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Abstract: In this paper, we propose a complex neuro-memristive synapse that exhibits the physio-
logical acts of synaptic potentiation and depression of the human-brain. Specifically, the proposed
neuromorphic synapse efficiently imitates the synaptic plasticity, especially long-term potentiation
(LTP) and depression (LTD), and short-term facilitation (STF) and depression (STD), phenomena of
a biological synapse. Similar to biological synapse, the short- or long-term potentiation (STF and
LTP) or depression (STD or LTD) of the memristive synapse are distinguished on the basis of time or
repetition of input cycles. The proposed synapse is also designed to exhibit the effect of reuptake and
neurotransmitters diffusion processes of a bio-synapse. In addition, it exhibits the distinct bio-realistic
attributes, i.e., strong stimulation, exponentially decaying conductance trace of synapse, and voltage
dependent synaptic responses, of a neuron. The neuro-memristive synapse is designed in SPICE and
its bio-realistic functionalities are demonstrated via various simulations.

Keywords: long-term potentiation (LTP); long-term depression (LTD); memristor; neuromorphic
circuit; short-term facilitation (STF); short-term depression (STD); synaptic plasticity

1. Introduction

Effort is being made to develop a highly technical and specialized artificial intelligence
that exhibits human brain-like intelligence. These bioinspired neuromorphic circuits
are considered as the new computing platform which outperforms conventional Von-
Neumann architectures, as it owns features such as high efficiency, low power consumption,
higher adaptability, and enormous parallel processing [1]. Recent technical advances in
nano-scale complementary metal oxide semiconductor (CMOS) technologies facilitate
researchers to design large-scale neuromorphic circuits utilizing specific very large-scale
integration (VLSI) hardware. Additionally, it eases the process of designing complex brain-
like intelligence and eventually contributes to connect the human brains directly with
machines [2,3]. Recently, researchers developed neuromorphic chips based on CMOS [4,5],
subthreshold CMOS [6], OxRAM [7], switched-capacitor (SC) [8], spintronic [9], and
memristive [10–15] technologies. Among these, memristor is regarded as one of the most
potential candidates for designing neuromorphic ICs due to its unique features of bio-
synapse, such as operation, low energy consumption, multiple-state operation, impressive
scalability, and CMOS compatibility [16].

Inspired with such technological advances, in this literature, we propose a complex
neuro-memristive synapse that exhibits the physiological acts of synaptic plasticity of
human brain. The proposed memristive synapse impersonates both synaptic potentiation
(short-term facilitation (STF) and long-term potentiation (LTP)) and depression (short-
term depression (STD) and long-term depression (LTD)) phenomena. Moreover, it is also
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designed to exhibit the outcome of reuptake and neurotransmitter diffusion processes
(i.e., memory fading effect (MFE) in the electronic circuit) of a biological synapse along
with the bio-realistic attributes of a neuron. In re-uptake and neurotransmitters diffusion
processes, the number of released neurotransmitters of a biological synapse are decreased
and eventually result in a decrement of synaptic strength which can be related to the
memory fading effect of electronic circuit and also of the human brain.

To accommodate such diverse biological attributes, the neuro-memristive synapse
is designed with a composite 1-port of memristor (M) and a controlled capacitor (CCon).
The memristance and voltage across the memristor act as the artificial synaptic strength
and voltage, respectively. The CCon capacitor controls the rate of discharging through
memristor (M). In potentiation (active cycle of input stimulation), the composite 1-port
is charged whereas the memristor of 1-port is partially or fully discharged in the inactive
cycle of stimulation based on the active presence of MFE or depression signals. Similar to
biological synapse, the short- or long-term potentiation (STF and LTP) or depression (STD
and LTD) of artificial synapse are distinguished based on the time or repetition of input
cycle. However, the rate of decrement in synaptic strength for SMF and depression are
quite different. Hence, the dissimilar rate of change in synaptic efficacy is designed with
two different MOS switches. In addition, after a successive STF or LTP process, the rate of
removal of neurotransmitters from synapse for reuptake or diffusion (MFE effect) are quite
different. Therefore, separate discharging paths are designed through CCon that facilitate
the partial discharging through memristor (M).

The neuromorphic excitatory synapses presented in [4] requires twice more hardware
than our proposed synapse to implement only spike-timing dependent plasticity (STDP).
The digital-controlled neuromorphic circuit in [5] requires additional circuits to implement
synaptic plasticity than the self-sufficient proposed model, hence it is less compatible
and area inefficient. The sub-threshold CMOS iono-neuromorphic model in [6] requires
a nonvolatile digital storage to store synaptic modification and unable to exhibit short-
term synaptic plasticity compared to the proposed memristive synapse. To imitate the
STP and LTP phenomena, the proposed neuro-memristive synapse requires only a single
memristor unlike the OxRAM synapse in [7] which requires 10 and 20 OxRAM devices,
respectively. Moreover, the proposed synapse is bio-realistically more effective, energy and
area efficient than the switched-capacitor based conductive synapse in [8] which requires
multiple switches, couple of capacitors, and amplifier to implement a single synaptic
conductance. The proposed memristive synapse is implemented in circuit with off-the-shelf
components unlike the mathematical [11] and macro [12] model of memristive synapse.
In addition, the proposed memristive synapse is energy and area efficient compared to
CMOS-memristive [13] and excitatory memristive [14] synapses despite of exhibiting more
bio-synaptic attributes.

The main advantage of the proposed architecture is that the analog artificial synapse
can be utilized in both volatile and nonvolatile configuration with a single memristor,
unlike prior literatures which required multiple memory elements. Utilizing the synapse
alike operation of memristor, the neuro-memristive synapse can also exhibit the bio-
realistic attributes of a neuron along with synaptic plasticity. Since the conductance-based
neuromorphic synaptic architecture overcomes the limitations of subthreshold analog- and
transistor-based CMOS neural circuits and conventional Von-Neumann architectures, it
facilitates to port the proposed design in miniature CMOS ICs.

The neuro-memristive synapse can be used to design spiking neural networks with
Hebbian or anti-Hebbian learning algorithms. It can also be utilized in academia to analyze
the synaptic functionalities of neuron instead in-vivo or in-vitro analysis, and in future the
industrial design might be used to design the human brain-like intelligence.

Rest of the paper is organized as following: the biological background of synaptic
transmission and plasticity are described in Section 2 and the working principle of proposed
artificial synapse is discussed in Section 3. The simulations and results are presented in
Section 4 followed by the concluding remarks in Section 9.
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2. Neuronal Transmission and Synaptic Plasticity

In neurobiology, electrically excitable neurons or cells are transmitting information via
synapses. The electro-chemical synaptic transmission among neurons is established when
the presynaptic axon terminal (shown in Figure 1a) is depolarized with the arrival of axon-
hillock generated action potential (AP) or nerve impulse [17]. Thus, the membrane potential
of pre-axon terminal is changed which initiates the opening of voltage gated calcium (Ca2+)
nano-pore ion channels as shown in Figure 1b. The extracellular Ca2+ ions infiltrate to the
presynaptic membrane because of steep concentration gradients. Penetrated intracellular
Ca2+ influx allows the synaptic vesicles to fuse with the presynaptic plasma membrane and
release the neurotransmitters in synaptic cleft [18]. The Synaptic cleft, shown in Figure 1b,
is a small gap between pre- and post-synaptic neurons (≈20 nm wide) and forms a junction
between neurons. The molecules of a released neurotransmitter, in Figure 1b, diffuse across
the synaptic cleft and bind to the postsynaptic receptor proteins. Hence, this activates the
postsynaptic receptors and leads to the opening or closing of ligand-gated ion channels
in post cell. The type of released neurotransmitters have effect on the channel behavior
that determines the outcome of postsynaptic cell [19]. For example, acetylcholine (ACh)
or glutamate neurotransmitters depolarize (i.e., make the inside of the cell more positive
than resting membrane potential) the post-cell and increase the probability of postsynaptic
firings. In contrast, GABA or dopamine neurotransmitters hyperpolarize (i.e., make the
inside of the cell more negative than resting membrane potential) the post-cell and oppress
the post firings. In this paper, we discussed about the excitatory ACh neurotransmitter and
its synaptic transmission events. For ACh neurotransmitters, the postsynaptic receptor
leads to the opening of sodium (Na+) ion channels and the extracellular Na+ ions infiltrate
into post cell membrane due to concentration gradients. Therefore, the postsynaptic neuron
depolarizes, and rises up the cell membrane potential from resting potential, typically
−70 mV~−90 mV. When the post membrane potential reaches threshold (typically−55 mV)
then it generates an all-or-none electrical impulse (i.e., action potential) and reaches the
peak voltage around +40 mV [20]. At peak, the post cell membrane initiates to close
Na+ ion channels whereas open potassium (K+) ion channels (shown in Figure 1b), and
intracellular K+ ions are moving out of the cell, known as repolarization [21]. The post
cell membrane continues to repolarize because of the permeability of K+ ion channels
and results in an undershoot which is lower than the resting membrane potential, known
as hyperpolarization. The membrane potential gradually recovers the undershoot and
stabilizes to resting membrane potential [17].

Generation of postsynaptic action potentials in chemical synaptic transmission is
proportional to the probability and pattern of neurotransmitter release, and the receptor
sensitization of postsynaptic neuron [22,23]. In contrast, after successive transmission of a
neural impulse, reuptake process reabsorbs the diffused neurotransmitters from synaptic
cleft through a neurotransmitter transporter and brings back to pre-cell membrane as shown
in Figure 1c. Reuptake allows the recycling of neurotransmitters and regulates the level of
presence of neurotransmitter in synapse which is essential for normal synaptic physiology.
Thereby, it controls the lasting durability of released neurotransmitters that results from
an excitation [24]. However, in the diffusion process neurotransmitters are detached
from the post receptors, drifting out of the synaptic cleft by breaking down with specific
enzymes, and absorbed by pre-glial cells for resynthesizing to new neurotransmitters.
Both the reuptake and diffusion process decreases the synaptic efficacy of a successive
neuronal communication by removing the chemical messenger (i.e., neurotransmitters)
from the synaptic cleft [19]. This self-removal mechanism of the neurotransmitters after
successive transmissions of a neural impulse can be related to the memory fading effect in
the electronic circuit.
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Figure 1. (a) Diagram of neuron–neuron communication in a neuronal network, (b) steps of bio-synaptic transmission, and
(c) neurotransmitters reuptake process.

Synaptic plasticity is the ability of a synapse to modify its strength or efficacy over a
certain period of time. Depending upon the durability of synaptic modification, plasticity
is categorized in two types: short-term plasticity and long-term plasticity. Short-term
plasticity lasts only for a couple of minutes or less whereas long-term plasticity persists for
hours, months or even years [19]. Moreover, based on synaptic modification, short- and
long-term plasticity are classified as: short-term potentiation or facilitation (STF) and de-
pression (STD), and long-term potentiation (LTP) and depression (LTD). Both STF and LTP
strengthen the synapse in accordance with the perishable release of presynaptic neurotrans-
mitters. Contrarily, STD and LTD weaken the synapse by blocking the neurotransmitters
release in spite the presence of presynaptic stimulus, and remove the neurotransmitters
from synaptic cleft [19].

STF initiates with close successive presynaptic stimulations that release a higher
amount of neurotransmitters, and swiftly strengthen the synapse for a shorter period of
time [25]. Unlike STF, LTP persistently strengthens the synapse depending upon the recent
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patterns of synaptic activity. It produces a long-lasting synaptic enhancement between two
neurons by secreting an enormous number of neurotransmitters in the synaptic cleft [26].
Both STF and LTP are considered as one of the major neuromorphic foundations of learning
and memory in neuronal communication, as memories are thought to be encoded by the
modification of synaptic strength [27].

STD induces with the depletion of neurotransmitter vesicles despite the presence of
presynaptic stimulations and weakens the synaptic efficacy (i.e., strength) over a short
period of time [25]. However, LTD refers to an activity-dependent reduction in the synaptic
efficacy that lasts hours or longer based on the patterns of stimulation. It selectively
weakens the synapses disregard of presynaptic stimulation, and builds a productive use of
synaptic strengthening caused by LTP. Moreover, it facilitates encoding of new information
by stabilizing the neuronal circuit [27].

3. Artificial Neuro-Memristive Synapse

The neuro-memristive synapse, shown in Figure 2, is designed with a composite 1-port
of memristor and capacitor to incorporate the bio-diverse attributes of synaptic plasticity.
Memristor [28] is used to imitate the bio-realistic functionalities of a synapse whereas
capacitor is utilized to control the partial or full discharging through memristor (M). A
depression switch (NDEP1) is used to regulate the input of memristor where diode (D1) is
used to block the reverse current. NDEP1 decides between the potentiation (VDEP = high)
or depression (VDEP = low) mode of operation of the proposed memristive synapse and
controls the flowing of input current (Istm) through the composite 1-port which is defined
as:

Imem =

{
Istm, f or VDEP > 0 (potentiation)

0, f or VDEP < 0 (depression)
(1)

The memristance of the memristor can be determined as:

Msyn =
VAcc −VCcon

Imem
= M(0) + VCT RT , (2)

where M(0) = Rs is the initial state, and VCT and RT are the intrinsic parameters of the
memristor, respectively (Section S1 of Supplementary Materials).

Figure 2. Proposed neuro-memristive synapse.
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The volatile memory fading effect (i.e., neurotransmitter diffusion or reuptake pro-
cesses of bio-synapse) is designed with a discharging path through MOS resistor RDIS.
The synaptic weakening process of a bio-synapse for reuptake or diffusion, and depres-
sion mechanisms are quite dissimilar and could not occur at once. Thus, two separate
discharging paths are included through RDIS resistor which is controlled by a secondary
depression switch NDEP2 and memory fading switch NMFE. For a high VMFE and VDEP,
the neuro-memristive synapse will operate in MFE mode and the memristor (M) will
discharge through NMFE switch (as shown with red arrowhead). Contrarily, for low VDEP,
the proposed memristive synapse will exhibit depression irrespective of VMFE, and dis-
charges through NDEP2 switch (as shown with green arrowhead). Moreover, according
to biology, the rate of removal of neurotransmitters from synaptic cleft slows down with
high frequency repetitive or rhythmic stimulations (i.e., STF or LTP) that results in slower
weakening of bio-synapse. Therefore, the synaptic weakening process of a LTP exhibiting
synapse is the slowest than that of STF and normal synaptic response (NSR) exhibiting
synapse. This dynamic synaptic weakening attributes of synapse is incorporated with
a separated discharge path through control capacitor CCon. The discharging path is ac-
tivated in the inactive cycle of input (i.e., active period of VMFE) and further regulates
with synaptic plasticity switch NSP. When VMFE = high and VDEP = high (i.e., no synaptic
depression), the capacitor (CCon) will partially discharge through memristor and mostly
discharge through NST or NLT switch depending upon VPOT. The rate of discharging
through NLT is higher than NST. For example, if the neuro-memristive synapse exhibits
LTP in active cycle and MFE in inactive cycle with VDEP = high, then the CCon capacitor
mostly discharge through NLT (with high VPOT) and partially discharge through mem-
ristor. Hence, the neuro-memristive synapse will exhibit dissimilar synaptic weakening
(i.e., dissimilar rate of removal of neurotransmitters) depending on NSR, STF, and LTP
exhibiting phenomena. However, for VMFE = high and VDEP = low (i.e., active presence
of synaptic depression), the CCon capacitor will fully discharge through memristor and
there exists no discharging through NST or NLT. In addition, the memristive synapse can
be operated in nonvolatile configuration by oppressing the VMFE and VDEP signals. Output
of the proposed synapse (VSyn) is obtained across the memristor using a CMOS differential
amplifier and determined as:

Vsyn = VAcc −VCcon, (3)

where the biasing current of CMOS amplifier depends on the input stimulation. The
proposed synapse is operable with both current and voltage input, however, the optimal
performance is achieved with current stimulation (Section S2 of the Supplementary Materi-
als). For voltage stimulation, the reference voltage of CMOS amplifier VDA = −Vin whereas
for current stimulation VDA = −Iin × (RL = 10 KΩ). The operating modes of proposed
neuro-memristive synapse is included in Table 1.

Table 1. Modes of operation of the proposed neuro-memristive synapse.

Memory
Type

Synaptic
Mode

Synaptic
Response

Operating Signals

VDEP VMFE VPOT

Volatile
Potentiation

NSR + MFE VH VH 0
STF + MFE VH VH VL
LTP + MFE VH VH VH

Depression STD VL VL VH/VL
LTD VH VH VH/VL

Nonvolatile Potentiation
NSR VH VL 0
STF VH VL 0
LTP VH VL 0
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4. Results and Simulations

The bio-realistic features of the proposed neuro-memristive synapse are verified with
various SPICE simulations. Due to the commercial unavailability of memristor, a realistic
and diverse memristor emulator [28] is used to design the neuro-memristive synapse. To
avoid the unintended consequences of nonlinear ionic dopant drift (Section S1 of Supple-
mentary Materials) at boundaries of a memristor [29–31], we follow the common practice
of initializing the memristance of a memristor in a linear region (2 KΩ~14 KΩ) [32,33].
Therefore, we initialized our memristor emulator at M(0) = 2 KΩ and limit its operation
within the linear region. The circuit parameters used to obtain the experimental results are
enlisted in Table 2.

Table 2. Circuit parameters of the neuro-memristive synapse that used in experiments.

Parameters Value Parameters Value

VDD/VH 3 V VDA −Vin
VSS/VL −3 V CCon 15 µF

Vrest −90 mV RST 2 KΩ
Vref 4 × Vrest RLT 1 KΩ

VPOT 0/VH/VL RL 10 KΩ

5. Normal Synaptic Response (NSR)

The normal synaptic response (NSR) is demonstrated with a pulse current input Iin
(pulse amplitude PA = 100 µA, pulse width PW = 1 ms and pulse period PP = 50 ms) with a
duty ratio of 2%, shown in Figure 3a. We chose the pulse width PW = 1 ms as the duration
of biological action potential is typically 1 ms~3 ms. The circuit response of the proposed
neuro-memristive synapse for shorter (PW = 0.25 ms) and lengthier (PW = 1.5 ms) pulse
width are shown in Section 3. The 1′ s complement memory fading signal (Vmfe, red curve)
and the depression signal (VDEP, green dotted curve) are shown in Figure 3b. Figure 3c
shows the artificial synaptic strength (Msyn) of the neuro-memristive synapse. Observe
from Figure 3c and its inset that the memristance of memristor (M) linearly increase about
∆R = 200 Ω in each cycle of an input stimulation Iin = 100 µA. However, the memristance
gradually decreases in the active cycle of Vmfe (i.e., inactive cycle of Iin). Such linear
increment or decrement in memristance is observed because of our choice of operating
the memristor in linear region. It is also observed from Figure 3c that the buildup in
memristance is faster than the rate of decrement, which is qualitatively similar to that of a
biological synapse. Due to the higher cyclic buildup in Msyn, the artificial synaptic voltage
Vsyn, shown in Figure 3d, increases monotonically.

Figure 3 shows that the proposed neuro-memristive synapse cyclically increases its
synaptic efficacy for a non-neutral stimulation (a biological synapse does not modify its
synaptic strength at neutral stimulation—δ, θ, α-bands of brainwaves), and similar to a
biological synapse it eventually boosts up the probability of postsynaptic firings.
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Figure 3. Normal synaptic response (NSR) of the proposed memristive synapse: (a) current stimulus
(Iin), (b) memory fading effect (Vmfe) and depression (VDEP) signals, artificial (c) synaptic strength
(Msyn), and (d) synaptic voltage (Vsyn).

6. Long-Term Synaptic Plasticity

To demonstrate the long-term plasticity (LTP and LTD) phenomena, we stimulated
the proposed synapse with same Iin (PA = 100 µA and PW = 1 ms), shown with magenta
solid curve in Figure 4a, but with more than twice duty ratio (PP = 20 ms) than that of
Figure 3a. The dotted green curve (Imem), in Figure 4b, shows the cyclic current stimulation
passes through the neuro-memristive synapse which depends on the depression input
(i.e., VDEP = high). Figure 4b shows the depression and MFE signals. The synaptic efficacy
(Msyn), shown in Figure 4c, gradually increases with each stimulation in LTP period
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(t ≤ 0.78 s) despite the presence of active Vmfe. However, it monotonically decreases in the
LTD period (0.78 s ≤ t ≤ 1.8 s) in spite the presence of presynaptic stimulation Iin (shown
in Figure 4a). During the LTD period, the memristive synapse is unable to return to initial
state M(0) = 2 KΩ because of the higher buildup in synaptic efficacy in LTP period. Hence,
the proposed synapse produces higher Vsyn (shown in Figure 4d) when the presynaptic
stimulations return to the active state after t ≥ 1.8 s than the initial period (t < 0.1 s).

Figure 4. Long-term potentiation (LTP) and long-term depression (LTD) synaptic response of neuro-
memristive synapse: (a) input stimulus (Iin) and current stimulus passes through proposed synapse
(Imem), (b) control signals of Vmfe and VDEP, artificial synaptic (c) strength (Msyn), and (d) voltage (Vsyn).

The neuro-memristive synapse effectively impersonates the long-term plasticity phe-
nomena as it produces a long-lasting enhancement in the synaptic efficacy both in the LTP
and LTD processes (shown in Figure 4) and results in higher possibilities of postsynaptic
firings with the return of input stimulations. Such long lasting synaptic enhancement can
also be seen in biological synapse.

7. Short-Term Synaptic Plasticity

The short-term plasticity (STF and STD) phenomena of the proposed memristive
synapse is demonstrated by providing a verity of diverse stimulation conditions. The input
stimulus Iin (PA = 100 µA, PW = 1 ms and PP = 20 ms), shown in Figure 5a, remains the
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same as LTP but the stimulation time period for STF is limited to t = 0.2 s, as shown in
Figure 5b. The close successive stimulus assists in gradually accumulation of synaptic
efficacy, in Figure 5c, irrespective of the presence of Vmfe. In contrast, the proposed artificial
synapse gradually decreases its synaptic efficacy in the active period of STD in a similar
passion to that of volatile bio-synapse. However, to demonstrate the non-volatility, we
provide Iin stimulations in the proposed synapse in absence of Vmfe (0.6 s ≤ t ≤ 1.2 s) as
shown in Figure 5b. Observe from Figure 5c that the synaptic strength is only increased
(for 0.6 s ≤ t ≤ 1.2 s) in absence of Vmfe and active presence of STF (0.6 s ≤ t ≤ 0.8 s). It
holds the synaptic strength when the STF is withdrawn during 0.6 s ≤ t ≤ 0.8 s. However,
the synaptic efficacy increases and decreases in presence of both STF (VDEP = High) and
Vmfe at t ≥ 1.2 s and produces higher synaptic voltage (Vsyn) compared to t ≤ 0.1 s, shown
in Figure 5d, due to higher buildup in Msyn.

Figure 5. Volatile short-term facilitation (STF) and short-term depression STD, and nonvolatile
synaptic responses of the proposed circuit. (a) Input stimulus (Iin) and current stimulus passes
through proposed synapse (Imem), (b) Vmfe and VDEP signals, artificial synaptic (c) efficacy (Msyn),
and (d) voltage (Vsyn).
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Similar to bio-synapse, the strength of artificial neuro-memristive synapse (Msyn)
increases swiftly in STF due to close successive stimulus and decreases monotonically in
STD where the higher buildup in synaptic efficacy eases the postsynaptic firings.

According to neuro-biology, the rate of removal of neurotransmitters from synaptic
cleft (i.e., synaptic weakening) are dissimilar for depression, STF, LTP, and NSR mechanisms.
To demonstrate this phenomenon, we stimulated the NSR, STF, LTP, and depression modes
of the proposed neuromorphic synapse with same stimulus Iin (PA = 100 µA, PW = 1 ms
and PP = 20 ms) for t ≤ 0.2 s as shown in Figure 6. In NSR, STF and LTP modes, we
provide Vmfe = 0 for t ≤ 0.2 s, and Vmfe = high for t ≥ 0.2 s where VDEP = high remains
same for all time. Contrarily, in depression mode, we provide VDEP = high for t ≤ 0.2 s and
VDEP = low for t ≥ 0.2 s where the Vmfe = 0 remains same for all time. We provide the same
VPOT signals for STF and LTP as enlisted in Table 1. Figure 6 shows that the swift artificial
synaptic weakening happens in depression mode compared to NSR, STF, and LTP modes
with active Vmfe. In LTP mode (with active Vmfe), the synaptic strength decreases more
slowly than in STF and NSR. Moreover, with different Vref = m*Vrest (shown in Figure 2),
the rate of change in synaptic efficacy is controllable for depression mode as shown with
cyan and magenta dotted curves in Figure 6. We incorporate this dynamic depression
option in our design as the rate of removal of neurotransmitters from synaptic cleft for
depression mechanism might varied with different types of bio-synapses. The synaptic
weakening response of the proposed neuro-memristive synapse is qualitatively equivalent
to the attributes of biological synapse.

Figure 6. Comparison of synaptic weakening (Msyn) between the different modes of proposed
neuro-memristive synapse.

8. Strong Stimulation Response

We further investigate the strong stimulating phenomenon in our memristive synapse
with Iin (PA = 130.2 µA, PW = 1 ms, and PP = 50 ms) as shown in Figure 7a. Observe that
the stimulating inputs in Figures 3a and 7a and are indifferent except the pulse amplitude
(PA). Figure 7b shows the similar memory fading (Vmfe) and depression (Vdep) signals to
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that of Figure 3b. Due to the strong stimulus, the memristive synapse accumulates higher
synaptic strength, shown in inset of Figure 7c, in each cycle of stimulation than that of
Msyn in Figure 3c. Hence, the produced synaptic voltage (Vsyn), shown in Figure 7d, is also
greater than that of in Figure 3d. The artificial synapse with strong-stimulation exhibits
stronger enhancement in its synaptic strength than the regular stimulation and increase
the possibilities of probable postsynaptic firings. Therefore, the neuro-memristive synapse
effectively imitates the strong stimulation phenomenon of bio-synapse.

Figure 7. Strong stimulation response of neuro-memristive synapse. (a) Strong stimulus (Iin), (b)
Vmfe and VDEP signals, artificial (c) synaptic strength (Msyn), and (d) synaptic voltage (Vsyn).

The above simulation results of different synaptic modes show that the proposed
synaptic architecture efficiently impersonates the neuro-physiological acts of bio-synapse.
Moreover, Table 3 shows the power consumption of the neuro-memristive synapse for
different synaptic modes. Observe that higher power is consumed by the neuro-memristive
synapse in long-term plasticity and strong stimulation modes whereas the lower power
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consumption occurs with short-term plasticity modes. The power consumption of the
proposed memristive synapse is similar to the energy consumption of biological neuron as
it requires a significant amount of power to process the information for long-term synaptic
plasticity and strong stimulation.

Table 3. Power consumption of different synaptic modes of the neuro-memristive synapse.

Synaptic Modes Power Consumptions (µW)

Normal Synaptic Response (NSR) 196.553
Short-term Plasticity volatile region (STF + STD) 131.994

Short-term Plasticity Nonvolatile region (STF) 156.83
Long-term Plasticity 452.95
Strong Stimulation 424.921

9. Concluding Remarks

In this paper, we proposed a neuro-memristive synapse that impersonate the bio-
realistic attributes of synapse and its plasticity. The impersonating features of proposed
artificial synapse is verified with various SPICE simulation vis-à-vis biological phenomena.
The memristive synapse explicitly exhibits the short-term (STF and STD) and long-term
(LTP and LTD) plasticity phenomena. The neurotransmitter removal phenomenon through
reuptake and diffusion mechanism is also exhibited with the proposed synapse. In addition,
it reveals the bio-realistic behaviors, especially strong stimulation, exponentially decaying
conductance trace, and voltage dependent synaptic responses, of a neuron.

Unlike multiple memory elements based prior artificial synapse, the proposed neu-
romorphic circuit is implemented in circuit with off-the-shelf devices and can be utilized
in both volatile and nonvolatile configuration. It is not just another synaptic model based
only on mathematical or macro-models of memristor. Since the conductive neuromor-
phic architectures overcomes the limitations of subthreshold analog- and transistor-based
CMOS neural circuits and conventional Von-Neumann architectures, hence, the proposed
bio-inspired synapse can be port in miniature CMOS ICs. The neuro-memristive synapse
can be used to design spiking-neural networks with Hebbian or anti-Hebbian learnings. It
can also be utilized in academia to analyze the synaptic functionalities of neuron instead
in-vivo or in-vitro analysis and hopefully the industrial design might be used in future to
design the human brain-like intelligence.
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drift [29]) of the TiO2 memristors, (b) memristance vs. time relationship of the incremental and
decremental memristor emulator, Figure S3: Frequency-dependent pinched hysteresis loops for
zero-mean periodic stimulation of Iin = 100µA for (a) bi-polar sinusoidal input, and (b) pulse input
with frequencies f = 10 Hz, 20 Hz, 50 Hz, 100 Hz, and 800 Hz, Figure S4: Normal synaptic response of
the proposed memristive synapse for a given voltage stimulation: (a) voltage stimulation (Vin = 0.75
V), (b) memory fading effect (Vmfe) and depression (VDEP) signals, (c) current passing through the
memristor emulator of neuro-memristive synapse, (d) artificial synaptic strength (Msyn), and (e)
synaptic voltage (Vsyn), Figure S5: Normal synaptic response of the proposed neuro-memristive
synapse with shorter pulse width: (a) current stimulus (Iin), (b) memory fading effect (Vmfe) and
depression (VDEP) signals, artificial (c) synaptic strength (Msyn), and (d) synaptic voltage (Vsyn),
Figure S6: Normal synaptic response of the proposed neuro-memristive synapse with lengthier pulse
width: (a) current stimulus (Iin), (b) memory fading effect (Vmfe) and depression (VDEP) signals,
artificial (c) synaptic strength (Msyn), and (d) synaptic voltage (Vsyn), Table S1. Equations of hp
TiO2 Memristor and Memristor Emulator.
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