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Abstract: Security in IoT networks is currently mandatory, due to the high amount of data that has
to be handled. These systems are vulnerable to several cybersecurity attacks, which are increasing
in number and sophistication. Due to this reason, new intrusion detection techniques have to be
developed, being as accurate as possible for these scenarios. Intrusion detection systems based on
machine learning algorithms have already shown a high performance in terms of accuracy. This
research proposes the study and evaluation of several preprocessing techniques based on traffic
categorization for a machine learning neural network algorithm. This research uses for its evaluation
two benchmark datasets, namely UGR16 and the UNSW-NB15, and one of the most used datasets,
KDD99. The preprocessing techniques were evaluated in accordance with scalar and normalization
functions. All of these preprocessing models were applied through different sets of characteristics
based on a categorization composed by four groups of features: basic connection features, content
characteristics, statistical characteristics and finally, a group which is composed by traffic-based
features and connection direction-based traffic characteristics. The objective of this research is to
evaluate this categorization by using various data preprocessing techniques to obtain the most
accurate model. Our proposal shows that, by applying the categorization of network traffic and
several preprocessing techniques, the accuracy can be enhanced by up to 45%. The preprocessing of a
specific group of characteristics allows for greater accuracy, allowing the machine learning algorithm
to correctly classify these parameters related to possible attacks.

Keywords: Internet of Things; machine learning; intrusion detection system; preprocessing tech-
niques; traffic categorization

1. Introduction

Cyberspace plays a fundamental role in the society and economy, as the Internet has
changed the means of communication for people or organizations. Furthermore, different
devices, applications, and services which are linked to cyberspace are included inside the
term Internet of Things (IoT). So, information communication technology (ICT) has been
intensively applied for the deployment of various types of sensors actuators, for machine-
to-machine (M2M) communications infrastructures [1], with the principal objective of
processing the huge amount of data that is provided for these services or applications.

According to the process of gathering information, transmission, and processing from
IoT systems, IoT has an entity-based architecture that is divided in three main layers.
These layers are usually named: terminal perception layer, network transport layer, and
application service layer [2]. The terminal perception layer is composed by the source of
IoT data collection. The units involved in this layer include physical entities representing
real devices units (sensors devices, identification devices, tracking and positioning devices).
Furthermore, the network transport layer transmits the information gathered by the per-
ception layer to the application service layer. Finally, the application service layer process
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the data transmitted from the network transport layer to various industries or entities,
providing services for different users through different fields, such as smart grids, smart
homes, and smart cities [2].

The network transport layer can suffer several security threats, such as distributed
denial of service (DDoS) attacks, sending traffic and consuming network and computing
resources [3]. Additionally, the application layer from IoT systems is vulnerable to several
types of cybersecurity attacks, such as Worms, Trojan, DoS, or Spyware. These types of
attacks are becoming more sophisticated, increasing its number day to day [4]. Additionally
the application of different standardized communications combined with the limited
computer power and the high number of connected devices, can make the traditional
security countermeasures not efficient in IoT systems [5]. This research is focused on the
detection of possible attacks between the transport network layer and the application layer
as presented in Figure 1, which is detailed through this research.
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Figure 1. Three-tier architecture of IoT and IoT IDS approach.

For this reason, developing security solutions for IoT is indispensable, with the
objective to prevent and mitigate possible cybersecurity issues.

To detect IoT attacks on the network transport layer, networks intrusion detection
systems (NIDS) have been deployed as a second line of defense after Firewalls, antivirus,
and access control systems [6] for connected smart things. A NIDS is a software with
functionalities focused on monitoring ICTs from fraudulent uses, unauthorized access
or any other cyberattack. There exist different types of NIDS, including those based on
signature detection and those aimed at detecting anomalies. NIDS oriented to anomaly
detection are able to perform an examination of the network, verifying its behavior and
activity, then being able to detect and catalog possible deviations of patterns that represent
the malicious behavior of possible cyberattacks. Although such systems represent a robust
solution for attack detection, they must deal with a major challenge that deteriorate their
accuracy: the detection of false positives due to the similarities between legitimate and
anomalous observations.

Thus, Machine Learning techniques, specifically deep learning (DL) algorithms, are
being proposed as an effective solution for dealing with this problem [7,8]. One of the most
important requirements of NIDS based on DL techniques is the preprocessing phase, which
can affect the accuracy of an algorithm in a significant way [9]. This data preprocessing
consists of transforming the input data by using different techniques such as One-Hot en-
coding [10], z-score [11], and standardization type min-max [12]. However, IoT ecosystems
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are delocalized, distributed and composed by a large number of devices with computing
performance limited in resources. IoT is also limited by network bandwidth capacity. This
implies that NIDS based on anomalies must be efficient and accurate. In this way, this
article aims to identify the preprocessing level configuration that yields the best accuracy
of the underlying model.

In addition, and taking into account that IoT systems try to reduce the computational
cost as much as possible, strengthening the learning model and avoiding the possible
overfitting to increase the efficiency of the underlying learning models, this research work
proposes the use of the categorization defined in [13]. This categorization is composed by
four groups of features which include basic connection features, content characteristics,
statistical characteristics, and finally, a group which is composed by traffic-based features
and connection direction-based traffic characteristics. The objective of this research is
to evaluate this categorization by using various data preprocessing techniques based on
transforming categorical values into numerical values and by applying standardization
and normalization.

Finally, up-to-date benchmark datasets for IoT IDSs are currently almost non-existent [6,8],
although some datasets have been generated for this environments, e.g., the IoTID20 [14].
As a consequence, for this research we have opted to use three of the most widely accepted
and adopted benchmark datasets, such as KDD99 [15] and NSL-KDD [16], which is an
improved version of the KDD99. Additionally, we use UNSW-NB15 [17], and UGR16 [18],
a novel dataset which has been applied previously in the study of NIDS based on anoma-
lies [9].

This paper introduces the background and related work to this research work during
Section 2. Additionally, the paper introduces the proposal of a new way of data preprocess-
ing based on traffic characterization for IDSs in Section 2. Furthermore, in Sections 3–6, we
explain the problem statement and the proposed methodology, defining the methodology
ML and preprocessing model presented in this paper. These sections also include the archi-
tecture proposed for applying the multilayer perceptron (MLP) and the obtained results
after applying our proposal to the UNSW-NB15, UGR16, and KDD99 datasets. Finally,
Section 5 includes the discussion of the main conclusions and future lines for this research.

2. Background and Related Work
2.1. Data Threatment

Data preprocessing applied to NIDS based on ML algorithms is divided into three
main categories: data reduction, treatment of missing data, and data scaling.

Data reduction can be divided into feature selection and case selection. Feature
selection is the process of selecting a subset of features that provide a similar impact in the
results, rather than selecting the entire set of features of the selected dataset. Its main goal is
to increase the accuracy of a ML algorithm and reduce the cost for the fitting and validation
in terms of computer resources [19]. Case selection is similar to feature selection, being
their main difference that case selection intends to identify and remove the redundant data
from the dataset. This method allows to reduce the size of the dataset from its original
dimensions, reducing the time required for the algorithm to be fitted and validated [20].

Treatment of missing data is also divided in data elimination and data imputation. The
first one is composed by removal by lists and by pairs, while data imputation is divided
into: mean imputation, hot-deck imputation, cold imputation and regression [21].

Data scaling is defined by the transformation of the data using diverse methods,
i.e., standardization and normalization. This type of processing allows to transform
the data from an established scaling function. Consequently, the values of a class of a
dataset expresses the same degree of influence for the ML algorithm [22]. Taking this idea,
some research works have introduced other aspects of preprocessing techniques based
on four main components: feature selection, feature reduction, clustering, and hybrid
approaches [23]. Nevertheless, these preprocessing techniques were only approached
through the use of the KDD99 dataset.
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2.2. Preprocessing Related Works and Network Iintrusion Detection Systems Data Preprocessing

Several studies have been carried out in the area of data preprocessing, with the aim
of optimizing the data used by different ML algorithms and ultimately to enhance the
accuracy with less computing performance.

In this sense, Ref. [24] introduced different anomaly detection algorithms which were
applied to the NSL-KDD dataset to evaluate different preprocessing techniques. The
research applied standardization and normalization to the dataset obtaining an overall
accuracy of 99%. The research work presented in [25] evaluated the impact of different
attribute normalization schemes on a combination of different features from the dataset
NSL-KDD. The authors provided an evaluation of three different algorithms using six
different characteristics where a K-nearest neighborhood obtained the best accuracy with
98.9%, followed by a multilayer perceptron model with 96.5% and naïve Bayes with 93.3%.
The study remarked the importance of the attribute selection and normalization to increase
the accuracy of the models. Authors in [26] proposed an NIDS based on anomaly detection,
where categorical values were mapped into numerical values, while the non-categorical
values were normalized in ranges between zero and one. Applying this procedure, the
authors highlighted an improvement in the accuracy of the model proposed, achieving
a maximum accuracy of 99.5% in denial-of-service attacks. The study conducted in [27]
presented an evaluation of various configurations of data preprocessing. The authors
proposed a standardization of type z-score of 12 attributes and 34 attributes normalization
obtaining a maximum accuracy of 98% for the standardization model and 99% for the
normalization model. The research proposed the use of a back propagation neural network:
the concluding results introduce the standardization and selection of hyperparameters
as the principal characteristics for enhancing the accuracy. Additionally, the mentioned
research used the dataset KDD99.

As observed, different studies on the optimization of preprocessing data have been
carried out, traditionally, by using the KDD99 or NSL-KDD dataset. In [28], authors
presented a study that determined that the most commonly used datasets for the different
analysis of NIDS based on anomalies detected by ML techniques are the KDD99 with 63.8%
of popularity followed by the NSL-KDD with 11.6%. In addition, this study proposed the
application of an ML-based NIDS model for the detection of anomalies in IoT systems. In
this sense, this research introduces the analysis of characteristics and preprocessing models
based on normalization and scaling for two new benchmark datasets, the USW-NB15 and
the UGR16. The research carried out and presented in this paper tries to identify the most
suitable characteristics for developing ML-based NIDS models, reducing the processing
time, and improving the accuracy for IoT environments.

3. The Proposed Approach

The proposed work presented in this research is designed to evaluate the set of
characteristics proposed in [13]. The architecture proposed for the IDS consists in the
introduction of individual preprocessing techniques based on a content characterization.
The system is presented in Figure 2. As can be seen in the figure, it is composed by some
phases for the evaluation in order to obtain the best accuracy. These stages are described in
the following sections.

3.1. Datasets under Study

In relation to the datasets created for IoT networks, many studies use the KDD’99
dataset. This dataset has become a reference for various investigations related to NIDS for
IoT networks [5]. However, in cybersecurity, this dataset is currently considered obsolete,
due to the age of attacks it presents [9,13]. Several studies have compared different cyberse-
curity datasets, each one of these datasets being created through different methods, in the
field of IDS. Also, nowadays, these datasets have been considered as benchmark datasets
for the evaluation of IDS, and also applied to IoT IDS [4,9,16–18,24,29,30]. Therefore, an
updated dataset with current attacks, UGR16 and real collected traffic with up-to-date
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attacks, is proposed as the basis for the analysis in this research. Additionally, to extend
the analysis comparison, it is proposed to use two benchmark datasets, i.e., UNSW-NB15
and NSL-KDD.

Sensors 2021, 21, x FOR PEER REVIEW 5 of 15 
 

 

 
Figure 2. Categorical data preprocessing results in terms of accuracy scaled between 0 to 1. 

3.1. Datasets under Study 
In relation to the datasets created for IoT networks, many studies use the KDD’99 

dataset. This dataset has become a reference for various investigations related to NIDS for 
IoT networks [5]. However, in cybersecurity, this dataset is currently considered obsolete, 
due to the age of attacks it presents [9,13]. Several studies have compared different cyber-
security datasets, each one of these datasets being created through different methods, in 
the field of IDS. Also, nowadays, these datasets have been considered as benchmark da-
tasets for the evaluation of IDS, and also applied to IoT IDS [4,9,16–18,24,29,30]. Therefore, 
an updated dataset with current attacks, UGR16 and real collected traffic with up-to-date 
attacks, is proposed as the basis for the analysis in this research. Additionally, to extend 
the analysis comparison, it is proposed to use two benchmark datasets, i.e., UNSW-NB15 
and NSL-KDD. 

3.1.1. Dataset UGR16 
The UGR16 [18] dataset is a more realistic attempt made at capturing NetFlow traces 

covering more than four months of network traffic from an internet service provider (ISP). 
An important advantage of this dataset is the normal traffic, that was adequately captured 
from different sensors located in the ISP networks. This dataset takes around 19.900 mil-
lion of unidirectional flows offering a big scope for experimentation. Additionally this 
dataset is clean from synthetically generated attacks [18,31]. The UGR16 has 13 character-
istics: timestamp of the end of a flow (time), flow duration (duration), source IP address 
(sip), destination IP (dip), source port (source port), destination port (destination port), 
protocol (protocol), flags (flags), forwarding status (forward_status), type of service 
(type_service), packets exchanged in the stream (pack_exchanged), their corresponding 
number of bytes (bytes), and the attack type (attack_tag). 

There are multiple options for obtaining portions of the UGR’16 dataset. In this case, 
the week of 2 August, test version, was taken as a sample. This was selected for the present 
study, due to the fact that the test versions have synthetic traffic which allows applying 
more varied data. The original version of the data set is 81 GB. For this research, a 1.4 GB 
portion was selected, making it proportional to the original dataset in terms of attack and 
normal traffic proportions. Table 1 shows the relationship between normal traffic and at-
tacks from the UGR16 dataset. 

  

Datasets
UNSW-
NB15

UGR16

NSLKDD

Basic 
characteristics

Flow 
characteristics

Direction based 
traffic 

characteristics

Content 
characterization

Scalar model

Normalization 
model

Categorical 
transformation

Preprocessing 
Model

Neural Network 
Model

Metric 
Evaluation

Accuracy

Input 
Layer Hidden 

Layer

Output 
Layer

Content 
characteristics

Figure 2. Categorical data preprocessing results in terms of accuracy scaled between 0 to 1.

3.1.1. Dataset UGR16

The UGR16 [18] dataset is a more realistic attempt made at capturing NetFlow traces
covering more than four months of network traffic from an internet service provider (ISP).
An important advantage of this dataset is the normal traffic, that was adequately captured
from different sensors located in the ISP networks. This dataset takes around 19.900 million
of unidirectional flows offering a big scope for experimentation. Additionally this dataset
is clean from synthetically generated attacks [18,31]. The UGR16 has 13 characteristics:
timestamp of the end of a flow (time), flow duration (duration), source IP address (sip),
destination IP (dip), source port (source port), destination port (destination port), protocol
(protocol), flags (flags), forwarding status (forward_status), type of service (type_service),
packets exchanged in the stream (pack_exchanged), their corresponding number of bytes
(bytes), and the attack type (attack_tag).

There are multiple options for obtaining portions of the UGR’16 dataset. In this case,
the week of 2 August, test version, was taken as a sample. This was selected for the present
study, due to the fact that the test versions have synthetic traffic which allows applying
more varied data. The original version of the data set is 81 GB. For this research, a 1.4 GB
portion was selected, making it proportional to the original dataset in terms of attack and
normal traffic proportions. Table 1 shows the relationship between normal traffic and
attacks from the UGR16 dataset.

Table 1. Proportions of attacks and no attack for UGR16 dataset.

Category Percentage

Attack 12.82%
No Attack 87.18%

All the features mentioned above were considered for the proposed model, except for
the time feature. That feature was eliminated since the evaluation of the NIDS as a model
based on time series is not within the scope of this research. Therefore, the research was
carried out with 12 basic characteristics.
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3.1.2. Dataset UNSW-NB15

The UNSW-NB15 [17] dataset has 49 features classified into 5 categories: flow charac-
teristics, basic characteristics, content characteristics, time characteristics, and generated
additional characteristics. Table 2 shows the relationship between normal traffic and attacks
from the UNSW-NB15 dataset

Table 2. Proportions of attacks and no attack for UNSW-NB15 dataset.

Category Percentage

Attack 44.94%
No Attack 55.06%

• The basic characteristics, unlike in NSL-KDD, include the attributes that represent the
protocol connections, most of them similar to the basic characteristics in NSL-KDD.

• The flow characteristics include the identifying attributes between the hosts.
• Content characteristics involve TCP/IP attributes and some http connections.
• The time characteristics contain all the attributes related to time i.e., arrival time

between packets.
• Additional characteristics generated divided into two groups, i.e., general purpose to

protect the service of protocols and connection characteristics.

3.1.3. Dataset NSL-KDD

The NSL-KDD dataset is an improved version of the KDD99. It not only solves
the redundant records problems of the KDD99, but also makes the number of traces
appropriate in the training and testing dataset [32]. This clean version prevents the machine
learning algorithm from being biased during the training data phase [33]. Finally, thanks
to this dataset and the high number of studies from the last decade, we can still make a
comparison for suitable algorithms related to the last decade. The NSL-KDD dataset has
42 characteristics, classified into 3 categories: basic characteristics, content characteristics,
and traffic characteristics. Table 3 shows the relationship between normal traffic and attacks
from the NSL-KDD dataset.

Table 3. Proportions of attacks and no attack for NSL-KDD dataset.

Category Percentage

Attack 46.54%
No Attack 53.56%

• The basic characteristics include all the attributes that can be extracted from an indi-
vidual TCP/IP connection.

• The content characteristics consist of some specific characteristics necessary to detect
attacks that show suspicious behavior in the data portion, for example, number of
failed login attempts.

• Flow characteristics include the characteristics calculated with respect to a window
interval.

3.2. Data Preprocessing

Data preprocessing consists in transforming the data values of a certain dataset,
aiming to optimize the information acquisition and process. Normally, there is a very large
contrast between the maximum and minimum values of the dataset, so normalizing the
data minimizes the complexity of the algorithm for its corresponding processing. According
to [27], the normalization of the data allows an adequate benefit for the classification of
algorithms related to neural networks. In this case, if the back-propagation technique is
used in neural networks, the normalization of the input values will speed up the training
phase, turning it into a more efficient neural network.
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3.2.1. Normalization Function

The main normalization function is based on data scaling, which consists of the min-
max algorithm, which is capable of converting the current range of data typically in the
interval [–1, 1] and [0, 1]. The normalization formula is presented in Equation (1).

p =
((x− xmin)(max−min)
(xmax − xmin) + min

(1)

where (min, max) is the specified range of input variable, (xmin, xmax) the initial range of
values of input variables, and p is the converted input value.

3.2.2. Standardization Function

The standardization function, or z-score, is able to normalize the features of the dataset.
It has the properties to normalize the features values of a dataset, normalizing a standard
distribution. These values are represented in Equation (2), where µ is the mean (the average
value of a feature over all the values of that feature in the dataset) and ∂ is the standard
deviation of the mean.

x′(j) =
x(j) − µ(j)

∂(j)
(2)

3.3. Deep Learning Algorithm under Study

The multi-layer perceptron neural network (MLPNN) consists in a linear classification
algorithm capable of ordering the input data into categories. MLPNN are feed-forward
neural networks that consists of a large number of neurons classified into input units (input
layer), output units (output layer) and hidden units (hidden layer). The weights assigned
to the connections are estimated using a back-propagation algorithm. The values of the
weights define the performance of the neural network.

In this article we only focus on supervised learning, due to the specific problem stated
in it. The proposed model is limited to analyzing the sequence of the attacks because the
objective of the study is not focused temporal time series. Thus, the main objective is to
identify the optimization of characteristics proposed in [13] for diverse datasets at the level
of preprocessing. For this, the MLPNN architecture proposed in this research was designed
according to the criteria established in the aforementioned study, defining an MLP model
and its associated best hyperparameters.

The configuration for the neural network taken as the basis for the comparison in this
study consists of a 4-layer network. The input layer with a neuron density corresponding
to the input data of each dataset, the hidden layers with a density equal to the rule that
obtained the best precision in the research mentioned below, and an output layer with an
equal neuronal density according to the attack classification are proposed in this research.
The last layer was defined by a density equal to one, since a binary class classification
between attack and no-attack will be obtained at the output. For the model proposed in this
study, the initialization of the weights was done applying Glorot normal initializer [34] with
no seed. Furthermore, the computational experiments were averaged with the function
Earlystoping [35] setting the loss with a min_delta of 10−3 in order avoid the overtraining
of the algorithm. The patience was set to 5 (number of epochs with no improvements
after the training is stopped). This value was settled after several test in order to improve
the computation costs of the training. Finally, the best weights were obtained setting the
variable restore_best_weithgs to True which is capable to restore to the model from the
epoch with the best value of the monitored loss

3.4. Evaluation Metrics

Accuracy (AC) is considered one of the most important performance indicators. As one
of the most used metrics in several works as was presented during Section 2. This metric
determines the number of records in a class predicted correctly. The value of true positive
(TP) is equivalent to the correctly predicted values, corresponding to a class. The false
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positive (FP) value is the number of predictions that are not equivalent to the corresponding
class. The true negative (TN) is the result of those values that are presented, corresponding
to the number of records that are identified as normal. The false negative (FN) is the
incorrectly predicted result for a corresponding class. Equation (3) shows how the AC
and relationship of these parameters is calculated. Table 4 presents the corresponding
confusion matrix.

AC =
TP + TN

TP + TN + FP + FN
(3)

Table 4. Confusion matrix for the actual class vs. the predicted class.

Predicted Class

Actual Class
TP FN

FP TN

4. Methodology and Experimentation
4.1. Entire Set of Characteristics Evaluation

Each dataset considered for performing the experimentation of this research is com-
posed by different characteristics presented during Section 3. The main proposal at this
point is to determine the best data preprocessing function by proposing the transformation
of categorical variables into numerical data and the standardization and normalization
functions for the underlying model.

The neural network algorithm proposed for this case study does not allow the use of
text-type input variables, so these variables are transformed into binary vectors by the one-
hot encoding [36] method and the attacks were transformed into binary vectors. Table 5
presents the proposal of non-numerical data that were transformed using the different
methods mentioned above.

Table 5. Categorical data transformations for the datasets understudy.

Dataset One-Hot Encoding Binary Vector

UGR16 protocol, flag attack_tag

NSL-KDD protol_type, service, flag, land,
num_failed_login, is_host_login, is_guest_login attack_tag

UNSW-NB15 dur, proto, service attack_tag

All the datasets were divided into training and testing datasets where the 75% of the
entire dataset was considered for the training and the 25% for the testing. These datasets
were applied with the function of train_test_split [37] with defined random state [38]
variable for all the datasets.

As a first point of analysis, the study is carried out using the proposed datasets
submitted to the same architecture of the neural network, without pre-processing the data.
Only the categorical variables shown in Table 6 were transformed. This was carried out
to obtain a base precision measure, which would allow us to determine the increase in
precision based on the various types of preprocessing techniques applied.

The results obtained from the training and validation of the proposed algorithm show
that the NSL-KDD dataset offers a better accuracy, with 95.5%, compared to 87.68% of the
UGR16 and 55.80% of the UNSW-NB15. These values are represented in Figure 3. It should
be noted that the architecture of the neural network is the same for all datasets as described
in Section 3.3.
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Table 6. Variations in terms of accuracy according to preprocessing techniques for the
NSL-KDD dataset.

Basic Characteristics Content
Characteristics Flow Characteristics Accuracy

z-score min_max_0 z-score 0.97923414
min_max_0 min_max_0 z-score 0.978567346

z-score min_max_0 min_max_0 0.97694799
min_max_0 z-score z-score 0.974693592

z-score z-score min_max_0 0.971550137
min_max_0 z-score min_max_0 0.970851591
min_max_0 - z-score 0.970121293
min_max_0 z-score z-score 0.969867276

z-score z-score min_max_0 0.964628183
min_max_0 z-score - 0.946434241
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Figure 3. Categorical data preprocessing results in terms of accuracy scaled [0–1].

In order to carry out the evaluation of the proposed preprocessing methods, the first
approach consists in evaluating the total set of features for each individual dataset, testing
them with the same preprocessing technique. The total set of features evaluated with
the standardization function corresponds with the label z_score_all, following with the
normalization functions: minmax_0_all for the configuration with a minimum of 0 and
a maximum of 1 and minmax_1_all for the configuration with a minimum of −1 and a
maximum of 1.

The evaluation presented an increase in terms of accuracy for each individual dataset.
In case of UGR16, an accuracy of 99.3% was obtained by applying z_score_all; while the
accuracy was increased to 99.88% when applying the minmax_0_all configuration; and
correspondingly for the minmax_1_all configuration the accuracy was reduced to 99.18%.

The same methodology was applied for the NSL-KDD dataset with the configurations:
z_score_all, minmax_0_all, and minmax_1_all, where values of 97.89%, 96.25%, and 96.48%
of accuracy were obtained, respectively.

Finally, the UNSW-NB15 dataset was evaluated with the same configuration men-
tioned above, that is, z_score_all, minmax_0_all, and minmax_1_all, and producing values
of 98.3%, 98%, and 98.2% in terms of accuracy respectively. All of these results are summa-
rized in Figure 4.

The experimentation exposed that the preprocessing techniques could enhance up to
45% the accuracy in respect to the no preprocessing techniques, such as the case for the
UNSW-NB15 dataset. Furthermore, it can be seen that z_score_all configuration technique
for all groups of characteristics provides better results for all the datasets under study.
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4.2. Individual Set of Characteristics Evaluation

As mentioned before, the objective of this research work proposes the use of the catego-
rization defined in [13] which is defined by four groups characteristics. This categorization
was applied to the entire set of features of each proposed dataset under study mentioned
previously. Additionally, three preprocessing techniques were applied individually for
each individual set of characteristics, in order to compare the results. Specifically, the
standardization (z-score), normalization (min–max), and no preprocessing (-) technique
were applied.

In the case of the UGR16 dataset, since it only has 12 basic characteristics, three evalua-
tions were carried out, which were those mentioned in Section 4.1 and exposed in Figure 2.
In the case of the NSL-KDD and UNSW-NB15 datasets, a complete comparison of prepro-
cessing techniques was possible because they present diverse groups of characteristics,
as it was shown in Section 3. Thus, results obtained for NSL-KDD and UNSW-NB15 are
presented and analyzed.

Table 6 shows the 10 main accuracy variations with the most favorable results ob-
tained, arranged in descending order applying the variations of the data preprocessing
techniques for each of the groups of characteristics of the NSL-KDD dataset. These data
were characterized according to the proposal in [13]. However, this dataset does not contain
direction-based traffic characteristics, so the evaluation of preprocessing techniques was
done without this group of characteristics.

Table 7 shows the accuracy variations of the applied preprocessing techniques for the
various sets of characteristics presented in the UNSW-NB15 dataset, presenting the 10 best
variations ordered in descending order according to the validation score.

Table 8 shows the best configurations obtained with the highest precision for each
dataset (UNSW-NB15, NSL-KDD and UGR16) by groups of characteristics. This table
shows that the standardization to the group of basic characteristics and statistical traffic
characteristics allows increasing the accuracy of the algorithm. Unfortunately, a direct com-
parison between the content characteristics cannot be obtained, since for the UNSW-NB15
dataset and for the NSL-KDD dataset their preprocessing gives a non-significant precision
variation. Since the UGR16 dataset contains only basic characteristics, it allows determining
a substantial increase in precision with the use of the standardization algorithm.
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Table 7. Variations according to preprocessing techniques for the UNSW-NB15 dataset.

Basic
Characteristics.

Flow
Characteristics

Content
Characteristics

Direction-Based
Traffic

Characteristics
Accuracy

z-score z-score z-score min_max_0 0.992
z-score min_max_0 min_max_0 min_max_0 0.9908
z-score - - - 0.8638
z-score z-score z-score - 0.8618

z-score - 0.8349
- z-score z-score z-score 0.7869
- z-score z-score - 0.7163
- - - z-score 0.6581
- z-score - - 0.5775

Table 8. Variations according to preprocessing techniques for the proposed datasets.

Configuration Dataset Basic
Characteristics

Content
Characteristics

Flow
Characteristics

Direction-
Based Traffic

Characteristics
Accuracy

N01 NSL-KDD z-score min_max_0 z-score 0.997
N02 NSL-KDD min_max_0 min_max_0 z-score 0.978
N03 NSL-KDD z-score z-score z-score 0.978
N04 NSL-KDD 0.95
N05 UGR16 z-score 0.993
N06 UGR16 0.87
N07 UNSW-NB15 z-score z-score z-score min_max_0 0.992
N08 UNSW-NB15 min_max_0 min_max_0 z-score min_max_0 0.990
N09 UNSW-NB15 z-score z-score z-score z-score 0.983
N10 UNSW-NB15 0.55

Additionally, we have evaluated the most accurate models for each dataset i.e., N01,
N05 and N07, presented in Table 8. These models were evaluated with the confusion matrix
in term of percentage as is presented in Table 9. The percentage was considered related to
the total number of flows from each dataset previously evaluated. Finally, these models
were also evaluated with other metrics such as precision and recall as presented in Table 10.

Table 9. Confusion Matrix in terms of percentage for the most accurate models.

Model N01 Model N05 Model N07

True
Label

Attack 47.94% 0.03% 11.55% 0.49% 43.31% 0.39%

No Attack 0.36% 51.67% 0.14% 87.82% 1.18% 55.12%

Attack No Attack Attack No Attack Attack No Attack

Predicted Label

Table 10. Recall and Precision for the most accurate models presented during this research.

Model N01 Model N05 Model N07

Precision 0.992 0.988 0.973
Recall 0.999 0.959 0.990

5. Discussion

The preprocessing of the basic characteristics allows greater accuracy, because a mean
distribution of the values is generated, allowing the ML algorithm to correctly identify
these parameters related to attacks.
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Research works presented in Section 2 were analyzed looking for the existence of
preprocessing techniques such as scalar, normalization and categorical transformation. The
comparison presented in Table 11 exposes the best results obtained in terms of accuracy
between the works mentioned before and our proposed models for each one of the analyzed
datasets in through this research.

Table 11. Variations according to preprocessing techniques for the proposed datasets.

Research and
Configuration Proposed Preprocessing Technique ML Model

Applied Dataset Accuracy

Scalar Normalization Categorical

N01-Model proposed Yes Yes Yes NN NSL-KDD 0.997
N05-Model proposed Yes Yes Yes NN UNSW-NB15 0.992
N07-Model proposed Yes Yes Yes NN UGR16 0.993

Paulauskas et al. No Yes No NN NSL-KDD 0.99
Salih et al. No Yes No NN NSL-KDD 0.989

Lokeswari et al. Yes No Yes NN KDD99 0.99
Chiba et al. Yes Yes No NN KDD99 0.98

The results obtained determine that our proposal gets better results with the prepro-
cessing techniques commonly used and the assumed group of characteristics. Most of the
recent studies have been developing models for benchmarks datasets such as KDD99 or
NSL-KDD. In this way, the principal difference is that our proposal enhances the detection
rate in terms of accuracy for individual groups of characteristics through different datasets.
Furthermore, this characterization may improve a comparison in terms of precision be-
tween different benchmark and non-benchmark datasets taking into account the similarity
of the proposed NetFlow characterization of characteristics.

Thus, the NIDS based on ML presented in this paper offer several advantages over
other models. First, it is able to easily detect an attack, correctly differentiating it from
normal traffic. Second, thanks to the use of benchmark and up-to-date datasets, the
proposed model is capable of facing sophisticated attacks. These advantages, together with
the classification proposed in [13] have allowed the proposed ML model to improve the
accuracy, which is essential for its deployment in real environments.

After performing the experiments described above with the proposed neural network
model, it is possible to obtain an acceptable precision greater than 99% in each of the
datasets used. This shows the benefit of data preprocessing based on the categorization
that we propose, demonstrating that a data standardization based on the scaling of vari-
ables using the z-score algorithm allows increasing the precision of the ML algorithm for
the model.

Concretely, a high precision was obtained with the proposed model and the various
types of preprocessing models. Table 7 shows the diverse configurations applied and the
enhance up to 44% in the accuracy of the algorithm when preprocessing the information
properly, this specifically in the case of the UNSW-NB15 dataset. The actual variation in
precision depends on the ML model proposed and its hyperparameters, so this study fo-
cuses on the application of a single model to the various datasets, which is a way of remark
the contribution of the preprocessing techniques proposed by group of characteristics.

6. Conclusions and Future Lines

This research work introduces new comparisons between the use of various datasets
such as the case of UNSW-NB15 and UGR16, allowing to extend the various studies in
the application of ML algorithms for the case of anomaly-based NIDS. In all the datasets
previously studied, the transformation of categorical values to numerical values is essential,
as this ensures that the data can be correctly coupled to the ML algorithm. Furthermore, the
study shows that data preprocessing task is very important for the ML algorithm to obtain
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greater precision in terms of the classification of anomalies, as can be seen by comparing
Figures 3 and 4.

The most relevant conclusion that this study provides is the importance of prepro-
cessing characteristics, such as basic characteristics and statistical traffic characteristics
using z-score standardization techniques, which allows increasing precision since it allows
using the mean deviation of the variables. As future actions, we will extend this research
and we intend to apply the proposed model and preprocessing functions by individual
group of characteristics into a real environment, with real data collected from IoT systems,
such as the platform of Smart City services proposed in [1], to demonstrate the efficiency
of our implementation. This implementation could be done with technologies such as
Structured Streaming from Spark [39], which is able to replicate the neural network and
preprocessing models proposed for streaming data applications in real time. In this way,
the IDS proposed would be able to detect real attacks with features related to each one of
the datasets evaluated during this research. Finally, as a future work, we will continue
this research, using a complete version of the UGR16 and big data technologies, taking
some considerations from related researches such as the amount of redundant records of
the datasets used in this article.
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