS
33 is the permittivity of used piezoelectric material measured at constant strain.

Piezoelectric materials are dielectrics and, as a consequence of the Gauss’ law, it
holds that ∂Dz/∂z = 0 [24]. This implies that Dz = const. Since the strain term in (8)
changes linearly with the z-coordinate, we can use its mean value at the center of the n-th
piezoelectric layer; the z-coordinate of the center of n-th layer is denoted as zTpn. Next,
the fundamentals of electricity, see e.g., [25], state that integration of Ez over the thickness
of a particular layer yields the voltage drop for the given layer. In order to make Dz
independent of the z-coordinate, Ez must be a linear function of this coordinate with its
mean value at the center of n-th layer given by

Ez
(
zTpn

)
= −Un

hp
= − U

2hp
(9)

where U is the magnitude of generated voltage drop and hp is the thickness of piezoelectric
layers. By using Equations (1) and (9) in Equation (8) and by assuming that Dz is a
layer-wise function, one receives:

Dz= −e31zTpn
∂2w
∂x2 −

εS
33

2hp
U. (10)
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By combining Equations (8) and (10), the following expression for Ez is obtained:

Ez =
e31

εS
33

∂2w
∂x2

(
z − zTpn

)
− U

2hp
. (11)

According to [26], the electric current I generated by two in-series connected piezo-
electric layers can be expressed as

I =
U
Rl

=
d
dt

x

AE

Dzdxdy

, (12)

where the subscript AE denotes the area of electrodes and Rl represents the connected
resistance. Inserting (10) into Equation (12) yields

U
Rl

=
d
dt

x
AE

(
−e31zTpn

∂2w
∂x2 −

εS
33

2hp
U

)
dxdy

. (13)

Integrating terms in (13) leads to a following PDE which governs the electrical behavior
of the considered bimorph

Ceq
dU
dt

+
1
Rl

U = κ
∂2w
∂x∂t

∣∣∣∣
x=LE

, (14)

where Ceq denotes the bimorph’s equivalent capacitance defined as

Ceq = εS
33

BLE

2hp
, (15)

and κ represents generic electromechanical coupling defined as

κ = −Be31zTp. (16)

As a next step, Equations (11) and (1) can be inserted into Equation (7) to obtain an
expression for stress σx within the polarized piezoelectric layers:

σx = −Yp
∂2w
∂x2 z+

e2
31

εS
33

∂2w
∂x2

(
zTpn − z

)
+

e31

2hp
U. (17)

Within the other layers (non-polarized piezoelectric layers and the substrate) the stress
obeys the Hooke’s law:

σx= −Yn
∂2w
∂x2 z , (18)

where Yn denotes elastic modulus of the used piezoelectric material Yp or the substrate Ys.
Total energy stored in the considered bimorph upon vibrations consists of kinetic

energy Ek, strain energy Ep and the work done by inertial forces due to kinematic excitation
Wext. Kinetic energy of the considered beam can be written as

Ek = 1
2
t

VE

[
ρn

(
∂w1
∂t

)2
]

dV+ 1
2
t

VR

[
ρn

(
∂w2
∂t

)2
]

dV+ 1
2

t

VR, Mt

[(
ρn +

Mt
LMtBH

)(
∂w3
∂t

)2
]

dV

= 1
2

LE∫
0

[
m∗
(

∂w1
∂t

)2
]

dx+ 1
2

L − LMt∫
LE

[
m∗
(

∂w2
∂t

)2
]

dx+ 1
2

L∫
L − LMt

[(
m∗ + Mt

LMt

)(
∂w3
∂t

)2
]

dx,
(19)



Sensors 2021, 21, 6759 6 of 22

where ρn is density of the n-th layer, Mt is the attached tip mass and m* is the bimorph’s
mass per unit of its length defined as

m∗= B
(

ρshs+2ρphp

)
. (20)

Strain energy stored in the bimorph can be expressed as

Ep = 1
2
t

VE

[εxσx]dV+ 1
2
t

VR

[
Ynε2

x
]
dV+ 1

2
t

VR, Mt

[
Ynε2

x
]
dV

= 1
2

LE∫
0

[
J∗piezo

(
∂2w1
∂x2

)2
− κw1

dδ
dx (x − LE)U

]
dx+ 1

2

L − LMt∫
LE

[
J∗
(

∂2w2
∂x2

)2
]

dx+ 1
2

L∫
L − LMt

[
J∗
(

∂2w3
∂x2

)2
]

dx ,
(21)

where dδ/dx is the first derivative of Dirac’s delta function, J∗piezo denotes bending stiffness
of the beam section where the polarization of a piezoelectric material is considered (over
the length LE) defined as

J∗piezo =
1

12
YsBh3

s+2Yp

[
1
12

Bh3
p +

(
hp

2
+

hs

2

)2

Bhp

]
+υ, (22)

where

υ = 2 × 1
12

e2
31

εS
33

Bh3
p , (23)

and J* is bending stiffness of the non-polarized section of the beam (the rest of the beam
outside the length LE) defined as

J∗ =
1
12

YsBh3
s+2Yp

[
1
12

Bh3
p +

(
hp

2
+

hs

2

)2

Bhp

]
. (24)

The work done by inertia forces due to kinematic excitation is defined as

Wext = −
t

VE

[ρna0w1]dV −
t

VR

[ρna0w2]dV−
t

VR, Mt

[(
ρn +

Mt
LMtBH

)
a0w3

]
dV

= −
LE∫
0
[m∗a0w1]dx −

L − LMt∫
LE

[m∗a0w2]dx −
L∫

L − LMt

[(
m∗ + Mt

LMt

)
a0w3

]
dx.

(25)

Subsequently, Hamilton’s variational principle [27] is used to obtain equations of
motion in the form of PDEs with a nonzero right-hand side. The equations of motion for
the polarized portion of the beam and for the non-polarized portions of the beam take the
following form:

J∗piezo
∂4w1

∂x4 +m∗
∂2w1

∂t2 − κ
dδ
dx

(x − LE)U = −m∗a0, x ∈[0, LE] (26)

J∗
∂4w2

∂x4 +m∗
∂2w2

∂t2 = −m∗a0, x ∈(LE, L − LMt] (27)

J∗
∂4w3

∂x4 +

(
m∗ +

Mt

LMt

)
∂2w3

∂t2 = −
(

m∗ +
Mt

LMt

)
a0, x ∈(L − LMt, L] (28)

Equations above, however, do not account for damping; therefore, they have to be
extended with a damping term. Here, we shall consider the stiffness damping term from
Rayleigh’s Damping theorem:

J∗piezo
∂4w1

∂x4 +
2br

Ω1
J∗piezo

∂5w1

∂x4∂t
+m∗

∂2w1

∂t2 − κ
dδ
dx

(x − LE)U = −m∗a0, x ∈[0, LE] (29)
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J∗
∂4w2

∂x4 +
2br

Ω1
J∗

∂5w2

∂x4∂t
+m∗

∂2w2

∂t2 = −m∗a0, x ∈(LE, L − LMt] (30)

J∗
∂4w3

∂x4 +
2br

Ω1
J∗

∂5w3

∂x4∂t
+

(
m∗ +

Mt

LMt

)
∂2w3

∂t2 = −
(

m∗ +
Mt

LMt

)
a0, x ∈(L − LMt, L] (31)

where br is the considered damping ratio and Ω1 is the value of the beam’s first eigenfre-
quency. Equations (29)–(31) together with (14) form a complete equation system which
describes the electromechanical response of the considered bimorph.

However, this system of PDEs is actually not very effective to be used in modelling of
energy harvesting devices because of its complexity, thus its transformation into a much
simpler single DOF model is necessary. In the scope of vibrational energy harvesting
applications, the beam is kinematically excited with frequencies very close or equal to the
harvester’s first resonant frequency f 1,r. This fact means that beam vibrations are composed
mostly of the first vibrational mode and, as a consequence, the beam’s displacement relative
to the base movement in all sections (VE, VR and VR, Mt) can be written as

w(x, t) ≈ φ1(x)η1(t), (32)

where φ1 is the mode shape function of the first mode and η1 is its modal coordinate. The
shape function φ1 can be approximated with an arbitrary function that resembles the shape
of the first bending mode. Although Erturk in [26] recommends using an approximative
function which accounts for a tip mass at the beam’s free end, such a function is not
appropriate for tip masses spanning over a finite length of the beam. Therefore, the
following expression was chosen to simplify his approximative function into:

φ1(x)= C1 ·
[

cos
λ1

L
x − cos h

λ1

L
x + ς1

(
sin

λ1

L
x − sin h

λ1

L
x
)]

, (33)

where
ς1 =

sin λ1 − sin hλ1

cos λ1+ cos hλ1
. (34)

The eigenvalue λ1 is obtained as the first positive root of the following transcendental
equation [26]

1 + cos λ1cos hλ1= 0. (35)

Equation (33) accurately describes the first mode shape of a beam without a tip mass.
Further in the paper it will be shown that simpler functions which deviate from the actual
shape overestimate the beam’s stiffness and influence the calculated results.

The constant C1 in (33) should be evaluated so that φ1 is mass-normalized to prevent
numerical errors in further calculations of the model’s parameters, i.e., φ1 satisfies the
following condition

L − LMt∫
0

φ1(x)m∗φ1(x)dx+
L∫

L − LMt

φ1(x)
(

m∗ +
Mt

LMt

)
φ1(x)dx = 1 (36)

Then, approximation (32) can be inserted into the equation system (14), (29)–(31)
which can now be solved effectively using the Galerkin method [27], resulting into a much
simpler equation system:

M
d2η

dt2 +B
dη

dt
+Kη + θU = F, (37)

Ceq
dU
dt

+
1
Rl

U = θ
dη

dt
, (38)
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where

M =
L−LMt∫

0
φ1(x)m∗φ1(x)dx +

L∫
L−LMt

φ1(x)
(

m∗ + Mt
LMt

)
φ1(x)dx = 1

K = J∗piezo

LE∫
0

[
d2φ1(x)

dx2

]2
dx + J∗

L∫
LE

[
d2φ1(x)

dx2

]2
dx = Ω2

1

B = 2brΩ1

θ = κ
dφ1
dx

∣∣∣
x=LE

F = −
[

m∗a0

L−LMt∫
0

φ1(x)dx +
(

m∗ + Mt
LMt

)
a0

L∫
L−LMt

φ1(x)dx

]
(39)

2.1.1. Effect of Chosen Mode Shape Function on Model Output

This section addresses the effect of the chosen approximative mode shape function
φ1 on the model’s behavior. To this purpose, a reference configuration of a piezoelectric
harvester with a significant tip mass is needed. This requirement is satisfied by a PZT-5A
bimorph from a well-known work of Erturk and Inman [26].

To analyze the influence of the chosen approximative function φ1 on the model’s
output, the actual mode shape of the reference harvester is needed. To obtain the actual
mode shape, a 3D numerical model of the reference harvester was created in commercial FE
software ANSYS APDL made of approx. 1,000 SOLID186 higher-order elements. The actual
mode shape denoted as φ1,true was obtained from a modal analysis of the model using
the path post-processing tool. Both the actual mode shape φ1,true and the approximation
φ1,approx defined by (33) normed to unity are plotted in Figure 2a. While mode shapes in the
graph look almost identical, a much clearer distinction can be seen in Figure 2b by plotting
their first derivatives with respect to x (the slope of the mode shape). Here, the actual mode
shape φ1,true shows a much higher degree of compliance (higher value of dφ1/dx) at the
beam’s free end, which is crucial for high power output. This increase in compliance at
the beam’s free end is caused by the presence of the tip mass. Therefore, the presence of
heavy tip masses at the beam’s free end causes an increase in beam’s compliance near its
free end which cannot be accounted for using simpler approximative functions, such as
polynomials. Using simpler approximative functions will lead to stiffer behavior of the
beam model and result in higher resonant frequencies and underestimation of generated
electrical power. Nevertheless, the errors in the model’s output by using (33) are not
significant as demonstrated further in the paper.
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Keff = 

K
ϕ1

2ሺx = Lሻ  = 
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ϕ1
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ϕ1
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κ
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Figure 2. (a) Comparison between approximation and true mode shape; (b) comparison of slopes between approximation
and true mode shape.
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2.1.2. Single DOF Model of Bimorph Configuration

The system of Equations (37) and (38) is still not suitable for prediction of harvested
power due to using the modal coordinate. For this reason, these equations are transformed
from the modal coordinate into direct calculation of the relative movement of the bimorph’s
free end q defined by (32) as

q(t) = φ1(x = L)η1(t), (40)

Inserting (40) into (37) and (38) transforms the equation system into the sought single
DOF model:

Meff
d2q
dt2 + Beff

dq
dt

+ Keffq + θeffU = Feff (41)

Ceq
dU
dt

+
1
Rl

U = θeff
dq
dt

(42)

where
Meff =

M
φ2

1(x=L)
= 1

φ2
1(x=L)

Keff =
K

φ2
1(x=L)

=
Ω2

1
φ2

1(x=L)

Beff =
B

φ2
1(x=L)

= 2brΩ1
φ2

1(x=L)

θeff =
θ

φ1(x=L) =
κ

φ1(x=L)
dφ1
dx

∣∣∣
x=LE

Feff =
F

φ1(x=L)

, (43)

where capacitance Ceq is defined through Equation (15) and the connected resistive load Rl
represents the useful electrical load.

2.2. Modification of Single DOF Model for Unimorph Configuration

The model of a unimorph configuration of a piezoelectric harvester which considers
only one piezoelectric layer is commonly used with piezoelectric polymers. The unimorph
geometric model shares the same parameters to that of a bimorph shown in Figure 1. The
single DOF model for the unimorph uses exactly the same equations that were derived for
the bimorph, i.e., (41) and (42). Contrary to the bimorph, however, the major difference lies
in fact that the bimorph’s neutral axis is coincident with its geometrical midplane, whereas
this is not true in case of a unimorph. Therefore, the coefficients in (41) and (42) have to be
re-defined to respect this fact.

First, the neutral axis of the unimorph zN is calculated as [28]

zN =
YszTshs + YpzTphp

Yshs + Yphp
=

1
2

hshp
Yp − Ys

Yshs + Yphp
. (44)

Then, the coefficients in (41) and (42) are re-calculated with respect to the unimorph’s
neutral axis zN using the same shape function φ1 as in (33). First, the mass coefficient Meff
is defined as

Meff =

∫ L − LMt
0 φ1(x)m∗φ1(x)dx +

∫ L
L − LMt

φ1(x)
(

m∗ + Mt
LMt

)
φ1(x)dx

φ2
1(x = L)

, (45)

where m* changes to
m∗= B

(
ρshs + ρphp

)
. (46)

Then, the stiffness coefficient Keff changes to

Keff =
J∗piezo

∫ LE
0

(
d2φ1(x)

dx2

)2
dx + J∗

∫ L
LE

(
d2φ1(x)

dx2

)2
dx

φ2
1(x = L)

, (47)
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for which the term J∗piezo is defined as

J∗piezo= YsB

[
1
3

(
hs − hp

2

)3

+
1
3

(
hs + hp

2

)3

− z2
Nhs

]
+ YpB

[
1
3

(
hs + hp

2

)3

− 1
3

(
hs − hp

2

)3

− z2
Nhp

]
+υ , (48)

where

υ =
e2

31

εS
33

B

[
1
3

(
hs + hp

2

)3

− 1
3

(
hs − hp

2

)3

− z2
Tphp

]
, (49)

and J* is defined as

J∗= YsB

[
1
3

(
hs − hp

2

)3

+
1
3

(
hs + hp

2

)3

− z2
Nhs

]
+ YpB

[
1
3

(
hs + hp

2

)3

− 1
3

(
hs − hp

2

)3

− z2
Nhp

]
. (50)

Next, the damping coefficient Beff is defined as

Beff =
2br

Ω1
Keff , (51)

and the electromechanical coupling coefficient θeff changes to

θeff =
κ

φ1(x = L)
dφ1

dx

∣∣∣∣
x=LE

, (52)

where κ is re-calculated with respect to the neutral axis zN as

κ = −e31
(
zTp − zN

)
. (53)

Then, the effective load Feff is defined as

Feff= −
m∗a0

∫ L − LMt
0 φ1(x)dx +

(
m∗ + Mt

LMt

)
a0
∫ L

L − LMt
φ1(x)dx

φ1(x = L)
, (54)

and the equivalent capacity Ceq is defined as

Ceq = εS
33

BLE

hp
. (55)

3. Verification of Analytical Model Based on Experimental Results

In this chapter, the derived single DOF model is verified for a time-harmonic kinematic
excitation. Three different piezoelectric energy harvesters with known geometry and
materials are analyzed and their measured responses are compared with the simulations of
the derived single DOF model.

The first experiment is a well-known published work of Erturk and Inman [26] where
the authors used a bimorph with PZT-5A piezoelectric material and electrodes spanning
over the whole bimorph’s length, providing a linear dynamic response. The other two ex-
periments included both bimorph and unimorph configurations of piezoelectric harvesters
with a partial electrode length. Both these experiments were conducted in laboratories of
Brno University of Technology. The first of these experiments used a bimorph made of
PZZN-PLZT piezoceramic [6] which exerted a weak non-linear response in the frequency
domain. The second experiment used a simple unimorph configuration for wearables with
a thin PVDF layer. Geometrical parameters and material data of individual harvesters for
both the piezoelectric layer and the substrate are summarized in Tables 1 and 2, respectively.
Data for the PZT-5A bimorph is extracted from [26], the PZZN-PLZT from [6] and the
PVDF from [16].
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Table 1. Parameters of individual harvesters used in experiments.

Harvester Type
(Configuration)

L
[mm]

LE
[mm] LMt [mm] B

[mm] hs [mm] hp
[mm] Mt [g]

PZT-5A
(bimorph) 50.8 50.8 – 31.8 0.14 0.26 12

PZZN-PLZT
(bimorph) 40 25 15 10 0.1 0.2 10

PVDF
(unimorph) 71.9 49.2 4 10 0.3 0.13 2.6

Table 2. Material properties of piezoelectric layers and substrates for each harvester used in experiments.

Harvester Type
(Configuration) Material P

[kg/m3]
Y

[GPa]
d31

[C/N] εS
33/ε0 [−]

PZT-5A
(bimorph)

PZT-5A 7800 66 –190 × 10–12 1500
Brass shim 9000 105 – –

PZZN-PLZT
(bimorph)

PZNN-PLZT 7800 62.5 –195 × 10–12 1850
Steel shim 7850 210 – –

PVDF
(unimorph)

PVDF 1760 2 –19 × 10–12 12
Steel shim 7850 210 – –

3.1. PZT-5A Bimorph with a Full Electrode Length and a Linear Response

This experiment was described and published in detail in paper [26]. This experi-
mental work has a very high impact and for this reason it was used in our analysis as an
etalon for the other piezoelectric harvesters. The geometric model of this piezoelectric
harvester is in accordance with the model in Figure 1. The bimorph’s piezoelectric layers
were made of PZT-5A and the substrate was made of brass. It included electrodes covering
the whole bimorph’s length for harvesting the generated charge. Geometric parameters
of the bimorph and properties of used materials are summarized above in Tables 1 and 2,
respectively. This bimorph had an experimentally determined damping ratio br = 0.027.
Since the authors did not state a full description of the tip mass’ position and dimensions,
it is assumed that the tip mass is located exactly at the bimorph’s free end with dimensions
allowing for considering the tip mass as a point particle.

This harvester was subjected to a time-harmonic kinematic excitation with a varying
forcing frequency f. The experiment mapped how amplitudes of generated electrical
power and amplitudes of velocity of the bimorph’s free end change with a varying forcing
frequency upon different values of connected resistive load. Furthermore, the experiment
mapped how the peak values of generated electrical power vary with connected resistive
load at a specific forcing frequency.

A comparison of published and measured results with the output of our analytical
model is presented in Figure 3. The experiment tracked how the peak values of generated
electrical power and the velocity amplitude at the beam’s free end dq0/dt change with
a varying forcing frequency. The results are displayed for three different values of used
resistive load: 1 kΩ, 33 kΩ and 470 kΩ. The graphs show a good match between the output
of the analytical model and the obtained experimental data for all three used resistive loads.
Note that some discrepancies exist upon the first resonant frequency of the bimorph; this is
mainly due to a steep gradient of calculated results near the first resonant frequency. The
reader should also note that for resistive loads of 1 kΩ and 33 kΩ there is a slight difference
in resonant frequencies between the real bimorph and the analytical single DOF model.
This deviation is caused by the used approximative function φ1 which does not account for
a concentrated tip mass at the beam’s free end. Therefore, as mentioned earlier, the used
approximative function forces the beam to behave slightly stiffer and lowers the amount of
generated electrical power.
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Figure 3. Comparison of electrical power and velocity of tip mass for both experimental results [26] and analytical model.

The output of analytical model matches perfectly with the experimental results for
both the short-circuit frequency f SC and the open-circuit frequency f OC of this coupled
electromechanical system. The short-circuit and open-circuit frequency are the first resonant
frequencies in case of Rl = 0 and Rl→∞, respectively. The match of simulation results with
the measured ones for various values of resistive load Rl and kinematic excitation at both
the short-circuit frequency f SC and the open-circuit frequency f OC is shown in Figure 4. Both
states correspond with operations slightly below and above the resonance excitation for
various values of resistive load, which determine the value of actual resonance frequency.



Sensors 2021, 21, 6759 13 of 22

Sensors 2021, 21, x FOR PEER REVIEW 14 of 24 
 

 

excitation for various values of resistive load, which determine the value of actual reso-
nance frequency. 

 
Figure 4. Peak power values as a function of resistive load upon excitation at short-circuit resonance frequency and the open-circuit 
resonance frequency. 

While in case of the open-circuit forcing frequency the results of the analytical sin-
gle DOF model agree with the measured values, for the short-circuit case the calculated 
values from the single DOF model are slightly shifted towards higher values of resistive 
load. Also note that there are differences in both frequencies between the real bimorph 
and the single DOF model. While in case of the open-circuit frequency this difference is 
very small, for the short-circuit frequency this difference is notably larger and affects the 
value of optimal resistive load for which the generated electrical power reaches its peak 
value. This is caused by the used approximative function ϕ1 which causes the beam to 
behave stiffer. Nevertheless, this inaccuracy is negligible in terms of using analytical 
models for a rough prediction of the generated power when the system is excited by real 
vibrations. 

3.2. PZNN-PLZT Bimorph with Partial Electrode Length and Weak Non-Linear Response 
The experiment with PZNN-PLZT bimorph (see Figure 5) was conducted in a la-

boratory at Brno University of Technology with a partial electrode length (there are no 
electrodes under the tip mass). Geometrical parameters of this bimorph are summarized 
above in Table 1. The bimorph’s piezoelectric layers were made of PZNN-PLZT, which 
is in detail described in [6], and the substrate was made of a common steel shim. Proper-
ties of these materials are listed above in Table 2. Electrodes were made using a thin sil-
ver tape casting. Since the silver electrodes were substantially thinner than other layers, 
they were not accounted for in the calculation of single DOF model parameters due to 
their negligible effect on the net mass and the beam’s stiffness. The bimorph had an ex-
perimentally determined damping ratio br = 0.025 via an impulse response in the short-
circuit state. 
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While in case of the open-circuit forcing frequency the results of the analytical single
DOF model agree with the measured values, for the short-circuit case the calculated values
from the single DOF model are slightly shifted towards higher values of resistive load.
Also note that there are differences in both frequencies between the real bimorph and the
single DOF model. While in case of the open-circuit frequency this difference is very small,
for the short-circuit frequency this difference is notably larger and affects the value of
optimal resistive load for which the generated electrical power reaches its peak value. This
is caused by the used approximative function φ1 which causes the beam to behave stiffer.
Nevertheless, this inaccuracy is negligible in terms of using analytical models for a rough
prediction of the generated power when the system is excited by real vibrations.

3.2. PZNN-PLZT Bimorph with Partial Electrode Length and Weak Non-Linear Response

The experiment with PZNN-PLZT bimorph (see Figure 5) was conducted in a lab-
oratory at Brno University of Technology with a partial electrode length (there are no
electrodes under the tip mass). Geometrical parameters of this bimorph are summarized
above in Table 1. The bimorph’s piezoelectric layers were made of PZNN-PLZT, which is
in detail described in [6], and the substrate was made of a common steel shim. Properties
of these materials are listed above in Table 2. Electrodes were made using a thin silver tape
casting. Since the silver electrodes were substantially thinner than other layers, they were
not accounted for in the calculation of single DOF model parameters due to their negligi-
ble effect on the net mass and the beam’s stiffness. The bimorph had an experimentally
determined damping ratio br = 0.025 via an impulse response in the short-circuit state.

The clamping of the used bimorph was kinematically excited at several forcing fre-
quencies near the bimorph’s first resonant frequency with a constant acceleration amplitude
a0 = 0.1 g. The aim of this experiment was to track results, namely the RMS of generated
voltage and RMS of velocity of the tip mass, at different excitation frequencies close to the
bimorph’s first natural frequency. Also, the optimal resistive load was sought at which the
bimorph generates maximal electrical power at its current first resonant frequency which
slightly varies with changes in Rl.

A comparison between the measured data and the calculated output of the analytical
model is shown in Figure 6, namely the RMS values of output voltage and those of velocity
of the bimorph’s free end as a function of forcing frequency. The results are displayed for
two values of used resistive load: 1 MΩ and 10 MΩ. The measured data shows a weak
non-linear softening dynamic behavior; however, the analytical single DOF model with
linearized parameters still shows a very good degree of accuracy for both used resistive
loads in terms of achieved amplitudes.
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Figure 6. Comparison of generated voltage and velocity of harvester’s tip mass obtained from measurement and developed
analytical model for Rl are 1 MΩ and 10 MΩ.

Our experiment also tracked the values of generated electrical power as a function
of used resistive load. During the measurement, the forcing frequency was adjusted for
each value of resistive load so that it matched the bimorph’s actual first resonant frequency.
Both the analytical model and the experiment show (Figure 7) that the optimal resistive
load is approx. 1.5 MΩ and, at the same time, also the maximal values of generated
electrical power calculated with the single DOF model agree with experimental data at
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all used values of resistive load. The reader should note here that the curve from the
analytical model is slightly shifted to higher values of Rl which is, similarly as in the
previous experiment, due to the used approximative function φ1, which makes the beam
model behave slightly stiffer.
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3.3. PVDF Unimorph with a Partial Electrode Length and a Linear Response

PVDF piezoelectric energy harvesters are very often presented as a suitable kinetic
energy harvester [29] and for this reason the PVDF material was chosen for the last ex-
periment, which was also conducted in a laboratory at Brno University of Technology.
The PVDF foil is used in a unimorph configuration of a clamped cantilever with a partial
electrode length shown in Figure 8. Parameters of this unimorph are listed above in Table 1.
The unimorph’s piezoelectric layer is a PVDF foil and the substrate is a steel shim [30].
Properties of these materials are summarized above in Table 2. Electrodes were made
using a thin silver tape casting. The silver electrodes were not accounted in the calculation
of single DOF model parameters as in the previous model due to their negligible effect
on the net mass and beam’s stiffness. The clamping of the used unimorph was kinemat-
ically excited at several forcing frequencies near the unimorph’s first natural frequency
(f 1,r = 18.7 Hz) with a constant acceleration amplitude a0 = 0.035 g. The unimorph had an
experimentally determined damping ratio br = 0.0065 via an analysis of impulse response
in the short-circuit state.

This experiment measured the RMS of output voltage and the amplitude of velocity of
the tip mass at different forcing frequencies close to the unimorph’s first natural frequency.
A comparison between the measured data and the calculated output of the analytical
model is shown in Figure 9, namely the RMS values of output voltage U and amplitudes
of velocity of the tip mass as a function of a forcing frequency for Rl = 10 MΩ. One can
see that the first resonant frequency of the analytical model is again slightly higher due
to used approximative function φ1; nevertheless, the calculated values from the analytical
model agree with the measured ones.

3.4. Single DOF Model Parameters of Considered Harvesters

The calculated parameters of individual harvesters which were used as input in ana-
lytical models are summarized in Table 3. The values of effective load Feff were normalized
with respect to 1 g of base acceleration.
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Table 3. Parameters of each piezoelectric harvester used in the analytical model.

Harvester Type Meff
[g]

Beff
[Ns/m]

Keff
[N/m]

Feff
[N/g]

θeff
[N/V]

Ceq
[F]

PZT-5A 14.1 2.24 × 10–1 1218.10 1.51 × 10–1 2.20 × 10–3 4.12 × 10–8

PZZN-PLZT 6.10 5.13 × 10–2 164.56 7.90 × 10–2 6.03 × 10–5 3.65 × 10–9

PVDF 2.90 4.40 × 10–3 40.38 3.27 × 10–2 1.21 × 10–6 3.08 × 10–10

The steady-state results calculated with the developed analytical single DOF model
and parameters given in Table 3 showed an excellent agreement with all presented ex-
periments. Combined with low usage of computer resources, the developed analytical
model presents a simple and very effective tool for proper designing of piezoelectric har-
vesters. Moreover, the model can be used to simulate transient responses of the considered
harvester (represented by its geometry and materials) to arbitrary time-dependent loads
as demonstrated further in the text. For increased accuracy outside the vicinity of the
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harvester’s first resonant frequency, additional mode shapes (φ2, φ3, etc.) can be supple-
mented. Moreover, the single DOF model can easily be extended to support calculations of
strain and stress levels within the beam’s layers to determine a maximal allowable load as
shown in [31].

4. Comparison of Piezoelectric Materials for Kinetic Energy Harvesting Purposes

Since the analytical single DOF model of a piezoelectric harvester was successfully
validated for both unimorph and bimorph configurations using the data from three different
piezoelectric materials and experiments, the verified models of three harvesters will enable
to determine the effectivity of used piezoelectric materials in different energy harvesting
applications. Here, the three materials considered in the scope of this work (PZT-5A, PZZN-
PLZT and PVDF) are compared in terms of harvested electrical power when subjected to
harmonic vibrations (lab shaker) and in terms of harvested electrical energy when subjected
to random vibrations (human body movement).

4.1. Harmonic Vibrations Case

To compare the output of harmonically excited piezoelectric harvesters made of
different piezoelectric materials, their dynamic parameters must be similar, that is, their
effective mass Meff and eigenfrequency f1. This can be done by changing dimensions of
the considered harvesters; however, doing this will also lead to changes in the piezoelectric
coupling coefficient and ultimately making the comparison invalid. To overcome this
issue and maintain comparability, the volume of polarized piezoelectric materials was
kept constant. The dimensions of polarized piezoelectric material in case of piezoceramic
bimorphs were fixed at values LE × B × hp = 40 × 10 × 0.26 mm and in case of PVDF
unimorph at LE × B × hp = 40 × 40 × 0.13 mm due to manufacturing limits of PVDF foils
(these must be thin but can span over a large area). Then, to reduce the complexity of this
optimizing task, the value of LMt was fixed at 5 mm and the thickness of the substrate
hs was fixed at 0.15 mm (0.3 mm) in case of bimorphs (PVDF unimorph). Thus, the only
parameters left for optimizing were the total length of the harvester L and and the tip
mass Mt. These parameters were then tuned (see Table 4) to achieve values of Meff and
f1 common to all three harvesters. Upon the study, the harvesters were forced with a
time-harmonic base acceleration for various values of resistive load Rl at their actual
resonant frequencies.

Table 4. Tuned dimensions of harvesters and their equivalent single DOF model parameters used in the comparison.

Harvester Type
(Configuration)

L
[mm]

LE
[mm]

LMt
[mm]

B
[mm]

hs
[mm]

hp
[mm]

Mt
[g]

PZT-5A
(bimorph) 68.8 40 5 10 0.15 0.26 3.67

PZZN-PLZT
(bimorph) 54.3 40 5 10 0.15 0.26 3.99

PVDF
(unimorph) 71.9 40 5 40 0.3 0.13 2.60

Harvester Type
(Configuration)

Meff
[g]

Beff
[Ns/m]

Keff
[N/m]

f1
[Hz]

Feff/g
[N/1g]

θeff
[N/V]

Ceq
[F]

PZT-5A
(bimorph) 4.21 4.45 × 10–2 161.25 31.13 5.02 × 10–2 5.14 × 10–4 1.02 × 10–8

PZZN-PLZT
(bimorph) 4.21 4.20 × 10–2 161.05 31.13 4.75 × 10–2 6.36 × 10–5 4.50 × 10–9

PVDF
(unimorph) 4.21 1.07 × 10–2 161.25 31.13 5.40 × 10–2 5.54 × 10–6 1.30 × 10–9
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The comparison (see Figure 10) revealed that PZT-5A is the best suitable material
of the considered ones for energy harvesting purposes thanks to its high power output
(several mW per 1 g of base acceleration) and a broad range of optimal resistive load
(approx. 150 kΩ to 1.1 MΩ) due to its strong piezoelectric coupling. PZZN-PLZT is also
suitable for energy harvesting applications since it offers high power output of about 1 mW
per 1 g of base acceleration for resistive loads close to 1 MΩ. On the other hand, PVDF
generates the least amount of power of the three materials and due to its very high optimal
resistive load it is not sufficient for energy harvesting applications. Note that the strong
piezoelectric coupling in case of PZT-5A harvester significantly damps the power output
between the two optimal resistive loads which results in a local minimum surrounded by
two local maxima.
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4.2. Random Vibrations Case

For this comparison, typical mechanical vibrations of a human forearm which are
encountered in wearables applications were measured [32] and analyzed using the devel-
oped model. The measured time-course of acceleration a(t), see Figure 11a, is generated by
a random movement of the forearm and can be thought of as a representative of random
vibrations as can be seen from its spectrogram in Figure 11b. Therefore, it is perfect for the
comparison of energy harvesting devices since a steady-state response, whose magnitude
depends on how close the forcing frequency is to the harvester’s resonant frequency, will
not occur.

The measured acceleration a(t) is used as input for a transient analysis of the derived
single DOF analytical model, where the applied force is a function of acceleration data.
This model of coupled electro-mechanical system is realized in Matlab Simulink simulation
environment [33] and its aim is to track the amount of harvested electrical energy for
various values of resistive load Rl. Simulation results of predicted harvested energy for this
wearable operation for the harvesters used in the experiments and the tuned harvesters
from Section 4.1 are shown in Figure 11c,d, respectively.

In case of unmodified harvesters used in the experiments (Figure 11c), the PZT-5A
harvester is able to convert the most of mechanical energy (~0.17 mJ) among the three
compared harvesters and has a low value of optimal resistive load (~118 kΩ). The energy
output of PZZN-PLZT harvester (~0.07 mJ) is of the same order as the one of the PZT-5A
harvester, however its much higher optimal resistive load (~1.82 MΩ) makes it less suitable
for energy harvesting applications. On the contrary, the PVDF harvester is not suitable
for energy harvesting applications at all due to very low energy output (~0.07 µJ), but it
will find its use in sensing applications due to very high value of optimal resistive load
(~28 MΩ). The same also applies to results in case of tuned harvesters (Figure 11d), where
the tuned PZT-5A harvester once again shows that the energy harvesting properties of
PZT-5A are far superior to those of PZZN-PLZT and PVDF. The increase in harvested
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electrical energy for the tuned PZT-5A harvester compared to the unmodified geometry is
due to its lower resonant frequency which was reduced from 46.8 Hz to 31.1 Hz.
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The results of both these comparisons showed that both PZT-5A and PZZN-PLZT
piezoceramic harvesters are suitable for energy harvesting purposes, although operating
at different values of resistive load, whereas the harvester based on piezoelectric polymer
PVDF provides an insufficient energy harvesting system due to a very low amount of
harvested energy. However this energy harvester should primarily be used in sensing
applications [34].

5. Conclusions

The main aim of this paper was to compare the effectiveness of materials commonly
used in energy harvesting operations using a single DOF model and at the same time
analyze the effect of used mode shape function on simulation results. The single DOF
model of a cantilever piezoelectric harvester in both bimorph and unimorph configurations
was derived based on Euler-Bernoulli beam theory. Output of the model was confronted
with available experimental data obtained from three different piezoelectric harvesters
(PZT-5A bimorph, PZZN-PLZT bimorph and PVDF unimorph) and showed a good degree
of accuracy. It is obvious that the presented model of an energy harvester can be used
for various piezoelectric materials. Therefore, the developed single DOF analytical model
represents a simple and very helpful tool for designing piezoceramic vibration energy
harvesters. Moreover, it could easily be employed to check if a particular kinetic energy
harvester provides sufficient output power for the intended application. Or inversely,
the model could be used to design a piezoceramic harvester with optimized operational
parameters and dimensions due to the model’s ability to predict the amount of harvested
energy in particular operational conditions. Moreover, the developed model can easily be
extended to support calculations of strain and stress levels within harvester’s layers for
further assessments concerning strength and fatigue limits.

The model is primarily intended for operations of the harvester at frequencies where
vibrations consist mostly of the first mode shape, since it offers the best operational condi-
tions for energy harvesting (no strain nodes). If higher vibrational modes are of interest,
the developed model can easily be extended by supplementing their respective shape
functions and using the superposition principle. It was found that the quality of the used
approximative function for the first mode shape affects the beam model’s stiffness in such a
way so that simpler (less accurate) approximative functions force the beam model to behave
stiffer, i.e., its resonant frequency being shifted to higher values. Also, the way how device
layers and electrodes are assembled can also affect the stiffness of the system and could
potentially result in a weak nonlinearity, which was observed in one of our experiments.
Nevertheless, a typical assembly of layers and the approximative shape function used in
this work (the shape of the beam’s first vibrational mode without a tip mass) still shows a
good degree of accuracy.

The single DOF model itself poses as a very effective tool whose main advantages
are low computer resources usage and the ability to calculate transient responses for
arbitrary time-dependent loads. Both these features were employed in an energy harvesting
effectivity comparison of the three materials used in the scope of this work. The materials
comprised of PZT-5A, which is known nowadays to be one of the best materials for energy
harvesting purposes, and PZZN-PLZT and PVDF which are used in our laboratory for
designing vibration energy harvesting devices. The comparison was split into two parts
with respect to forcing: case of simple harmonic vibrations and case of random vibrations.
The case of simple harmonic vibrations was carried out so that the harvesters’ dimensions
were tuned in order to achieve common value of seismic mass and resonant frequency
for all three harvesters and at the same time the harvesters had same volume of polarized
piezoelectric material. In case of random vibrations the harvesters were subjected to a
non-harmonic and non-periodic vibrations typical for wearables applications. Results from
both comparison cases showed that the piezoceramic harvesters (PZT-5A and PZZN-PLZT)
are a perfect choice for energy harvesting applications, though geometry and electrical
load must be optimized. On the contrary, the PVDF harvester is not suitable for energy
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harvesting purposes due to very low values of harvested energy despite many recent
papers reporting the otherwise, and its potential lies in sensing applications.
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