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Abstract: In this paper we present a highly efficient coding procedure, specially designed and
dedicated to operate with high dynamic range (HDR) RCCC (red, clear, clear, clear) image sensors
used mainly in advanced driver-assistance systems (ADAS) and autonomous driving systems (ADS).
The coding procedure can be used for a lossless reduction of data volume under developing and
testing of video processing algorithms, e.g., in software in-the-loop (SiL) or hardware in-the-loop
(HiL) conditions. Therefore, it was designed to achieve both: the state-of-the-art compression ratios
and real-time compression feasibility. In tests we utilized FFV1 lossless codec and proved efficiency
of up to 81 fps (frames per second) for compression and 87 fps for decompression performed on a
single Intel i7 CPU.
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1. Introduction

In the last decade we see a significant acceleration in the development of camera-
based advanced driver-assistance systems (ADAS) for the automotive industry. So far
limited to luxury automobiles, ADAS technology is now becoming also popular in the
standard segment of cars. Typical ADAS facilities help drivers in several aspects: automatic
parking [1], surround-view, reverse driving, avoiding lane departure with detection of
driver tiredness. Moreover, they offer many safety critical facilities like pedestrian detection,
road sign detection automatic braking [2,3], and many others. Most of the ADAS solutions
collect information about the car surroundings using cameras.

The camera-based solutions are also under development in autonomous driving
systems (ADS) which are related to semi-autonomous and autonomous vehicles. The
data from the cameras need to be stored for safety reasons (e.g., for an after accident
investigation) or for improving algorithms accuracy in the laboratory conditions, typically
in the software in-the-loop (SiL) or hardware in-the-loop (HiL) tests [4].

Nowadays an automatic or even remote vehicle control is also considered in emer-
gency situations before achieving the state of the fully autonomous cars equipped with
ADS [5,6]. In consequence, many camera-based ADAS and ADS solutions produce huge
amounts of data that need to be stored onboard or transferred via a wireless network.

To reduce this huge amount of data appropriate data compression algorithms should
be developed. Currently, most of automotive applications, mainly due to the broadly
understood safety, do not allow any lossy data compression (the processed data must
be identical to the source data). Unfortunately, lossless compression techniques cannot
fulfill the need of high compression ratio [7,8]. Even the compressed data (especially
this losslessly compressed) is a huge problem both for onboard storage and for wireless
transmission [9] (the high throughput of the 5G wireless transmission standard is surely
needed in this case, however it is still in a preliminary stage in the automotive field [10]).
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In automotive applications, the high dynamic range (HDR) video format must be used
to obtain high quality images. Without the HDR it is not possible to guarantee the image
quality in various lighting conditions, e.g.: very low light at night, or the full light of sunny
days, or in the darkness with high light reflections [11].

In recent years, in contrast to typical red, green, blue (RGB), or more strictly speaking
the red, green, green, blue (RGGB) Bayer mosaic, image sensors, a new red, clear, clear, clear
(RCCC) image sensor has been proposed for the automotive industry. The RCCC sensor,
similar to a monochrome sensor, is more sensitive, especially in low light conditions, offers
better reproduction of details, but still provides the separate red color information [12].

The interpolated grayscale image (from clear pixels) is used for automatic detection
purposes like e.g., detection of cars, pedestrians, obstacles, or traffic signs. On the other
hand, the red channel is used for detection of vehicle backlights, road signs, and traffic
lights [13,14].

Because a new class of the HDR RCCC cameras internally compress the HDR data
to reduce the number of bits per pixel, but still produce more than 8 bit per pixel, a com-
pression of such video stream becomes a quite new, non-typical problem. In consequence,
a new data compression task arises, namely efficient lossless compression of HDR RCCC
video sequences for ADAS and ADS applications. Therefore, in this paper we consider
and propose a new lossless solution for this task in order to simultaneously achieve: high
compression ratio, high dynamic range, and high computational efficiency.

The paper is structured as follows. In the next section we introduce lossless video
data compression requirements for ADAS and ADS applications and define the proper
requirements for the lossless codec. Then, we describe the new class of HDR image
sensors and color filter arrays. In In Section 4 we present the state-of-the-art in the lossless
image compression. In Section 5 we analyze the RCCC format features, possibilities of
its compression and we propose four various divisions of RCCC components before the
compression. In Section 6 the experiments are presented with the FFV1 lossless codec using
experimental ADAS/ADS dataset, together with the multi-threaded implementation of the
best coding procedures. Finally, we prove that the proposed procedures for RCCC codecs
enable the real-time compression and decompression with the state-of-the-art compression
ratios, using a single CPU only. Several important conclusions close the paper.

2. Lossless Compression for ADAS and ADS

The amount of data registered with the cameras in ADAS and in ADS is huge. For
example, one 4K (4096'2160 pixels) grayscale camera with 12-bit per pixel image sensor
and 30 fps transfers ca. 400 MB/s uncompressed data. Logging 8 h of recordings taken
from only four cameras needs more than 46 TB of storage space. In consequence, real-time
transmission or logging of such huge amounts of data is a serious problem. Thus, it is
necessary to use severe data compression.

As it was mentioned in the Introduction, the data from the ADAS/ADS cameras needs
to be stored for safety reasons, e.g., for an after accident investigation and for developing or
testing safety algorithms in the laboratory (SiL or HiL systems) [4]. Mostly lossless codecs
are used as large certainty of object detection is the most important parameter for safety
reasons. However, the lossless compression ratio remains low (e.g., for RGB 24 bpp images
it does not exceed 3.3 [15]). In ADAS/ADS applications, compression must be performed
in real time by an on-board computer system with limited capacity, which precludes (at
least currently) the use of complex compression algorithms, such as deep neural networks
(DNN) [16,17].

For less critical automatic video processing applications, e.g., the remote vehicle
control in emergency situations a lossy compression of the registered data is possible [5,6].
However, such data loss can substantially affect accuracy of the automatic video processing
algorithms [18-20].

The important task of the ADAS/ADS designer is to select and adopt right codec
for a given application. Regardless lossy or lossless codec is chosen, the requirements for
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automatic detection systems are the same: real-time processing, high compression ratio,
and high and stable quality of the compressed images. Of course, the highest possible
quality is ensured by the lossless compression but in cost of a relatively low compression
ratio. Consequently, in this paper we propose lossless codec procedures prepared for the
RCCC image sensors, one of the most important standard in the ADAS/ADS.

3. New Class of HDR Image Sensors

Technical requirements regarding the image sensors that are embedded in cameras
for automotive industry are very high. The most important requirement is related to the
high quality of the recorded images (in various conditions e.g., in very low light at night,
or in full light during sunny days, or in the darkness with high light reflections). The other
requirements concern hard environmental conditions (variety of temperatures, vibrations),
and high demands of the reliability, safety integrity levels and limited production costs [21].
In fact, very similar requirements exist in the mobile phone market, so the interest in such
products is very large and growing very fast.

3.1. High-Dynamic Range Image Sensors

Camera manufacturers have already reacted to these market needs. In recent years
several new types of camera sensors have been proposed. Some manufacturers (e.g.,
STMicroelectronics, On Semiconductor) offer special HDR image sensors They are also
known as wide dynamic range (WDR) sensors since they produce images with the dynamic
range up to 132 dB or 22 bits [22,23]. Such ultra-high values are reached using different
techniques including multiple exposures or split pixel technology supported by tone
mapping and automatic HDR image processing even inside the imaging chip [2,22-24].
Using the multiple exposure technique the HDR image data is constructed by combination
of three exposures (integration time) for each pixel. A long exposure captures details in
the dark parts of the scene, a short exposure captures details in the bright parts, whilst
a mid-length exposure captures all mid-range details [25]. As soon as a pixel’s three
exposure values are available, they are combined to create a linearized HDR value for each
pixel’s response.

Unfortunately, the HDR image sensor produces much more data than the standard
dynamic range (SDR) sensor. A simple piecewise linear (PWL) compression (a logarithmic
type compression) is typically used to compress the bit-length of image data (Figure 1).
Input signals from the image sensors, with values up to the first knee point (Ky;) are not
changed. Signal values greater than Ky, but lower than K, are compressed by reduction
of the number of bits that represent an excess value (between Ko; and Kpy. After each
knee point further bit reduction for next excess values arises. The higher the value, the
more compressed it is. In consequence, high values of the signal (very bright pixels) are
represented with lower accuracy, but the image sensor produces HDR images with a
relatively low bits per pixel number.

&

Compressed signal

&

max,

Kiy Ky Input signal
Figure 1. Piecewise linear representation in HDR image sensors.
This compression is similar to the Drago tone mapping algorithm for HDR images [25].

In the HDR image sensors this typically reduces data words by 10 bits (e.g., from 22 bits
to 12 bits) while still preserving the image details. It also reduces requirements for the
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bandwidth during the video stream transmission from the image sensor to the video
processor. Notice, that in high resolution sensors, even reduced bandwidth is still very
high, e.g., for 4K video (4096 “2160 pixels), 30 fps frames per second, 12 bpp itis ca. 3.2 Gb/s.

Because the output data length is higher than the number of bits generated by the
image sensor in each exposure, the PWL compression may be lossless. In [23] the producer
ensures that the compression of 20-bit HDR image to 14-bit is lossless, while compression
to 12-bit introduces a minimal data loss. The other producer [22] claims that the PWL
compression algorithm is lossless in the sense that any losses in the image quality are
below the noise floor of the image sensor. The number and values of knee points in PWL
compression may be fixed (like in Figure 1, where the number of knee points is 2) or
user-defined, even up to 32 points to: improve SNR performance, reduce quantization
noise, and produce more natural images [22,23].

The compression reduces the amount of video data that should be transferred from the
image sensor. It is very desirable, especially in mobile, low-power and low-cost solutions.
The problem of this transfer was noticed and standardized as the camera serial interface
(CSI) standard by the Mobile Industry Processor Interface (MIPI) Alliance [26]. Although
the CSI standard allows direct transmission of HDR images (e.g., with a length of 20 bits),
the HDR image sensors typically offer internal PWL compression to 12 or 14 bits [22,23].

3.2. Nowvel Color Optical Filter Arrays

The image sensors for automotive cameras differ from typical cameras not only in the
dynamic range, but also in the color mosaic (also called the color optical filter array).

Six optical color filter arrays that may be found in ADAS and ADS solutions are
presented in Figure 2 as 2 x 2 periodic patterns that constitute the whole imaging sensor.

(b) () (d) (e) (f)
Figure 2. Color filter arrays: (a) monochrome (CCCC), (b) RGGB, (c) RCCC, (d) RCCB, (e) RGBC, (f) RYYC.

After the simplest monochrome sensor (that without the color filters, Figure 2a), the
most typical color filter array is the so called Bayer filter with red, green, green, blue
components (RGGB, Figure 2b). One red, one blue and doubled green elements offer
similar sensitivity of the human eye and a cost-effective image sensor technical solution
with good reproduction of colors. Unfortunately, R, G, and B filters reduce the amount of
light reaching the respective sensors by about 2/3, compared to a monochrome sensor [27].
Additionally, to obtain the full resolution colorful image an interpolation is needed to
compute missing color components for all pixels. This procedure can produce false colors,
especially on lattice-like areas.

The above disadvantages are very undesirable in ADAS and ADS applications. There-
fore, instead of the Bayer color filter, the RCCC color filter is commonly used. The RCCC
consists of red, clear, clear, clear sensors (clear means colorless, i.e., fully transparent or
more precisely panchromatic filter, i.e., transmitting all visible spectral colors), see Figure 2c.
Unlike the RGGB Bayer sensor, the RCCC sensor uses only the red color optical filter, and
for each four horizontally /vertically neighboring pixels in the mosaic three of them have
clear filters. Hence, the image generated by the RCCC sensor is almost as detailed and
bright as the monochrome sensor but still provides the red color component informa-
tion [11]. This improves ability of automatic detection of traffic lights, rear lights of vehicles,
important informative parts of road signs, etc.

Having RGB components for every pixel, luminance (the monochrome image compo-
nent) can be easily calculated. In the case of sensors with C (clear) elements the luminance
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may be directly defined as the C component. Thus, with the RCCC sensor 3/4 of all
luminance values are directly measured, and 1/4 of them only (in places of R component)
are missing and must be interpolated. Therefore, in contrast to images registered with
the Bayer RGGB mosaic, the RCCC offers much better representation of details (higher
relative resolution) and less noise, especially for low lightning conditions [4,13,14]. Unfor-
tunately, an attempt to perfectly convert the RCCC to RGGB format is impossible, as there
is no information about the relationship between the missing G and B components in the
RCCC format.

There are also other mosaics used, shown in Figure 2: red, green, blue, clear (RGBC),
red, clear, clear, blue (RCCB), red, yellow, yellow, cyan (RYYC), or red, green, blue, clear
(RGBC), but currently, mainly due to their lesser sensitivity and lower relative resolution,
they are much less popular than the RCCC mosaic in ADAS and ADS applications. Please
note that these notations may be confusing. In RCCC C means clear but in RYYC, or CMY
(cyan, magenta, yellow) it means cyan. Here Y means yellow but it also may mean
luminance. Regardless, the lossless data compression solutions developed in this paper for
the RCCC mosaic may also be used for other color filter mosaics.

4. State-of-The-Art in the Lossless Compression of Images

A comprehensive but very deeply investigated survey of the image compression
techniques, both lossless and lossy is presented in [28]. Unfortunately, in contrast to lossy
compression methods, there are only a few main techniques for lossless compression. The
best known of them are the classic Huffman coding, arithmetic coding and predictive
coding [28]. Taking into account the properties of the dataset under compression, the
main method for compression of an image is prediction. This may be performed using
neighboring pixels, due to their similarity within the image. This is called the intra-frame
prediction. For this purpose, the image is usually analyzed from the top-left to the bottom-
right corner [15].

In the motion video there are additional similarities to be used, i.e., those between
the same pixels in consecutive video frames (both previous and/or subsequent ones).
This is called the inter-frame prediction [28]. From the very beginning of the lossy video
compression history, this is the main compression mechanism, which allows to achieve high
compression ratios. Unfortunately, such mechanism must include the motion prediction
but computationally this is very complex [28].

In practice, most of the lossless video codecs use the intra-frame compression only
due to the fact that in the lossless mode they achieve similar compression ratios to that of
the inter-frame compression, while the inter-frame prediction is much more complicated.

The reference pixel value together with the prediction errors are only transmitted to
the decoder [15,28]. In order to restore original data, the same prediction mechanism is
used in the decoder.

One of the best known lossless compression standard is JPEG-LS, but even in the
newest mainstream lossy standards like the high efficiency video coding (HEVC) there
are some modes or ideas that can be used in the lossless compression [29]. HEVC was
originally designed for lossy video compression, and thus is not ideal for lossless video
compression. In paper [30], the authors propose an efficient residual data coding method
for HEVC lossless video compression. Authors of some articles e.g., [31] propose lossless
compression to eliminate statistical redundancy in the coded video bit stream.

An area where the lossless compression is often used is medicine. The authors
of [32] compared the performance of five lossless video codecs, i.e., H264, H265, Lagarith,
MSU, MLC and three still-image codecs, i.e., JPEG, JPEG2000, JPEG-LS using 3D medical
computed tomography datasets. Unfortunately, the results are not very valuable for the
ADAS/ADS applications, as while the medicine applications do not put strong limitations
on the computational complexity of the solutions, they typically do not require real-
time operation.
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DNNs became a very popular solution for performing various classification, predic-
tion, and identification tasks in images, including also image compression [16,33]. A recent
overview of the research in the field of video compression using DNNs is presented in [17].
The authors of this survey point out two main directions of research in this area: improving
existing video codecs by performing better predictions, and the elaboration of holistic
methods for the end-to-end image or video compression schemes. They conclude that
while some of the results are promising, no breakthrough has been reported so far [17]. It is
worth noting here that the methods based on DNNs are still too complicated to operate in
ADAS/ADS applications in real-time with the limited capacity of the on-board computing
systems used.

Almost all image compression research works involve compressing monochrome or
color images in the RGB format. However, the considered RCCC compression, to achieve
relatively high compression rates, requires a quite different approach. However, a somehow
similar approach to that presented in this paper was used in several papers, which propose
a lossless compression dedicated to sensors with the RGGB mask (cf. Figure 2b). The
authors of [34] present a survey on lossless compression of such RGGB (Bayer pattern)
color filter array images. They also propose to split the image into three new images
corresponding to each channel (R, G, and B) and study the same compression algorithms
applied to each of them individually. This allows an improvement of more than 15% in
prediction based methods [34]. Also in [35] the authors evaluate the performance of some
methods for lossless and near-lossless compression for the real raw Bayer pattern.

Reference [36] is very close to our ADAS/ADS application. In high-speed applications,
or applications, in which the system design requires low-latency (low-complexity com-
pression), the new JPEG XS standard offers a solution to compress Bayer pattern images
close to the video sensor, while maintaining visually lossless quality. This paper presents
contributions to JPEG XS that are currently under the discussion in the JPEG committee
(SC29WG]1) [36]. Unfortunately, this is not the perfectly lossless solution.

To perform compression of HDR images (a typical task for ADAS/ADS), we just
have to assume that the lossless video codec used must support high dynamics video.
In our previous work [15] we already tested most important codecs for ADAS, however,
with the thermo-vision recordings only and not using the RCCC standard. The nature of
thermal images is more similar to monochrome images and does not introduce problems
such as in the RCCC format, which is the main subject of this paper. We found that for
both: lossless and lossy compression with proper codecs, a possibility exists for achieving
real-time performance with a single CPU. The best codec that exceptionally achieves both
high compression ratio and real-time performance for lossless compression occurred to be
the open-source FFmpeg FFV1 codec [37,38]. It is a high quality codec, that achieves the
state-of-the-art compression ratios around 3.3 for 24 bpp RGGB images (with 8 bit per one
color component), but it also supports a 16-bit (per component or per pixel) HDR image
format [15]. Thus it is also chosen in the present work to perform experiments.

Beside the advantages presented above, the FFV1 codec offers a very valuable option.
It uses the inter-frame prediction only, but by setting the size of the group of pictures (GOP)
higher than 1 it builds broader context model for coding the predictor errors. The model is
calculated not only inside one frame, but using many frames, i.e., those inside the GOP.
It results in a slightly increased compression ratio due to better fit of the model to the
content of the used frames. Unfortunately, such broad context model disables a possibility
of independent (parallel) processing of consecutive images [37].

To summarize, in lossless coders for ADAS and ADS real-time applications, to reduce
the computational complexity, only very simple predictors can be used, which merely
utilize similarity of neighboring pixels in one frame. For example, the predicted pixel can
be computed as a simple copy of the neighboring one, or as a mean or a median of the
neighboring ones.

The more information the predictor takes into account, the more accurately it can
predict and the prediction errors to be encoded are smaller. Thus, low complexity of
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the predictor mechanism (and consequently the encoder) results in a high computational
efficiency of the decoder [15,28].

Concluding, the more similar the neighboring pixels, the better are the compression
results. Of course, they mainly depend on the image content, but not only. In the next
section, we propose how to improve, by a proper manipulation of pixels, the compression
results using the best state-of-the-art lossless image codecs.

5. Proposal of Four Procedures for Lossless Compression of Specific HDR RCCC
Image Format

According to the best of the authors” knowledge, up to now, there is no special
image or video codec proposed that directly and losslessly compresses the RCCC image
format. Therefore, by the RCCC codec procedure we mean an interface that makes the
effective compression of the RCCC format data possible with standard lossless codecs (those
originally thought to work with grayscale or typical color video formats). Consequently
in this paper, we propose (four) following procedures of using standard image codecs for
compression (encoding) the RCCC images with various divisions of components:

e  First, RCCC image may be treated as a monochrome image and encoded directly
(see Figure 3). Notice that the R component is spatially sub-sampled (consecutive R
values do not occur in the direct neighborhood) and the difference between R and
C components may be significant. Certainly, the same phenomenon is also valid
for conventional video formats [20]. This reduces accuracy of prediction based on
neighboring pixels. Horizontal neighborhood of C2 and C3 components (see Figure 2c)
is closer than the vertical one, thus the prediction using the typical prediction masks
is less accurate.

e  Second, due to the informative differences between R and C components and, in con-
sequence, expected errors in their joint prediction, R and CCC components can be
decomposed into two separate images. Resolution of the image created with R com-
ponents only is certainly % of the resolution of the source RCCC image. We suggest
that in the second image, created from the CCC components, the missing values (i.e.,
those previously occupied with R component values) should interpolated, resulting in
the CCCC image preserving the original resolution (see Figure 4). In this method, the
encoder has by 25% more data to encode than in the previous method, but inside the
decomposed images the pixels are more similar in the neighborhood and the overall
compression can be more effective. There are various ways possible to interpolate the
missing C values. In order to maximize the compression ratio we propose to calculate
them just with the predictor. In this way, the prediction errors are equal to zero for the
interpolated C values.

e  Third, all four components, i.e., R, C1, C2, C3 can be decomposed into four separate
images with equal resolutions of § of the source RCCC image resolution (see Figure 5).
Compression of single components results in small prediction errors, but we lose in-
formation about the closest neighborhood between components C2 and C3. However,
this method is the most regular and universal as it can be directly used to any color
filter mosaic not only to RCCC (cf. Figure 2).

e Last but not least, components of the RCCC source image can be decomposed into
three images: two small images R, C1 (both are just the same as in the previously
described possibility) and to a horizontally two times larger image comprising C2 and
C3 components (see Figure 6). Compression of C2 and C3 components together, due
to their direct proximity, may be more efficient than the separate one.
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Figure 3. Three sample parts of source RCCC image.

Figure 4. Three sample parts of source RCCC image decomposed into two images with R and CCCC components (the
second image is created with the CCC components while the missing values are interpolated).

Figure 5. Three sample parts of source RCCC image decomposed into four images with all compo-
nents R, C1, C2, C3 separated.

Figure 6. Three sample parts of source RCCC image decomposed into three images: two small
images with R and C1 components and a horizontally two times larger image comprising C2 and
C3 components.
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To choose the best compression procedure and check the compression ratios and the
real-time performance achievable with the proposed lossless compression procedures we
performed a set of experiments with real ADAS/ADS video sequences using a modern
FFV1 codec.

6. Experiments on Lossless HDR RCCC Codec and Implementation of Coding Procedure

To decide which of the presented above divisions of components and the related
compression procedures is the best (in the meaning of compression ratios and compres-
sion/decompression throughputs) we check it experimentally with the FFV1 lossless codec.
The experiments we performed with real ADAS/ADS recordings.

6.1. Methodology
The following metrics were used to evaluate the effectiveness of the proposed video
coding procedures of the RCCC format including: compression ratio, performance, and
speed of operations [39]:
e compression ratio:
size of uncompressed stream
size of compressed stream

CR = 1)

e compression throughput of the input stream:

Thry, — size of uncornp.resse'd stream IMB/s] o)
compression time

e  decompression throughput of the output stream:

size of decompressed stream

Thl‘out = . .
decompression time

[MB/s] ®)

The introduced distinction between the throughputs at the input and output makes
the analysis of the compression and decompression speeds possible and does not depend
on the compression ratio.

Additionally, we calculated the throughputs of compression or decompression as
ratios of numbers of the processed frames to the compression or decompression time.
By this means the throughput is also expressed in frames per second (fps).

6.2. Lossless Video Codec

As we mentioned in Section 4, for experiments we decided to use the state-of-the-art
FFmpeg FFV1 codec [37,38]. All decomposition strategies of RCCC images were tested in
both compression modes which this codec offers, i.e., the standard mode of compression
(i.e., that without building the context model) and the extended mode of compression
(i.e., that with the context model that is built using GOP > 1). The standard mode was
implemented with GOP equal to 1 and the extended mode with GOP equal to 100. The
latter GOP value was chosen as the best setting of this mode, after a series of experiments.

6.3. RCCC Video Database

For all experiments 11 uncompressed video sequences of 12 bpp /36 fps RCCC format
have been used. These sequences have been registered by HDR RCCC camera mounted in
the front of the car. The sequences are typical for ADAS and ADS applications and include
various road scenes, types of roads and environments, and various weather conditions.
The average length of the sequence is about 1800 frames (50 s). Details about the sequences
are presented in Table 1.
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Table 1. Description of tested video sequences of RCCC format.

Sequence Number Number of Frames Description
1 1855 urban, sunny
2 1875 urban, sunny
3 515 test ride in laboratory
4 2011 urban, sunny
5 2051 road crossing, winter
6 2114 Suburban, cloudy
7 1761 road crossing, sunny
8 1707 suburban, evening
9 1909 suburban, sunny
10 1897 departure from the property
11 2149 road crossing, cloudy

Total frames 19,844

Although we used ADAS/ADS video sequences that contained 12 bpp, it should be
noted that with these 12 bits HDR images were represented using the PWL compression.
The introduction to the PWL compression in HDR cameras is given is Section 3.1.

In the tested ADAS/ADS sequences, the PWL compression was done by the camera’s
internal processor with the following parameters: two knee points and three various,
uniform quantization regions. The input knee points are: Kj; = 2048 , K, = 65,536, and
the output knee-pints are Ko; = 2048 and Ko, = 3040, respectively (cf. Figure 1). It gives
three quantization steps: the first one, up to the 11-th bit with the unit quantization step,
the second one with the 64 times larger quantization step, i.e., the unit step shifted by 6 bits,
and finally with the 1024 times larger quantization step, i.e., that shifted by additional 4 bits.
Such compression covers the overall input HDR dynamic range of 11 + 6 + 4 = 21 bits.

Although our test database offers 21-bit per component HDR images, even after the
PWL bit-length compression into 12 bits, it contains up to 4-bit noise level floor. This will
reduce the compression ratio, but the presented experimental results will be very close to
the real measurements.

Because the tested image codec (i.e., FFV1) does not support 12 bpp format, before the
compression, all source 12-bit RCCC images were transformed into 16-bit RCCC images to
match the input codec depth. This was done by storing 12-bit RCCC data in 16-bit words
and setting 4 most significant bits to 0. This transformation did not affect the resulting
compression ratio as we did not count these 4 zero bits into the input stream.

In fact, in lossless compression of HDR images, the PWL bit-length compression may
be neglected (decompressed files are identical to those before compression, the designed
codec supports the full 16-bit format).

However, it should be noted that the presented ideas are not limited to a specific
number of bits (e.g., 12 bpp). This value comes from the ADAS recordings and is used
just for experiments to show the real values. Apart from this fact, our solutions can be
applied to image sensors with any dynamic range (expressed in bits), although the software,
we have prepared, can compress images up to 16 bits.

6.4. Testbed and Experimental Setup

We assumed that the preferred processing platform to use in a vehicle is similar in
performance to a standard computer with a single processor-based CPU. For all tests we
used a mid-class Intel i7-3770 processor. This platform is cheap, compact, and achieves
much lower power consumption in comparison to the general purpose computing on
graphics processing unit (GPGPU) solution. However, in some applications, e.g., for simul-
taneous compression of several high-resolution streams (e.g., 4K), GPGPU or FPGA (field
programmable gate array) platforms are needed. The codec implementation was written in
C/C++ programming language using the FFV1 codec v.1.3 with the FEMPEG library.
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6.5. Selecting the Best of Lossless RCCC Codec Procedures

In the beginning of the experiments we checked how the division of R and C com-
ponents in RCCC images influences average compression ratios and the throughputs of
compression and decompression. Results of averaged compression ratios and averaged
throughputs are presented in Tables 2 and 3. The CR, Thrj,, and Thryy: values were
averaged over all 11 video sequences (shown in Table 1).

Table 2. Average compression ratios for various lossless coding procedures and division of components.

Compression Mode GOP Coding Procedure CR CRR CRccce CRei CRe  CRez  CReoces
standard 1 Direct—RCCC 1.47 - - - - - -
standard 1 R images and interpolated CCCC 197 1.98 1.96 - - - -
standard 1 All four components (R, C, C, C) separated 2.06 1.98 - 2.08 2.08 2.08 -
standard 1 Separated R, C; and joined C>C3 components 212 1.98 - 2.08 - - 2.21
extended 100 Direct—RCCC 1.50 - - - - - -
extended 100 R images and interpolated CCCC 204 212 2.01 - - - -
extended 100 All four components (R, C, C, C) separated 2.20 2.12 - 2.21 2.21 2.23 -
extended 100 Separated R, C; and joined C,C3 components 2.23 2.12 - 2.21 - - 2.30

Table 3. Throughputs for various lossless coding procedures and compression modes.

Compression Mode

Standard (GOP =1) Extended (GOP = 100)
Coding Procedure Compression Thr;, Decompression Thryye Compression Thr;, Decompression Throyt
[MB/s] [fps] [MB/s] [fps] [MB/s] [fps] [MB/s] [fps]
Direct—RCCC 73.6 41 773 44 72.8 41 16.6 9
R images and interpolated CCCC 103.1 58 124.8 70 102.7 58 30.2 17
Separated all components 115.9 65 130.9 74 116.3 66 81.8 46
Separated R, C; and C,C3 component images 116.6 66 132.7 75 116.2 65 50.6 29

We tested all four proposed strategies, namely: direct RCCC image, interpolated
CCCC and R images, all four components (R, C, C, C) separated, and finally, separated R,
C1 and joined C2 and C3 components (for details see Section 5).

Direct compression of RCCC image, i.e., without the component decomposition, al-
though simple, gives clearly worse CR than the other methods (CR = 1.47 for GOP = 1 and
CR = 1.50 for GOP = 100). This inefficiency is due to significant informative differences
between R and CCC components and in consequence missed prediction between quite dif-
ferent, but placed next to each other in the image, R and C components with (cf. Figure 2c).

The coding of interpolated CCCC and separated R images performs better, but it is
also less efficient that the other two methods with components separated (CR = 1.97 for
GOP =1 and CR = 2.04 for GOP = 100). Even with the correct prediction for each interpo-
lated C value (one for group of four pixels, in the place of R component), the 0 prediction
error needs to be saved by the FFV1 codec with a certain value of bits (due to distribution
of probability of occurrence of all values in image). In fact, it is possible to do not use and
save this 0 error for each fourth pixel, but in this case, the special, untypical codec need to
be designed. However such codec will not be universal for the other future formats like
e.g., RYYC and RYYB.

If we take under analysis the strategy with all four components (R, C, C, C) separated,
we see higher compression ratios and throughputs than in previous strategies. Inside this
procedure the compression of R component (CRR) is slightly worse than the compression
of C components (CRc1, CRca, CRc3). This strategy of decomposition reaches the very
best decompression throughputs (Throyt = 81.8 MB/s; 46 fps for the extended mode of
compression/decompression).

Generally, the decompression throughputs for the extended mode are significantly
lower (Throy: ranging from 29 to 46 fps for the best cases) than for the standard mode
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(Threyt ranging from 74 to 75 fps) (about 2.5 times lower). It is mainly due to the limitations
of the possibility of parallelizing codec procedures.

Beside the decompression throughput, the best results, in all other indicators, offers the
compression of RCCC images decomposed into R, C1 and C2C3 components. This comes
especially from the best prediction in case of C2C3 joined components (CRcpc3 = 2.21 for
GOP =1 and CRcyc3 = 2.30 for GOP = 100).

Taking into account the performance, in general, the performance of encoding/decoding
significantly depends on the achieved CR value (the higher CR, the lower amount of data
to process).

Comparing two best strategies, i.e., that with all separated components and that
comprising C2 and C3 components but separated C1 and R components, we notice that
the C2 and C3 components, due to their direct proximity, are together more efficiently
compressed than separately. Compression ratios are CR = 2.06 (for GOP = 1) and CR =2.20
(for GOP = 100) for all components separated, and CR =2.12 (for GOP = 1) and CR =2.23
(for GOP = 100) for comprised C2 and C3 components.

The differences between compression rates for the same sequences bring us to our next
observation regarding the method of compression. The GOP set to 1 enters the encoder into
standard mode while GOP = 100 enters it into extended mode. In general, the extended
mode gives slightly higher CR values and very similar Thrj, (throughput of compression)
in comparison to the standard mode. The throughput of decompression (Threyt) is much
higher in the standard mode (this mode enables native parallelism of computations).

Finally, the strategy with comprised C2 and C3 components but separated C1 and
R components seems to be the best for the considered lossless compression of the HDR
RCCC ADAS/ADS images.

In case of the HDR RCCC format, regardless the strategy of the division of the image
components, the obtained compression ratios are much lower than that stated in Section 4,
i.e., around 3.3 for 24 bpp RGB images (with 8 bit per one color component). This is due to
several reasons:

e  The codec is designed and optimized for typical color images, i.e., RGGB, not RCCC.
The misprediction rate during the compression is higher.

e InRGGBwith 3 x 8 bit per pixel, there is only one source component, i.e., R, G, or B for
one pixel (cf. Figure 2b). To obtain the full RGB pixel, two remaining components are
to be interpolated. Interpolation means that there is no additional source information.
Therefore the prediction is better, and in consequence the compression ratio, is higher.
In the RCCC format each pixel carries independently measured information and the
correlation between values is much smaller than in the case of the RGGB format.

e Good quality 8-bit per component images contain typically less noise than HDR ones.
Due to the unpredictable noise, the prediction during the image compression is much
less accurate. To prove it we additionally performed a special test for 8 bpp SDR
RCCC images. The SDR RCCC images were obtained from the 12-bit PWL bit-length
compressed HDR source sequences by removing the least four bits. In this case we
achieved average value of CR equal to 3.4, which is similar to 3.3, reported in [15]. This
shows that even for untypical RCCC format it is possible to achieve high CR values,
comparable to the potential of FFV1 codec. On the other hand, the much lower values
of CR for 12 bpp RCCC images confirm that the last four bits in the test recordings are
really noised.

6.6. Efficient Implementation of the Best Lossless HDR RCCC Codec Procedure

As it was mentioned in the previous subsection, the best proposed strategy is to divide
the RCCC image into three sub-images: R, C1, and C2C3. In our case this means that the
source RCCC image, e.g., with the resolution of 1280 x 969 pixels, is divided: into two
images (those for R and C1 components) with the resolution of 640 x 485 pixels (i.e., with
both horizontal and vertical source dimensions divided by 2) and to one joint C2C3 image
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with the resolution of 1280 x 484 pixels (i.e., with the vertical dimension only divided
by 2).

In order to make the coder computationally efficient and to achieve real-time process-
ing on a single CPU, the coding procedure needs to be multithreaded. Therefore, in the next
step the separated R, C1, and C2C3 sub-images are compressed in parallel (in separated
threads) by the lossless video codec (FFV1 codec was used in the experiments) and then
written to a video container as three separated streams.

To speed-up the processing, the compression process is parallelized by starting new
compression thread with a new RCCC image (or more precisely with three new images,
i.e, R, C1, C2C3). Only the writing procedure to the common video container needs to
be queued. A scheme of the whole proposed procedure is presented in Figure 7a. It is
assumed that the FFV1 codec works in the standard mode.
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Figure 7. RCCC lossless compression procedures with FFV1 codec for separated R, C1 and joined
C2 and C3 components in: (a) intra-frame mode, (b) inter-frame mode.

Taking into account the priority of a highest possible compression ratio for ADAS/ADS
applications, we rather prefer to use FFV1 codec in the highest compression mode, i.e.,
the extended mode with high GOP values (e.g., GOP = 100, cf. Tables 2 and 3). However,
to achieve the required compression efficiency, i.e., real time operation, it is necessary to
adapt the RCCC codec procedure as it is not possible to perform parallel processing simply
by running a new compression thread for each frame as it was done in the standard mode.
The process of dividing the RCCC image into component images (or joining component
images into one RCCC image in the decompression process) is now performed with multi-
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threaded manner, to minimize loss of performance. The compression (or decompression)
of component images is performed in parallel and multithreaded way for each component
image to achieve full CPU usage. Finally, the writing and reading steps is performed in the
new separated thread for each compressed image (and queued) to avoid suspending of the
compression process of the next image frame.

The final procedure that effectively supports the extended mode of the FFV1 codec is
presented in Figure 7b.

6.7. Detailed Tests of the Final Implementation of Lossless HDR RCCC Codec Procedure

In the last bunch of experiments we tested in detail the final implementation of the
lossless HDR RCCC codec procedure with the best decomposition mode, i.e., this with R,
C1 and C2C3 components. In these experiments we tested our procedure with all the HDR
RCCC sequences separately.

Results are presented in Table 4. They show that achieved CR values (ranging from
1.69 to 2.16 for standard mode and from 1.81 to 2.43, for extended mode) depend on
the image contents, quality, codec performance and the specificity of the RCCC format.
Beside the video sequence number 3 (test ride in laboratory, inside the building, somehow
synthetic case) the compression ratios (2.02 < CR < 2.43 ) and compression throughputs
(61 MB/s < Thrj, < 71 MB/s) are similar, regardless the compression mode (standard
or extended).

Table 4. Compression ratios and throughputs in the best lossless coding procedure (with separation into R, C1, C2C3 com-

ponents) for various video HDR RCCC sequences and compression modes.

Compression Mode

Standard (GOP =1) Extended (GOP = 100)
Sequence  Compression CR and Thr;, Decompression Throyt Compression CR and Thr;, Decompression Thrgy
CR [MB/s] [fps] [MB/s] [fps] CR [MB/s] [fps] [MB/s] [fps]

1 2.02 110.9 63 127.3 72 2.14 110.7 62 51.1 29
2 2.15 114.2 64 135.2 76 227 112.8 64 55.2 31
3 1.69 96.9 55 110.9 62 1.81 98.3 55 42.4 24
4 2.27 117.9 66 139.7 79 2.38 117.3 66 52.6 30
5 2.31 125.1 70 141.7 80 2.42 124.1 70 50.9 29
6 2.33 127.4 72 143.1 81 2.43 126.1 71 49.8 28
7 2.05 116.1 65 130.7 74 2.18 115.6 65 50.5 28
8 1.91 108.5 61 1225 69 2.03 108.9 61 48.6 27
9 2.13 119.4 67 132.1 74 2.24 119.5 67 53.5 30
10 2.16 120.3 68 134.5 76 2.27 120.1 68 52.7 30
11 2.31 125.6 71 142.1 80 2.42 124.3 70 49.9 28

Average 2.12 116.6 66 132.7 75 2.23 116.2 65 50.6 29

While the achieved values of Thr;, for both compression modes are very similar (in
the best cases: 71-72 fps), the decompression process performs slower for the extended
mode. This is caused by a slower decompression speed of FFV1 codec than during the
compression, for the same codec parameters and settings of multithread processing.

In fact, the throughputs reach up to 72 fps for compression process and 81 fps for
decompression process. Comparing these results to the real-time input stream which has
36 fps, we may say that the real-time efficiency is achieved on one mid-class CPU (even
with big surplus). Two things contributed to this result: the relatively efficient FFV1 codec
and the carefully designed multithreaded programming procedure.

7. Conclusions

Up to now, special applications in the automotive research require lossless video
compression for ADAS and ADS applications, so any loss of data during the compression is
unacceptable. Therefore, in this paper we presented and tested the highly efficient lossless
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video compression procedure, along with its almost equally effective variants, according to
the HDR RCCC standard (which is now becoming popular in ADAS and ADS applications),
using for experiments the lossless FFV1 codec. All proposed procedures meet two strong
requirements: real-time processing and high compression ratio.

We showed that compression of separated components is significantly more efficient
than direct compression of RCCC images. We considered four possibilities and showed that
the proper selection of the image decomposition strategy helps to increase the compression
ratio and the overall performance of the compression and decompression. The best strategy,
consisting in division of the original RCCC image into three sub-images: R, C1, and C2C3,
allows to achieve high performance (up to 72 fps for compression and up to 81 fps for
decompression performed using a single CPU).

Our experiments showed that even for deep 12 bpp HDR RCCC image format, the
achievable compression ratios are still relatively high (ranging from 1.81 to 2.43, for stan-
dard mode). The achieved compression ratios depend on the image content, quality, codec
performance, and preparation of the RCCC format for the compression.
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