
sensors

Article

UAV Swarms Behavior Modeling Using Tracking Bigraphical
Reactive Systems

Piotr Cybulski * and Zbigniew Zieliński

����������
�������

Citation: Cybulski, P.; Zieliński, Z.

UAV Swarms Behavior Modeling

Using Tracking Bigraphical Reactive

Systems. Sensors 2021, 21, 622.

https://doi.org/10.3390/s21020622

Received: 13 December 2020

Accepted: 12 January 2021

Published: 17 January 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Faculty of Cybernetics, Military University of Technology, ul. gen. S. Kaliskiego 2, 00-908 Warsaw, Poland;
zbigniew.zielinski@wat.edu.pl
* Correspondence: piotr.cybulski@wat.edu.pl

Abstract: Recently, there has been a fairly rapid increase in interest in the use of UAV swarms both
in civilian and military operations. This is mainly due to relatively low cost, greater flexibility,
and increasing efficiency of swarms themselves. However, in order to efficiently operate a swarm
of UAVs, it is necessary to address the various autonomous behaviors of its constituent elements,
to achieve cooperation and suitability to complex scenarios. In order to do so, a novel method for
modeling UAV swarm missions and determining behavior for the swarm elements was developed.
The proposed method is based on bigraphs with tracking for modeling different tasks and agents
activities related to the UAV swarm mission. The key finding of the study is the algorithm for
determining all possible behavior policies for swarm elements achieving the objective of the mission
within certain assumptions. The design method is scalable, highly automated, and problem-agnostic,
which allows to incorporate it in solving different kinds of swarm tasks. Additionally, it separates
the mission modeling stage from behavior determining thus allowing new algorithms to be used in
the future. Two simulation case studies are presented to demonstrate how the design process deals
with typical aspects of a UAV swarm mission.

Keywords: modeling; bigraphs; unmanned aerial vehicles; UAVs; swarm; planning; agent behavior;
swarm robotics; multi-agent systems

1. Introduction

Recently, unmanned aerial vehicles (UAVs) have been increasingly used both in
the civilian and military spheres, mainly due to their relatively low cost, flexibility, and
the elimination of the need for on-board pilot support. The use of UAV swarms is of
particular importance, especially with increased autonomy of its elements. It is expected [1]
that autonomous UAV swarms will become a key element of future military operations,
as well as civilian applications including security, reconnaissance, intrusion detection, and
support Search and Rescue (SAR) or Disaster Recovery (DR) operations. DR operations
are extremely challenging, and in the immediate aftermath of a disaster, one of the most
pressing requirements is for situational awareness. UAV swarms provide an indispensable
platform for building the situation awareness in such cases. The obvious benefit of using
UAV swarms is an increase in the efficiency of the operation, an accelerated process of
its execution and an increased probability of success. Their use in wilderness search and
rescue (WiSAR), in particular, has been investigated for fast search-area coverage. One of
the most important task in WiSAR is search – until a missing person has been found,
they cannot be rescued or recovered. Many search tasks require a number of UAVs to
remain in communication at all times and in contact with the base station via a short range
ad hoc wireless network. For example, a swarm of UAVs must disperse (take the proper
starting positions) to find the missing person as quickly as possible before their energy
reserves run out. However, in order to efficiently operate a swarm of UAVs, it is necessary
to address the various autonomous behaviors of its constituent elements, sometimes even

Sensors 2021, 21, 622. https://doi.org/10.3390/s21020622 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-9465-2373
https://orcid.org/0000-0001-5129-0448
https://doi.org/10.3390/s21020622
https://doi.org/10.3390/s21020622
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21020622
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/21/2/622?type=check_update&version=2

Sensors 2021, 21, 622 2 of 30

with conflicting goals, to achieve a high level of adaptation and human-like cognitive
behavior. Therefore, it is necessary to conduct research on methods of increasing the
autonomy and interoperability of UAVs while limiting global communication and human
dependence on the operator.

An individual UAV can perform different tasks, such as terrain reconnaissance, close-
up inspection of selected areas, transfer of communication, and target pursuit. The UAV can
intelligently take over the role depending on the situation. Such a high degree of adaptation
and cooperation in complex scenarios requires innovative solutions at the design stage of
the UAV swarm system and appropriate methods of its verification and testing.

A UAV swarm is a special case of robot swarm. There are a few definitions of robot
swarm, most of them differ in capabilities of its elements and a swarm itself but all of them
link it to multirobot systems. A multirobot system consists of multiple robots cooperating
with a goal to accomplish a given task. The main features associated to multirobot systems
are scalability, robustness, flexibility, and decentralized control. In [2], multirobot systems
that are not swarms are defined as those that have explicitly stated goals and in which
robots are executing individual and/or group tasks. Additionally, robots in such systems
have roles that can change during a course of a mission. In the same work, it was pointed
out that in swarm system a swarm behavior emerges from local interactions between
robots. In [3], the authors defined as a swarm system any robotic system that is capable of
performing “swarm behavior”. A frequently quoted definition of robotic swarms is the
one presented in [4]:

“Swarm robotics is the study of how large number of relatively simple physically embodied
agents can be designed such that a desired collective behavior emerges from the local
interactions among agents and between the agents and the environment.”

In the same paper, it was recommended for a swarm system to has the following
properties.

• Robots in a swarm should be autonomous and have the abilities to relocate and
interact with other objects in the environment.

• A swarm control method should allow for coexistence of large number of robots.
• A swarm can be either homogeneous or heterogeneous. If a swarm is heterogeneous,

it consists of multiple homogeneous subgroups.
• Communication and perceiving capabilities are local. It means that robots do not

know a global state of the environment at any moment.

For the purpose of this article, we will adopt the definition presented in [3] with the
features described above.

In recent surveys [2,3,5], there are multiple classifications of tasks that a swarm can be
given to perform. Below, we will use one that was defined in [5].

Swarm tasks can be divided in three categories:

1. Spatial organization—tasks associated with this category focus on obtaining some spatial
property by a swarm. An example of such property might be distance between robots.
Typical tasks of this kind are aggregation, dispersion, coverage, and pattern formation.

2. Collective motion—this group consists of obstacle avoidance and objects gathering
tasks. What makes collective motion different from spatial organization is that in the
latter we are mainly focused on rearrangement of individual robots within a swarm
while in collective motion we are generally focused on swarm as a whole. Typical
tasks in this group are exploration, foraging (finding and collecting specific objects on
the map), collective navigation (it aims at constructing, maintaining and, if there is such
a need, modifying a formation heading toward some direction) and collective transport
(in which a swarm tries to move an object that is otherwise too heavy for a single
robot in the swarm).

Sensors 2021, 21, 622 3 of 30

3. Decision-making—in this group robots make a decision that should lead to a consen-
sus within a swarm. The decision is based on the local perception of the environment
and information received from other robots. In the context of robot swarms, this kind
of task appears in situations where there is no access to globally shared information.
Typical tasks in this group are consensus (where a swarm tries to settle on a decision
that every of its members agree on), task allocation (where robots select from an array
of available tasks to perform), and localization.

Due to the large number of tasks that a swarm can be given to perform and their
complexity, many areas were inspirations for swarm robotics over the course of years.
Based on the survey presented in [2], we can distinguish four main areas that served as an
inspiration for robot swarms design:

• Biology—a vast number of solutions and design methods originated directly from
observation of real world swarms. To name a few, birds flocks, bees, and ants swarms
served as such source of inspiration. A well-known example of robotic swarm origi-
nated from biology is presented in [6]. All solutions based on evolutionary processes
can be also included in this category. A complex introduction to bioinspired multirobot
systems can be found in [7,8].

• Control theory—this category includes all designs where physical aspects of robots are
modeled as continuous-time continuous-space dynamical system and communication
between robots is modeled using graph theory. In some works [3], designs based on
graph-theory are considered as a separate group. A concise introduction to solutions
extensively using control theory can be found in [9]. What is worth noting is that
these kinds of designs methods give formal guarantee of correct execution as long
as the requirements are met. Unfortunately, this group poorly takes into account
indeterministic mission elements and requirements for a swarm are often unrealistic,
as it was stated in [10].

• Amorphous computing and aggregated programming—the main idea behind amor-
phous computing [11] is to use a large number of identical computers distributed
across a space. It is assumed that these computers have only local communication
capabilities and do not know their position. Because of its assumptions amorphous
computing closely reassembles swarm systems. An example of software implementa-
tion of this paradigm is Proto language [12]. In turn, aggregated programming [13]
is a paradigm that focuses on the development of large-scale systems from the per-
spective of their totality rather than individual elements. One prominent aggregate
programming approach is based on the field calculus [14]. An implementation of
this parading is, for example, Protelis [15]. It is worth noting that it currently used to
model IoT-like systems.

• Physics—swarm design methods inspired by physics are mainly focused on two
ideas: artificial forces [16] and Brownian motion [10]. As it was pointed out in [2],
a characteristic feature of physics-inspired swarm design methods is that they tend to
consider interactions between robots as passive. It means, there may be no message-
exchanging communication between agents, instead robots can interact indirectly
with each other (most of the time using some kind of forces).

There are multiple taxonomies concerning different aspects of swarm robotics. This
includes swarm design methods and methods of analysis of both models and swarms
themselves. For example, the taxonomy proposed in [17] distinguishes swarms based
on their features, such as their size or communication capabilities. Another taxonomies
presented in [18,19] categorize, among others, methods of swarm modeling and its analysis
as well as different ways to design its behavior. These taxonomies are especially important
for us so we can compare our proposition to the existing methods of swarm design. In [18],
the authors divided methods of swarm modeling into two groups. Fist group, called
top-down (sometimes referred to as macroscopic methods) encapsulate all methods that
start from defining a desired swarm behavior and then try to construct robots that exhibit
this behavior. The second way to designing robotic swarms, defined as bottom-up or

Sensors 2021, 21, 622 4 of 30

microscopic, focuses first on capabilities and behavior of members of a designed swarm.
Next, it is checked if the designed swarm is capable of carrying out a given mission. Both
design methods have their pros and cons as it was discussed in [20]. The key difference
between both methods is where does a design method start from.

In the same work, swarms been distinguished based on their capabilities to improve
results. These can be either non-adaptive, learning, or evolutionary. A swarm is non-adaptive
if the only way to improve its performance is by manual modification by the designer.
In turn, a swarm can be described as learning if parameters of an algorithm it is using are
automatically modified during task execution. Finally, if these parameters are modified
in an iterative manner during the design stage with a use of evolution-based techniques,
we can describe swarm behavior as evolving. In [19], a similar classification of swarm
design methods have been proposed. According to this taxonomy, design methods can
be described either as behavior-based or automatic. The first group consists of all methods
where a swarm behavior is designed manually by the designer and improved with the trial
and error method. The second group is made of all methods where a swarm behavior is
constructed without a substantial involvement of the designer.

A constructed swarm model with a behavior policy for the swarm elements can be
verified in two ways: using real robots or with simulators. This work is focused on earlier
stages of robotic swarm development so we will only briefly cover the key achievements in
this field.

The most obvious way to verify a robotic swarm model is with real robots. The most
commonly cited swarm robots projects are swarm-bots [21], its successor swarmanoid [22],
and the Kilobot project [23]. All of them are capable of performing multiple types of swarm
behavior, which suggests that they are all equipped with sufficiently powerful hardware.
This, in turn, let us to believe that the lack of common use of robotic swarms is due to
insufficient behavior modeling techniques.

Based on an up-to-date state-of-the-art survey [5], it can be seen that there is a number
of different simulators designed to help designers verify their work. They vary in terms of
performance and versatility of accepted solutions. To name a few, in our opinion two of
them are worth to recommend for those wanting to verify their theoretical results:

• ARGoS [24]—is an open source simulator, whose key features are efficiency, flexibility,
and accuracy. According to the information provided by the author, it is used by
academic community around the world.

• CoppeliaSim [25]—(previously known as V-REP) is a very advanced simulator which
seems to be used by many commercial and academic institutions globally. It is free for
academic use.

One of the proven methods of designing complex systems, which UAV swarm systems
certainly are, is engineering based on formal models. Formal models offer a number of
possibilities to automate the system design process, including verification of the behavior
of the designed system. They allow us to better understand and facilitate analysis of a
modeled system. Formal models provide mathematical abstractions of the designed system
and can be validated against requirements, tested using various infrastructures, and can
also be used to directly simulate the behavior of the system. One of such formalisms
which can be used for UAV swarms modeling are bigraphs with tracking. Bigraphs were
introduced by R. Milner [26] as a formalism to model systems in which placement and
intercommunication between elements play an important role. Despite its novelty, there
are already few extensions that allow to broaden its applicability. These are, among others,
stochastic bigraphs [27], bigraphs with sharing [28] or bigraphs with tracking [26]. A quick
introduction to bigraphs with a real-world use case can be found in [29].

It is important to emphasize that there are currently very few works on robot swarms
using bigraphs. Examples [30,31] in the field of multi-agent system do not typically show
how to generate behavior policy for swarm elements based on created models. The only
solution we have found that does present a method of generating a behavior policy based

Sensors 2021, 21, 622 5 of 30

on bigraphical model was presented in [32]. It uses a basic bigraphical notation mixed with
actors model [33]. In our opinion, it is not an automatable method of swarm design.

Currently, there are only few tools supporting design with bigraphs, although it seems
there are ongoing works [34] to change that. To our best knowledge, there are only two
utilities for designing with bigraphs that are beyond proof-of-concept stage. The most
advanced tool for modeling, verifying and simulation of bigraphical system BigraphER [35].
The second one, a tool for verification of reachability of states Bigraphical Model Checker
(BigMC) [36] is no longer developed.

In this paper, we will present a method of modeling a UAV swarm with the addition
of generating a behavior policy for swarm elements based on constructed model. Our goal
is to present a swarm modeling method with the following features:

• It separates modeling stage from generation of behavior for swarm elements.
• It is flexible in the meaning that it can be used for a large number of different

swarm tasks.
• It is capable of generating behavior policies on multiple levels of abstractions (from a

single agent, through their groups, to an entire swarm as a whole).
• It is highly automatable. It is a desirable property because it indirectly enforces

universal applicability of a method to different design problems. Additionally,
automatic methods that are not monolithic tend to be modular, this in turn leads
to standardization.

In the next section, we will present a method of modeling UAV swarm systems based
on bigraphs with tracking. We will also define a way of constructing behavior policy
which will guarantee a successful carrying out a given mission, assuming requirements
that had been previously defined are met. Our method is inspired by the work presented
in [37]. Although very interesting, it has two major shortcomings. First, the requirement
definition stage is loosely coupled with the modeling stage. We wanted to address this
issue and allow to formally transform capabilities of robots and mission requirements into
model elements. The second issue is the assumption of identical behavior for all swarm
elements. We do not consider this a necessary requirement for a swarm, although it may
differ depending on the accepted definition of robot swarm.

One of advantages of our method is that the whole process can be automated from the
moment of defining mission requirements (as bigraphical patterns) and robots capabilities.
We have proved it with software libraries [38–40].

To summarize, according to taxonomies presented in [18], our method can be cate-
gorized as bottom-up, problem-agnostic and a generated behavior can be considered as
non-adaptive. In turn, using the taxonomies presented in [19], our method can be considered
as automatic and a method of analysis of a constructed model can be viewed as macroscopic
(i.e., we are analyzing whole swarm and not individual interactions between its elements).

2. Methods and Materials

In this section, we will define formal elements and operations necessary to model
a UAV swarm mission and determining a sequence of actions for the swarm elements.
We have provided micro-examples at the end of each subsection for easier understanding.

Our proposition can be described as follows. We start from defining a UAV swarm
mission as Tracking Bigraphical Reactive System (TBRS). We then transform this TBRS
into state space represented as directed multigraph. Finally, we construct a behavior
policy for swarm elements. As we treat a state space as a directed multigraph with edges
corresponding to actions performed by swarm elements, we can define behavior policy
as a walk (a finite length alternating sequence of vertices and edges) from the vertex
representing the initial state of the mission to a vertex representing a final state (there can
be few of those). A final state is a desirable outcome of the mission. We have proposed a
method of finding all walks between any pair of vertices consisting of specified number of
edges or loops.

Sensors 2021, 21, 622 6 of 30

2.1. Bigraphs

A bigraph consists of two graphs: a place graph and a link graph. Place graph is
intended to model spatial relations between system’s elements. Link graph is a hypergraph
that can be used to model interlinking between the elements.

Formally a bigraph is defined as

B = (VB, EB, ctrlB, GP
B , GL

B) ∶ I → O

• VB—a set of vertices identifiers;
• EB—a set of hyperedges identifiers;
• ctrlB: VB → K— a function assigning a control type to vertices. K denotes a set of

control types and is called a signature of the bigraph;
• GP

B = ⟨VB, ctrlB, prntB⟩ ∶ m → n and GL
B = ⟨VB, EB, ctrlB, linkB⟩ ∶ X → Y denote a

place and a link graph, respectively. A prntB function defines hierarchical relations
between vertices, roots, and sites. A linkB function defines linking between vertices
and hyperedges in the link graph;

• I = ⟨m, X⟩ and O⟨n, Y⟩ denote an inner face and outer face of the bigraph B. By m, n
we will denote a set of preceding ordinals of the form: m = {0, . . . , m− 1}. Sets X and
Y represent inner and outer names, respectively.

A graphical example of a bigraph is presented in Figure 1.

(a) A bigraph (b) A place graph and a link graph

Figure 1. An example of a bigraph and its constituents. The right part represents a place graph
(the upper part of the figure) and a link graph (the lower part of the figure). They share a signature
which defines control types (letters in nodes) and arity of each control (number of unique links that
can be connected to a node with specified control). On the left there is the bigraph made from the
superposition of them both.

Sensors 2021, 21, 622 7 of 30

Reaction rules are used to model dynamics in bigraphical systems. In this paper, we
will use simplified tracking reaction rules. We call them simplified because only vertices
will be tracked between reactions, as opposed to the original bigraphs with tracking
proposed by Milner [26], where both vertices and hyperedges were tracked between
reactions. Informally, a reaction rule defines a pattern (redex) in a source bigraph that
shall be replaced with another bigraph (reactum). We will omit how patterns are found in
bigraphs and how replacement is being done.

Formally, a tracking reaction rule is a quadruple:

(Bredex ∶ m → I, Breactum ∶ m′
→ I, η, τ),

where

• Bredex—redex (a bigraph-pattern to be found in a bigraph to which rule is applied);
• Breactum— reactum (a bigraph replacing redex);
• η ∶ m′

→ m—a map of sites from reactum to redex;
• τ ∶ Vreactum → Vredex—a partial map of reactum support onto redex support. It allows

to indicate which elements are “residues” of a source bigraph in an output bigraph.

An example of reaction rule and its application is presented in Figure 2. A σ function
denotes a residue of a source bigraph in an output bigraph.

(a) An example of reaction

(b) An example of reaction rule
Figure 2. An example of bigraphical reaction with a corresponding reaction rule. The switch of
vertices with controls C and D is caused by the η function. The σ mapping denotes which vertex in
the output bigraph corresponds to which vertex in the source bigraph. It shows that the vertex with
id 2 is “new” (it is not a residue of the source bigraph).

Sensors 2021, 21, 622 8 of 30

Having defined the bigraphical reaction rules, we can proceed to the definition of
Bigraphical Reactive System (BRS). A BRS is a tuple (B,R) where B denotes a set of bigraphs
with empty inner face and R is a set of reaction rules defined over B. If R consists of rules
with tracking then a pair (B,R) makes a Tracking Bigraphical Reactive System (TBRS).

Having a BRS we can generate a Transition System. A Transition System is a quadruple:
L = (Agt, Lab, Apl, Tra), where

• Agt—a set of agents (i.e., bigraphs with an empty inner face, denoted as ε);
• Lab—a set of labels;
• Apl ⊆ Agt× Lab—an applicability relation;
• Tra ⊆ Apl×Agt—a transition relation;

For the purposes of this work, we will define a Tracking Transition System (TTS) LT =

(Agt, Lab, Apl, Par, Res, Tra). First, three elements have the same definition as described
above, the rest is defined as follows.

• Par(b, l) = p b ∈ Agt, l ∈ Lab, p ∈ 2Vb —a participation function. It indicates
which elements of a source bigraph participate in a transition. To avoid ambiguity,
Par function should return an injective mapping between redex’s support of the
reaction rule corresponding to the transition’s label and the source bigraph of the
transition. We have omitted this in the definitions for the sake of simplicity but the
implementation provided in [38] includes this in an output. The definition of the
Par function provided in this paper allows us to indicate who is participating in a
transition but does not indicate what role a participant takes.

• Res(b1, l, b2) = σ(b2) b1, b2 ∈ Agt, l ∈ Lab—a residue function. It maps vertices in an
output bigraph that are residue of a source bigraph to the vertices in the source bigraph;

• Tra ⊆ Apl×Agt× Par×Res—a transition relation.

A Tracking Bigraphical Reactive System can be transformed into a Tracking Transi-
tion System.

A micro-example of Tracking Transition System is presented in Table 1. Each row
describes a single transition in the system. The initial state of the system is presented in
the first row in the first Agt column. The scenario that this TTS models is as follows. Two
UAVs denoted as nodes with controls of type U are trying to move from an area of type A
to an area of type B. They can do it in two ways: The first method defined by reaction rule
r1 allows each UAV to move separately. The second method, denoted by reaction rule r2,
allows both UAVs to move in a cooperative manner. One can think of these reaction rules
as of different algorithms enabling various capabilities of the UAVs. We do not provide a
graphical representation of reaction rules for this example.

We have prepared a software library for generating Tracking Transition Systems
available here [38].

Sensors 2021, 21, 622 9 of 30

Table 1. An example of a Tracking Transition System. Each row defines a single transition in the system. The initial state is
defined in the first column of the first row. The definition of two reaction rules used to generate this TTS were omitted but
they allow to move either one or two nodes of type U from A to B at once.

Agt Lab Agt Par Res

r1 Par = {0, 1, 3} σ = {(0, 0), (1, 2), (2, 3), (3, 1)}

r1 Par = {0, 2, 3} σ = {(0, 0), (1, 1), (2, 3), (3, 2)}

r2 Par = {0, 1, 2, 3} σ = {(0, 0), (1, 3), (2, 1), (3, 2)}

r1 Par = {0, 1, 2} σ = {(0, 0), (1, 2), (2, 3), (3, 1)}

2.2. State Space

Having a Tracking Transition System we can transform it into a UAV swarm mission
state space. A state space can be later used to generate a behavior for elements of the
swarm we can control or have an influence on. Such elements will be called agents.

We have taken the following assumptions regarding modeled systems.

1. The number of agents is constant during whole mission.
2. A system cannot change its state without an explicit action of an agent (alone or in

cooperation with other agents).
3. No actions performed by agents is subject to uncertainty.
4. A swarm mission can end for each agent separately in different moment. In other

words, agents do not have to finish their part of the mission all at the same time.
5. In case of cooperative actions (actions performed by multiple agents), it is required of

all participants to start cooperation at the same moment.

A state space S for a system consisting of na agents and ns states is defined as

S = (N, A, L, I, C, T, M)

where

• N ⊂ N—a set of vertices in the state space. It corresponds to bigraphs in Tracking
Transition System;

• A ⊆ N × N—a multiset of ordered pairs of vertices. Called set of directed edges;
• L—a set of labels of changes in the system. It will usually consists of reaction rules

names from the Tracking Transition System the state space originate from. To deter-
mine what changes, in what order, have led to to a specific state we will additionally
introduce a set R = {lt∣l ∈ L, t ∈ N}.

• I = {N2
1×⋯×N2

na}—a set of possible state-at-time (SAT) configurations. For example,
for na = 2 the element i1 = ⟨(0, 777), (1, 123)⟩ denotes a situation where the agent

Sensors 2021, 21, 622 10 of 30

with id 0 is at the moment 777 while the agent with id 1 is at the moment 123. It is
important to emphasize that the configuration i2 = ⟨(1, 123), (0, 777)⟩ has the same
time interpretation but different spatial interpretation. We later show an example with
a justification why we need such a set.

• C = (I × 2R)∪ {0}—a set of possible mission courses. 0 denotes the neutral element,
i.e., ∀x∈Cx + 0 = 0+ x = x, we do not define operation + for the rest of elements of
the C set.

• T = { fi ∶ C×N → C∣i ∈ N}∪ { fnull}—a set of functions defining progress of a mission.
We later give an example with a rationale why we need such a set. The fnull function
returns 0 regardless of input. Additionally, we will denote by Ti,j ⊂ T a set of all
mission progress functions from the i state to the j state;

• M ∶ A → T—a bijection mapping of edges to mission progress functions.

Below, we present an example demonstrating why we needed both I and T sets.
Let us assume that some TBRS consists of two bigraphs s0 and s1 as in Figure 3b.

Reaction rule for this TBRS is presented in Figure 3a, agents in this system are denoted
by the control of type B. Then, transform the TBRS into TTS. This TTS consists of two
states (associated to both bigraphs) and two transitions (there are two nodes of type B
and as we can change only one of them there are two ways to do so). Depending on
whether the vertex with id 1 or 2 (numbering according to left-hand side of Figure 3b
participates in the reaction the result state-at-time configuration will differ. Let us as-
sume that the SAT configuration for the state associated with bigraph s0 is equal to
i0 = ⟨(1, 0), (2, 0)⟩ and the reaction with label r takes tr units of time. Depending on
which vertex participates in the reaction, the SAT configuration for the state s1 is either
i1 = ⟨(1, tr), (2, 0)⟩ or i′1 = ⟨(2, tr), (1, 0)⟩. Because of this, the corresponding mission progress
functions will be of the form f1([⟨(a, x), (b, y)⟩, Ω], t) = [⟨(a, x + tr), (b, y)⟩, Ω∪ {l2

t+1}] and

f2([⟨(a, x), (b, y)⟩, Ω], t) = [⟨(b, y+ tr), (a, x)⟩, Ω∪ {l1
t+1}].

Edge identifiers l1 and l2 denote which way have led to the s1 state, their names are
arbitrary.

(a) A reaction rule r for the example of how to interpret sets I and T. The τ function is identity

(b) An example of reaction after applying the above reaction rule. Please note that while
the result bigraph remains the same, the σ function differs depending on which vertex
participates in the reaction
Figure 3. A TTS for the example of how to interpret sets I and T.

Sensors 2021, 21, 622 11 of 30

A micro-example of the state space based on TTS from Table 1 is presented in Figure 4
with the mission progress functions defined in Table 2. The key idea behind generating
mission progress functions is as follows. For each bigraph B (either source or outcome
in a transition), we treat a subset of VB (denoting identifiers of agents that we want to
determine a behavior policy for) as ordered set. We then compare if the order of agents in
the source bigraph has changed in the outcome bigraph. If it did, then we must reflect this
change in a tuple being an element of I set. In our micro-example, such change of order is
particularly visible in the first two transitions (represented by functions f1 and f2). Both
the source and outcome bigraphs of these transitions are the same, yet in the first transition,
the order of agents (UAVs) has changed while in the second transition it has not. This is
due to the residue function of both transitions. In the first transition, the order of UAVs
identifiers (here 1 and 2 in the source bigraph and 1 and 3 in the outcome) are switched,
that is, the order in the source bigraph is (1, 2) and the order in the outcome bigraph is
(3, 1). Because of that, the order of the input tuple in f1 is changed from ⟨(a, x), (b, y)⟩ to
⟨(b, y+ 1), (a, x)⟩. The incrementation of y variable indicates change of time for an agent
with identifier equal to value of b. In the second transition, the order remained the same,
that is, (1, 2) (in source) and (1, 3) (in the outcome of the transition). The second case for
all mission progress functions, returning 0, is necessary to properly define a walk in the
state space. Its usage will be explained in the next subsection.

Figure 4. The state space generated from Tracking Transition System defined in Table 1. Mission
progress functions definitions are defined in Table 2.

Sensors 2021, 21, 622 12 of 30

Table 2. Mission progress function definitions for state space presented in Figure 4. All actions defined by reaction rules are
assumed to take 1 unit of time. It is worth noting that f3 function requires both UAVs to be in the same time (variable z) in
order to return something other than 0.

Function Identifier Function Definition

f1 f1(c, t) = { [⟨(b, y), (a, x + 1)⟩, Ω∪ {r1t+1}] ∶ c = [⟨(a, x), (b, y)⟩, Ω]
0 ∶ c = 0

f2 f2(c, t) = { [⟨(a, x), (b, y+ 1)⟩, Ω∪ {r1t+1}] ∶ c = [⟨(a, x), (b, y)⟩, Ω]
0 ∶ c = 0

f3 f3(c, t) = { [⟨(a, z+ 1), (b, z+ 1)⟩, Ω∪ {r2t+1}] ∶ c = [⟨(a, z), (b, z)⟩, Ω]
0 ∶ c ≠ [⟨(a, z), (b, z)⟩, Ω]

f4 f4(c, t) = { [⟨(b, y), (a, x + 1)⟩, Ω∪ {r1t+1}] ∶ c = [⟨(a, x), (b, y)⟩, Ω]
0 ∶ c = 0

We omit here an algorithm for transformation of TTS into state space but an exemplary
implementation of a software doing it is available at [39].

2.3. Behavior Policy

We define a behavior policy as a schedule of actions for each agent from the beginning
of a mission to its end, without breaks.

Having a state space we can view a behavior policy as a walk indicating what changes
and done by who are required in order to reach a desired state.

Before we demonstrate how to construct a proper policy behavior based on a state
space, we first need to define the following elements. Please note that by a series we will
understand a finite sum of elements.

• Kt
s = c1 +⋯+ cm = ∑i=1⋯m ci ci ∈ C, s ∈ {0,⋯, ns − 1}, t ∈ N—a series, where

summands are mission courses leading to the state s;
• NK(Kt

s) ∈ N—a function returning a number of elements in a given series. According
to the earlier definition, for any series Kt

s this function returns a value of m (the greatest
index of ci);

• Fi,j(x, t) = ∑k∈Ti,j
fk(x, t) i, j ∈ {0,⋯, ns − 1}, t ∈ N—a series, where summands are

mission progress functions from the i to the j state;
• Mt

K = [Kt
0 ⋯ Kt

ns−1], t ∈ N—a matrix whose elements are series indicating possible
walks leading to each state. Index t denotes a number of steps made in a state space.
By a step we understand a transition between vertices (including the situation where
the initial and final vertex are the same);

• Mt
F =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

F0,0(x, t) ⋯ F0,ns−1(x, t)
⋯ ⋯ ⋯

Fns ,0(x, t) ⋯ Fns−1,ns−1(x, t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
—a matrix of transitions between states.

Furthermore, we define two operations:

• Kt
s ◦ Fi,j(x, t) = ∑k∈Ti,j

∑l=1⋯NK(Kt
s) fk(cl , t)—a convolution of series defined above;

• Mt+1
K = Mt

K ⋅M
t
F—a multiplication of matrices defined above. Elements of the new

matrix are defined by the formula

Kt+1
s =

ns−1

∑
k=0

Kt
k ◦ Fk,s(x, t)

With the elements defined above, we can generate all walks consisting of specified
number of steps from the initial state to a final state. To do so, one must define the initial
state as a M0

K matrix and multiply subsequent results by Mi
F specified number of times.

The result will be a Mx
K matrix, whose elements in the ith column will contain information

Sensors 2021, 21, 622 13 of 30

about all possible walks with x steps that ends in the ith state of the state space. If an
element in the specified column is equal to 0, then it means there is no such walk.

Going back to our micro-example, using the state space as in Figure 4 with function
definitions listed in Table 2 we can determine all sequences of actions that lead to the state
denoted as 2nd. Each sequence is equivalent to behavior policy that, when applied, results
in moving both UAVs to the area of type B.

In order to determine such sequences we create two matrices: a matrix of transitions
Mt

F and matrix of initial state M0
K. Having both of them, we can multiply subsequent

Mt
K matrices by corresponding Mt

F matrices and check whether the third state (recall that
numbering starts from 0) is reachable. By reachable we understand having value other
than 0 in specified column of the Mt

K matrix.
Definitions of both matrices are listed below.

Mt
F =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

fnull f1 + f2 f3
fnull fnull f4
fnull fnull fnull

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

M0
K = [[⟨(1, 0), (2, 0)⟩,∅] 0 0]

The ⟨(1, 0), (2, 0)⟩ tuple in the first column of M0
K matrix denotes that we have two

agents. They are identified as agent 1 and agent 2, although this numbering is arbitrary
and could be 777 and 111 as well. The zeros in both (1, 0) and (2, 0) indicate that both
agents starts the mission at the same moment.

Subsequent Mt
K matrices let us determine how system may change when a specified

number of actions occur. For example, M1
K gives us information how system may evolve

when one action occurs and M2
K two actions etc.

In this example, M1
K and M2

K are of the form

M1
K =M0

K ⋅M
0
F = [[⟨(1, 0), (2, 0)⟩,∅] 0 0] ⋅

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

fnull(c, 0) f1(c, 0)+ f2(c, 0) f3(c, 0)
fnull(c, 0) fnull(c, 0) f4(c, 0)
fnull(c, 0) fnull(c, 0) fnull(c, 0)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

M1
K = [0 [⟨(2, 0), (1, 1)⟩, {r11}]+ [⟨(1, 0), (2, 1)⟩, {r11}] [⟨(1, 1), (2, 1)⟩, {r21}]]

M2
K =M1

K ⋅M
1
F = [[⟨(1, 0), (2, 0)⟩,∅] 0 0] ⋅

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

fnull(c, 1) f1(c, 0)+ f2(c, 1) f3(c, 1)
fnull(c, 1) fnull(c, 1) f4(c, 1)
fnull(c, 1) fnull(c, 1) fnull(c, 1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

M2
K = [0 0 [⟨(1, 1), (2, 1)⟩, {r11, r12}]+ [⟨(2, 1), (1, 1)⟩, {r11, r12}]]

We have prepared a software library for generating behavior policies, available
here [40].

3. Results

The result of our work is a method of design robotic swarms (specifically UAV
swarms). In this section, we will present this method with a use of two scenarios re-
lated to UAV swarms.

3.1. Introductory Scenario

The first of the discussed scenarios aims at presenting how elements defined in
Section 2 are meant to be used in modeling a UAV swarm mission. The modeled mission
will include the following aspects typical for swarm robotics tasks:

• Cooperation
• Multiple ways of achieving a goal
• Synchronization of agents by “idling” while waiting for others

Sensors 2021, 21, 622 14 of 30

The scenario consists of a map composed of two types of areas and two UAVs of
different kind. Let us name the types of areas X and Y while types of UAVs will be called A
and B. The initial state of the mission is presented (as a bigraph) in Figure 5. The goal of the
mission is to move both UAVs from their initial location to the area of type Y (there is only
one such area). In order to demonstrate cooperation, we will restrict possibility of moving
from an area of type X to an area of type Y only to simultaneous transition by both UAVs.
This can be interpreted in various ways. For example one kind of the UAVs can serve
as a navigator when moving between different types of areas, or it can be a carrier that
allows the other UAV to travel longer distances. We will not choose one interpretation over
the other and rather focus on how to deal with such situations. To additionally increase
complexity of the mission we will assume that different kind of UAVs move at different
pace. This will enforce a behavior policy to include actions that only purpose is to “kill
time” by one UAV while the other, the slower one, will finish their part before engaging in
cooperation. It is important to emphasize that we allow agents (UAVs in this example) to
idle only by performing actions (either alone or in cooperation) from a fixed set of actions
represented by reaction rules.

Figure 5. Initial state of the system modeled in scenario 1. X and Y are different types of areas, while
A and B are different kinds of UAVs.

3.1.1. Bigraphical Reactive System

The TBRS for the first scenario consists of three reaction rules and six bigraphs. The ini-
tial state is shown in Figure 5. Controls A and B represent UAVs of a different kind, while
controls X and Y denote areas of the type with the same name. The reaction rules for the
TBRS of this system are presented in Figure 6. The uta mov atx reaction, presented in Figure
6a, allows a UAV of type A to move between areas of type X. The utb mov atx reaction,
depicted in Figure 6b, allows a UAV of type B to do the same. Finally, the mov atx2y rule
allows for transition of both UAVs between an area of type X to an area of type Y; it is
presented in Figure 6c.

Sensors 2021, 21, 622 15 of 30

(a) The uta mov atx reaction rule

(b) The utb mov atx reaction rule

(c) The mov atx2y reaction rule

Figure 6. The reaction rules for the first scenario. All of the site mappings and residue functions
are identities.

The transitions in Tracking Transition System for this scenario are listed in Appendix A.
For simple reference, below is the list of descriptions of each state.

• State 0—both UAVs are in the same area of type X that is not at the center of the map.
It does not matter which one since all combinations are isomorphic to each other.

• State 1—the UAV of type A is at the center while the UAV of type B is in an area of
type X.

• State 2—the UAV of type B is at the center while the UAV of type A is in an area of
type X.

• State 3—each of the UAVs is in a distinct area of type X that is not at the center of
the map.

• State 4—both of the UAVs are at the center of the map.
• State 5—both of the UAVs are in the area of type Y.

3.1.2. State Space

The state space generated from the TTS described above and defined in Appendix A
is presented in Figure 7. The set of labels of changes was defined as

L = {m11, m22, m13, m24, m15, m26, m17, m28, m29, m110, m311, m112, m113, m214, m215}

Sensors 2021, 21, 622 16 of 30

Mapping of labels to reaction rules was listed in Table 3. For every transition in the
TTS there is a corresponding edge in the state space.

As it was stated in the introduction, each type of UAVs moves with different speed.
We took the assumption that the UAV of type A needs 1 unit of time to move between areas
of type X and the UAV of type B needs 3 units of type to do the same job. Moving between
an area of type X to an area of type Y takes 4 units of time (it is done only by two UAVs at
once so there is no differentiation by types).

Functions assigned to edges are defined below.

f1(c, t) = { [⟨(a, x + 1), (b, y)⟩, Ω∪ {m11
t+1}] ∶ c = [⟨(a, x), (b, y)⟩, Ω]

0 ∶ c = 0

f2(c, t) = { [⟨(b, y+ 3), (a, x)⟩, Ω∪ {m22
t+1}] ∶ c = [⟨(a, x), (b, y)⟩, Ω]

0 ∶ c = 0

f3(c, t) = { [⟨(a, x + 1), (b, y)⟩, Ω∪ {m13
t+1}] ∶ c = [⟨(a, x), (b, y)⟩, Ω]

0 ∶ c = 0

f4(c, t) = { [⟨(b, y+ 3), (a, x)⟩, Ω∪ {m24
t+1}] ∶ c = [⟨(a, x), (b, y)⟩, Ω]

0 ∶ c = 0

f5(c, t) = { [⟨(a, x + 1), (b, y)⟩, Ω∪ {m15
t+1}] ∶ c = [⟨(a, x), (b, y)⟩, Ω]

0 ∶ c = 0

f6(c, t) = { [⟨(b, y), (a, x + 3)⟩, Ω∪ {m26
t+1}] ∶ c = [⟨(a, x), (b, y)⟩, Ω]

0 ∶ c = 0

f7(c, t) = { [⟨(a, x), (b, y+ 1)⟩, Ω∪ {m17
t+1}] ∶ c = [⟨(a, x), (b, y)⟩, Ω]

0 ∶ c = 0

f8(c, t) = { [⟨(b, y), (a, x + 3)⟩, Ω∪ {m28
t+1}] ∶ c = [⟨(a, x), (b, y)⟩, Ω]

0 ∶ c = 0

f9(c, t) = { [⟨(b, y+ 3), (a, x)⟩, Ω∪ {m29
t+1}] ∶ c = [⟨(a, x), (b, y)⟩, Ω]

0 ∶ c = 0

f10(c, t) = { [⟨(a, x + 1), (b, y)⟩, Ω∪ {m110
t+1}] ∶ c = [⟨(a, x), (b, y)⟩, Ω]

0 ∶ c = 0

f11(c, t) = { [⟨(b, z+ 4), (a, z+ 4)⟩, Ω∪ {m311
t+1}] ∶ c = [⟨(a, z), (b, z)⟩, Ω]

0 ∶ c ≠ [⟨(a, z), (b, z)⟩, Ω]

f12(c, t) = { [⟨(a, x), (b, y+ 1)⟩, Ω∪ {m112
t+1}] ∶ c = [⟨(a, x), (b, y)⟩, Ω]

0 ∶ c = 0

f13(c, t) = { [⟨(a, x), (b, y+ 1)⟩, Ω∪ {m113
t+1}] ∶ c = [⟨(a, x), (b, y)⟩, Ω]

0 ∶ c = 0

f14(c, t) = { [⟨(b, y), (a, x + 3)⟩, Ω∪ {m214
t+1}] ∶ c = [⟨(a, x), (b, y)⟩, Ω]

0 ∶ c = 0

f15(c, t) = { [⟨(b, y), (a, x + 3)⟩, Ω∪ {m215
t+1}] ∶ c = [⟨(a, x), (b, y)⟩, Ω]

0 ∶ c = 0

Sensors 2021, 21, 622 17 of 30

Table 3. Mapping of labels in the state space to reaction rules in the TTS for scenario 1.

Label of Change Reaction Rule

m1i uta mov atx occurring in ith transition

m2i utb mov atx occurring in ith transition

m3i mov atx2y occurring in ith transition

Figure 7. The state space for scenario 1 based on Tracking Transition System defined in Appendix A.

3.1.3. Behavioral Policy

The initial state for scenario 1 is represented by the vertex with id 0 in Figure 7, the final
state is the one with id 5. Our goal is to find a shortest walk from vertex with id 0 to the
vertex with id 5; it must not violate the constraint that allow agents to cooperate only when
they start in the same moment of time.

Each Ti,j set is defined in Table A2 of Appendix B.
Based on T set, we can construct Mt

F:

Mt
F =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

fnull f1 f2 fnull fnull fnull
f5 fnull fnull f3 f4 fnull
f8 fnull fnull f6 f7 fnull

fnull f10 f9 fnull fnull fnull
fnull f14 + f15 f12 + f13 fnull fnull f11
fnull fnull fnull fnull fnull fnull

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Knowing that the initial state is associated with vertex with id 0, the M0
K is of the form

M0
K = [[⟨(1, 0), (2, 0)⟩,∅] 0 0 0 0 0]

By multiplying the above matrices we gain information about changes of the system
and how will it affect the agents (UAVs in this case).

For example:

M1
K =M0

K ⋅M
0
F = [0 [⟨(1, 1), (2, 0)⟩, {m11}] [⟨(2, 3), (1, 0)⟩, {m21}] 0 0 0]

Sensors 2021, 21, 622 18 of 30

In turn, the M5
K matrix gives us information about every possible walk leading to

the state with id 5 (in general, it gives information about all possible walks consisting of
5 edges). Below are listed all elements of the series being the element of the 6th column
(numbering from 0) in the M5

K matrix:

• [⟨(1, 7), (2, 7)⟩, {m311
5 , m24

4, m11
3, m15

2, m11
1}]

• [⟨(1, 7), (2, 7)⟩, {m311
5 , m24

4, m11
3, m13

2, m11
1}]

• [⟨(1, 7), (2, 7)⟩, {m311
5 , m17

4, m22
3, m15

2, m11
1}]

• [⟨(1, 7), (2, 7)⟩, {m311
5 , m17

4, m29
3, m13

2, m11
1}]

• [⟨(1, 7), (2, 7)⟩, {m311
5 , m27

4, m113
3 , m24

2, m11
1}]

• [⟨(1, 7), (2, 7)⟩, {m311
5 , m17

4, m113
3 , m17

2, m22
1}]

• [⟨(1, 7), (2, 7)⟩, {m311
5 , m17

4, m112
3 , m24

2, m11
1}]

• [⟨(1, 7), (2, 7)⟩, {m311
5 , m17

4, m112
3 , m17

2, m22
1}]

Using the above we can define a behavior policy (i.e., a schedule of actions) for
each UAV.

For example using the first element of the 6th column we get the following walk.

0
m11

1
−−−→ 1

m15
2

−−−→ 0
m11

3
−−−→ 1

m24
4

−−−→ 4
m311

5
−−−→ 5

This can be further transformed into a behavior policy as presented in Table 4.

Table 4. A schedule of actions for both UAVs based on the walk of the form 0
m11

1
−−−→ 1

m15
2

−−−→ 0
m11

3
−−−→

1
m24

4
−−−→ 4

m311
5

−−−→ 5. Each (x, y) element denotes: x—last scheduled action, y—the time moment since
the x action is performed.

START m11
1 m15

2 m11
3 m24

4 m311
5 END

UAVA (−, 0) (m1, 0) (m1, 1) (m1, 2) (m1, 2) (m3, 3) (m3, 3)
UAVB (−, 0) (−, 0) (−, 0) (−, 0) (m2, 0) (m3, 3) (m3, 3)

3.2. More Advanced Example

The second example is intended to present a more realistic UAV swarm mission. Addi-
tionally, we present two propositions of metrics for measuring size of swarm
robotic systems.

In this scenario, the goal is to collect all information located on a map and secure it in
a base. We have made the following assumptions, in regard to the mission.

• Every UAV is capable of storing and transporting up to one information at the time.
• All sources of information can transmit information to any number of UAVs in parallel.
• An information can be secured in a base only when the UAV containing the informa-

tion is inside the base.
• Any number of UAVs can secure information in a base at the same time.

The above mission will be resolved in four different variants of the initial state:

1. The map consists of two areas, one UAV, one source of information, and one
information.

2. The map consists of four areas, two UAVs, two sources of information, and two
information.

3. The map consists of four areas, two UAVs, two sources of information, and four
information.

4. The map consists of nine areas, three UAVs, two sources of information, and four
information.

Sensors 2021, 21, 622 19 of 30

3.2.1. Bigraphical Reactive System

Regardless of the variant, the BRS for the second scenario consists of six reaction rules,
presented in Figures 8–13. All of the initial states for different variants of the scenario are
presented in Figure 14. All site mapping functions and residue functions are identities.
Table 5 lists all control types with respective real world objects they are representing.

1. the move reaction rule:

Figure 8. Reaction rule move for scenario 2.

Rationale: the rule is intended to allow a UAV to move between areas.
2. The move into base reaction rule:

Figure 9. Reaction rule move into base for scenario 2.

Rationale: the rule is intended to allow a UAV to move into a base.
3. The move out of base reaction rule:

Sensors 2021, 21, 622 20 of 30

Figure 10. Reaction rule move out of base for scenario 2.

Rationale: the rule allows to move a UAV out of base.
4. The download data reaction rule:

Figure 11. Reaction rule download data for scenario 2.

Rationale: the rule is intended to allow a UAV to download information from an
information source.

5. The deploy data reaction rule:

Sensors 2021, 21, 622 21 of 30

Figure 12. Reaction rule deploy data for scenario 2.

Rationale: the rule is intended to allow UAVs to secure information in a base.
6. The deactivate uav reaction rule:

Figure 13. Reaction rule deactivate uav for scenario 2.

Rationale: the rule is intended to allow a UAV to get deactivated. We will consider the
mission be finished when all information are secured and all UAVs are deactivated.

Table 5. A list of controls with their respective interpretations.

Control Interpretation

A A map area
UAV An active Unmanned Aerial Vehicle

DUAV An inactive Unmanned Aerial Vehicle
B The base

DS A source of information
DU A unit (piece) of information

Initial states of the system in each variant are presented in Figure 14a–d. The number-
ing corresponds to the sequence of the variants descriptions above.

Sensors 2021, 21, 622 22 of 30

(a) First variant of the initial state for scenario 2 (b) Second variant of the initial state for scenario 2

(c) Third variant of the initial state for scenario 2 (d) Fourth variant of the initial state for scenario 2

Figure 14. Initial states of scenario 2 in all variants.

3.2.2. State Space

From the above reactive systems (each generated from different initial state), we can
generate four state spaces. Due to their large size (see Figure 15), their details, such as graph-
ical representation and transition matrices, will be defined only for the first
(smallest) variant.

(a) Number of states in respect to the variant of scenario 2 (b) Number of transitions in respect to the variant of scenario 2
Figure 15. Size of scenario 2 system for all its variants.

A relation between variant of scenario 2 and its size is depicted in Figure 15. The state
space generated from TTS of the first variant of scenario 2 is shown in Figure 16.

Sensors 2021, 21, 622 23 of 30

Figure 16. The state space of the first variant of scenario 2.

Mission progress functions definitions are listed below.

f1([⟨(a, x)⟩, Ω], t) = [⟨(a, x + 1)⟩, Ω∪ {mibt+1}]

f2([⟨(a, x)⟩, Ω], t) = [⟨(a, x + 1)⟩, Ω∪ {movt+1}]
f3([⟨(a, x)⟩, Ω], t) = [⟨(a, x + 1)⟩, Ω∪ {deat+1}]
f4([⟨(a, x)⟩, Ω], t) = [⟨(a, x + 1)⟩, Ω∪ {mobt+1}]
f5([⟨(a, x)⟩, Ω], t) = [⟨(a, x + 1)⟩, Ω∪ {dodt+1}]
f6([⟨(a, x)⟩, Ω], t) = [⟨(a, x + 1)⟩, Ω∪ {movt+1}]
f7([⟨(a, x)⟩, Ω], t) = [⟨(a, x + 1)⟩, Ω∪ {movt+1}]
f8([⟨(a, x)⟩, Ω], t) = [⟨(a, x + 1)⟩, Ω∪ {mibt+1}]
f9([⟨(a, x)⟩, Ω], t) = [⟨(a, x + 1)⟩, Ω∪ {movt+1}]
f10([⟨(a, x)⟩, Ω], t) = [⟨(a, x + 1)⟩, Ω∪ {dedt+1}]
f11([⟨(a, x)⟩, Ω], t) = [⟨(a, x + 1)⟩, Ω∪ {mobt+1}]
f12([⟨(a, x)⟩, Ω], t) = [⟨(a, x + 1)⟩, Ω∪ {deat+1}]
f13([⟨(a, x)⟩, Ω], t) = [⟨(a, x + 1)⟩, Ω∪ {mobt+1}]
f14([⟨(a, x)⟩, Ω], t) = [⟨(a, x + 1)⟩, Ω∪ {movt+1}]
f15([⟨(a, x)⟩, Ω], t) = [⟨(a, x + 1)⟩, Ω∪ {mibt+1}]
f16([⟨(a, x)⟩, Ω], t) = [⟨(a, x + 1)⟩, Ω∪ {movt+1}]

Table 6 shows the mapping of labels of changes in the system to reaction rules that led
to the changes between states.

Sensors 2021, 21, 622 24 of 30

Table 6. A mapping of system changes labels to corresponding reaction rules.

Label of A Change in A System Corresponding Reaction Rule

mov move
mib move into base
mob move out of base
ded deploy data
dod download data
dea deactivate uav

3.2.3. Behavior Policy

Similarly as in Section 3.2.2, we will limit ourselves to the first variant of scenario 2.
The Ti,j sets for the first variant of scenario 2 are listed in Table A3 in Appendix B.
Assuming, the initial state is represented by the vertex with id 0, the M0

K matrix is of
the form

M0
K = [[⟨(1, 0)⟩,∅]0 0 0 0 0 0 0 0 0 0]

We will omit the definition of Mt
F, hoping that its form is obvious knowing the sets

presented in Appendix B.
If the final state is represented by the vertex with id 8, then the first walk will be found

in M6
K matrix and it will be of the form

0
mov1
−−−→ 2

dod2
−−−→ 4

mov3
−−−→ 5

mib4
−−−→ 6

ded5
−−−→ 7

dea6
−−−→ 8

4. Discussion

In this paper, we have presented a method of modeling a UAV swarm mission using
bigraphs with tracking as well as a method of generating a behavior policy for elements of
the swarm. The proposed method has the desired properties described in the introduction.
One of the main advantages of the proposed method is the possibility to fully automate the
process of determining the behavior of swarm elements from the phase of defining mission
requirements (as bigraphical patterns) and UAV capabilities. The proposed method is
flexible in terms of using it for different swarm tasks; it is also modular and capable of
generating behavior policies on multiple levels of abstractions. Because of its modularity,
we can modify some of the method’s modules while leaving the rest unchanged. For ex-
ample, there may be a need of defining a function to evaluate walks generated in the last
stage of a design process. It is possible without modifying neither the way the mission
is modeled (the previous step) nor how the schedule of actions is constructed based on
the result walk (the next step). The method was verified on two scenarios. Additionally,
a software to verify the calculated results has been developed.

One of the conclusions from the work is the observation of how quickly a system’s
size is increasing. In case of a real-world scenario, we can safely assume a size of the system
to be in the order of millions of states and dozens of millions of transitions. Based on our
tests, current software is capable to effectively support a designer in a process of modeling
a system consisting of up to dozens of thousands of states. Because of this, it is reasonable
to point out that in order to use our method for a real world use case it is needed to
develop more efficient implementations of operations on bigraphs and operations defined
in this article. To the best of our knowledge, none of the existing methods of design of
UAV swarms are universal, they are either suitable for a specific task or a single group
of them (such as spatial organization or decision-making) at best. Despite classifying our
method as problem-agnostic we are aware that assuming that system’s change can only
be triggered by its agents and non-adaptiveness of behavior policy are quite restrictive.
This is a limitation of its applicability to tasks from spatial organization or collective motion
category. Some of the tasks in the latter category may regard situations where environment
can significantly change regardless of UAVs actions, an example of this may be a search and
rescue operation considered as a special case of foraging task. In such cases, our method is

Sensors 2021, 21, 622 25 of 30

not suitable in its current form. Summarizing, we can recommend our approach to tasks in
spatial organization category in general and a subset of collective motion tasks. Decision-making
tasks are generally unsuitable to be solved by our method because the behavior policy
it generates is non-adaptive and most of the decisions in this category concern events
occurring at hand.

Currently, we are unable to quantitatively compare our method to any alternatives.
The key factor that may determine whether to choose our approach over others may be
the need of reusability. The method presented in this paper generates a behavior policy
for a specific task and is obviously inferior in situations where there is a need for generic
behavior that is adjustable with some parameters.

We can distinguish the following goals for future work.

• Developing a method of policy behavior generation that takes into account agents
that are beyond control of the designer. An example of such agent might be a person.

• Developing a method of behavior policy generation that considers indeterministic
nature of agents’ actions.

• Developing a method of behavior policy generation for missions with a variable
number of agents over their course.

• More efficient software providing the functionality described in this paper. The current
version of the software should be considered as proof-of-concept.

Author Contributions: Conceptualization, P.C. and Z.Z.; methodology, P.C. and Z.Z.; software, P.C.;
validation, P.C.; formal analysis, P.C.; investigation, P.C.; resources, P.C.; data curation, P.C.; writing—
original draft preparation, P.C.; writing—review and editing, Z.Z.; visualization, P.C.; supervision,
Z.Z.; project administration, Z.Z. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

Sensors 2021, 21, 622 26 of 30

Appendix A

Table A1. The Tracking Transition System for scenario 1. Each row defines a single transition in
the system.

Agt Lab Agt Par Res

uta mov atx {0, 1, 3}
{(0, 0), (1, 3),

(2, 1), (3, 2),

(4, 4), (5, 5)}

utb mov atx {0, 2, 3}
{(0, 0), (1, 3),

(2, 2), (3, 1),

(4, 4), (5, 5)}

uta mov atx {1, 2, 4}
{(0, 1), (1, 4),

(2, 2), (3, 0),

(4, 3), (5, 5)}

atb mov atx {0, 3, 1}
{(0, 4), (1, 1),

(2, 3), (3, 2),

(4, 0), (5, 5)}

uta mov atx {1, 2, 0}
{(0, 0), (1, 2),

(2, 3), (3, 1),

(4, 4), (5, 5)}

utb mov atx {1, 2, 4}
{(0, 1), (1, 0),

(2, 3), (3, 4),

(4, 2), (5, 5)}

Sensors 2021, 21, 622 27 of 30

Table A1. Cont.

Agt Lab Agt Par Res

uta mov atx {0, 3, 1}
{(0, 4), (1, 1),

(2, 2), (3, 3),

(4, 0), (5, 5)}

utb mov atx {1, 2, 0}
{(0, 0), (1, 3),

(2, 2), (3, 1),

(4, 4), (5, 5)}

utb mov atx {3, 4, 0}
{(0, 1), (1, 0),

(2, 4), (3, 2),

(4, 3), (5, 5)}

uta mov atx {1, 2, 0}
{(0, 3), (1, 0),

(2, 2), (3, 4),

(4, 1), (5, 5)}

mov atx2y {1, 3, 2, 5}
{(0, 1), (1, 5),

(2, 3), (3, 2),

(4, 4), (5, 0)}

uta mov atx {1, 3, 4}
{(0, 4), (1, 1),

(2, 2), (3, 3),

(4, 0), (5, 5)}

Sensors 2021, 21, 622 28 of 30

Table A1. Cont.

Agt Lab Agt Par Res

uta mov atx {1, 3, 0}
{(0, 0), (1, 1),

(2, 2), (3, 3),

(4, 4), (5, 5)}

utb mov atx {1, 2, 0}
{(0, 0), (1, 1),

(2, 3), (3, 2),

(4, 4), (5, 5)}

utb mov atx {1, 2, 4}
{(0, 4), (1, 1),

(2, 3), (3, 2),

(4, 0), (5, 5)}

Appendix B

Table A2. Elements of the T set for scenario 1.

T0,0 = { fnull} T0,1 = { f1} T0,2 = { f f2} T0,3 = { fnull} T0,4 = { fnull} T0,5 = { fnull}
T1,0 = { f5} T1,1 = { fnull} T1,2 = { fnull} T1,3 = { f3} T1,4 = { f4} T1,5 = { fnull}
T2,0 = { f8} T2,1 = { fnull} T2,2 = { fnull} T2,3 = { f6} T2,4 = { f7} T2,5 = { fnull}

T3,0 = { fnull} T3,1 = { f10} T3,2 = { f9} T3,3 = { fnull} T3,4 = { fnull} T3,5 = { fnull}
T4,0 = { fnull} T4,1 = { f14, f15} T4,2 = { f12, f13} T4,3 = { fnull} T4,4 = { fnull} T4,5 = { f11}
T5,0 = { fnull} T5,1 = { fnull} T5,2 = { fnull} T5,3 = { fnull} T5,4 = { fnull} T5,5 = { fnull}

Sensors 2021, 21, 622 29 of 30

Table A3. Elements of the T set for scenario 2.

T0,0 =

{ fn}
T0,1 =

{ f1}
T0,2 =

{ f2}
T0,3 =

{ fn}
T0,4 =

{ fn}
T0,5 =

{ fn}
T0,6 =

{ fn}
T0,7 =

{ fn}
T0,8 =

{ fn}
T0,9 =

{ fn}
T0,10 =

{ fn}
T1,0 =

{ f4}
T1,1 =

{ fn}
T1,2 =

{ fn}
T1,3 =

{ f3}
T1,4 =

{ fn}
T1,5 =

{ fn}
T1,6 =

{ fn}
T1,7 =

{ fn}
T1,8 =

{ fn}
T1,9 =

{ fn}
T1,10 =

{ fn}
T2,0 =

{ f6}
T2,1 =

{ fn}
T2,2 =

{ fn}
T2,3 =

{ fn}
T2,4 =

{ f5}
T2,5 =

{ fn}
T2,6 =

{ fn}
T2,7 =

{ fn}
T2,8 =

{ fn}
T2,9 =

{ fn}
T2,10 =

{ fn}
T3,0 =

{ fn}
T3,1 =

{ fn}
T3,2 =

{ fn}
T3,3 =

{ fn}
T3,4 =

{ fn}
T3,5 =

{ fn}
T3,6 =

{ fn}
T3,7 =

{ fn}
T3,8 =

{ fn}
T3,9 =

{ fn}
T3,10 =

{ fn}
T4,0 =

{ fn}
T4,1 =

{ fn}
T4,2 =

{ fn}
T4,3 =

{ fn}
T4,4 =

{ fn}
T4,5 =

{ f7}
T4,6 =

{ fn}
T4,7 =

{ fn}
T4,8 =

{ fn}
T4,9 =

{ fn}
T4,10 =

{ fn}
T5,0 =

{ fn}
T5,1 =

{ fn}
T5,2 =

{ fn}
T5,3 =

{ fn}
T5,4 =

{ f9}
T5,5 =

{ fn}
T5,6 =

{ f8}
T5,7 =

{ fn}
T5,8 =

{ fn}
T5,9 =

{ fn}
T5,10 =

{ fn}
T6,0 =

{ fn}
T6,1 =

{ fn}
T6,2 =

{ fn}
T6,3 =

{ fn}
T6,4 =

{ fn}
T6,5 =

{ f11}
T6,6 =

{ fn}
T6,7 =

{ f10}
T6,8 =

{ fn}
T6,9 =

{ fn}
T6,10 =

{ fn}
T7,0 =

{ fn}
T7,1 =

{ fn}
T7,2 =

{ fn}
T7,3 =

{ fn}
T7,4 =

{ fn}
T7,5 =

{ fn}
T7,6 =

{ fn}
T7,7 =

{ fn}
T7,8 =

{ f12}
T7,9 =

{ f13}
T7,10 =

{ fn}
T8,0 =

{ fn}
T8,1 =

{ fn}
T8,2 =

{ fn}
T8,3 =

{ fn}
T8,4 =

{ fn}
T8,5 =

{ fn}
T8,6 =

{ fn}
T8,7 =

{ fn}
T8,8 =

{ fn}
T8,9 =

{ fn}
T8,10 =

{ fn}
T9,0 =

{ fn}
T9,1 =

{ fn}
T9,2 =

{ fn}
T9,3 =

{ fn}
T9,4 =

{ fn}
T9,5 =

{ fn}
T9,6 =

{ fn}
T9,7 =

{ f15}
T9,8 =

{ fn}
T9,9 =

{ fn}
T9,10 =

{ f14}
T10,0 =

{ fn}
T10,1 =

{ fn}
T10,2 =

{ fn}
T10,3 =

{ fn}
T10,4 =

{ fn}
T10,5 =

{ fn}
T10,6 =

{ fn}
T10,7 =

{ fn}
T10,8 =

{ fn}
T10,9 =

{ f16}
T10,10 =

{ fn}

References
1. Wang, J.; Tang, Y.; Kavalen, J.; Abdelzaher, A.F.; Pandit, S.P. Autonomous UAV Swarm: Behavior Generation and Simulation.

In Proceedings of the 2018 International Conference on Unmanned Aircraft Systems (ICUAS), Pearl Street Dallas, TX, USA,
12–15 June 2018; pp. 1–8. [CrossRef]

2. Kolling, A.; Walker, P.; Chakraborty, N.; Sycara, K.; Lewis, M. Human Interaction with Robot Swarms: A Survey. IEEE Trans.
Hum. Mach. Syst. 2015, 46, 1–18. [CrossRef]

3. Hamann, H. Swarm Robotics: A Formal Approach; Springer International Publishing AG: Cham, Switzerland, 2018. [CrossRef]
4. Sahin, E. Swarm Robotics: From Sources of Inspiration to Domains of Application. Swarm Robot. 2005, 3342, 10–20. [CrossRef]
5. Nedjah, N.; Junior, L.S. Review of methodologies and tasks in swarm robotics towards standardization. Swarm Evol. Comput.

2019, 50, 100565. [CrossRef]
6. Couzin, I.D.; Krause, J.; James, R.; Ruxton, G.D.; Franks, N.R. Collective Memory and Spatial Sorting in Animal Groups. J. Theor.

Biol. 2002, 218, 1–11. [CrossRef] [PubMed]
7. Floreano, D.; Mattiussi, C. Bio-Inspired Artificial Intelligence: Theories, Methods, and Technologies; The MIT Press: Cambridge, MA,

USA, 2008.
8. Byrski, A.; Kisiel-Dorohinicki, M. Evolutionary Multi-Agent Systems From Inspirations to Applications; Springer: Cham, Switzer-

land, 2017. [CrossRef]
9. Bullo, F.; Cortés, J.; Martínez, S. Distributed Control of Robotic Networks; Applied Mathematics Series. Available online:

http://coordinationbook.info (accessed on 15 January 2021).
10. Schweitzer, F. Brownian Agent Models for Swarm and Chemotactic Interaction Brownian Agents. In Proceedings of the Fifth

German Workshop on Artificial Life, Lübeck, Germany, 18–20 March 2002; pp. 181–190.
11. Abelson, H.; Allen, D.; Coore, D.; Hanson, C.; Homsy, G.; Knight, T.F.T.; Nagpal, R.; Rauch, E.; Sussman, G.; Weiss, R. Amorphous

Computing. Commun. ACM 2001, 43. [CrossRef]
12. Bachrach, J.; McLurkin, J.; Grue, A. Protoswarm: A Language for Programming Multi-Robot Systems Using the Amorphous

Medium Abstraction. In Proceedings of the 7th International Joint Conference on Autonomous Agents and Multiagent Systems,
AAMAS ’08, Estoril, Portugal, 12–16 May 2008; International Foundation for Autonomous Agents and Multiagent Systems:
Richland, SC, USA, 2008; Volume 3, pp. 1175–1178.

http://doi.org/10.1109/ICUAS.2018.8453464
http://dx.doi.org/10.1109/THMS.2015.2480801
http://dx.doi.org/10.1007/978-3-319-74528-2
http://dx.doi.org/10.1007/978-3-540-30552-1_2
http://dx.doi.org/10.1016/j.swevo.2019.100565
http://dx.doi.org/10.1006/jtbi.2002.3065
http://www.ncbi.nlm.nih.gov/pubmed/12297066
http://dx.doi.org/10.1007/978-3-319-51388-1
 http://coordinationbook.info
http://dx.doi.org/10.1145/332833.332842

Sensors 2021, 21, 622 30 of 30

13. Beal, J.; Viroli, M. Aggregate Programming: From Foundations to Applications. In Formal Methods for the Quantitative Evaluation of
Collective Adaptive Systems, Proceedings of the 16th International School on Formal Methods for the Design of Computer, Communication,
and Software Systems, SFM 2016, Bertinoro, Italy, 20–24 June 2016; Springer International Publishing: Cham, Switzerland, 2016;
pp. 233–260. [CrossRef]

14. Damiani, F.; Viroli, M.; Pianini, D.; Beal, J. Code Mobility Meets Self-organisation: A Higher-Order Calculus of Computational
Fields. In Formal Techniques for Distributed Objects, Components, and Systems; Graf, S., Viswanathan, M., Eds.; Springer International
Publishing: Cham, Switzerland, 2015; pp. 113–128.

15. Pianini, D.; Viroli, M.; Beal, J. Protelis: Practical aggregate programming. In Proceedings of the ACM Symposium on Applied
Computing, Salamanca, Spain, 13–17 April 2015; pp. 1846–1853.

16. Çelikkanat, H.; Sahin, E. Steering self-organized robot flocks through externally guided individuals. Neural Comput. Appl. 2010,
19, 849–865. [CrossRef]

17. Dudek, G.; Jenkin, M.; Milios, E.; Wilkes, D. A taxonomy for swarm robots. In Proceedings of the 1993 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS ’93), Yokohama, Japan, 26–30 July 1993; Volume 1, pp. 441–447. [CrossRef]

18. Bayindir, L.; Sahin, E. A review of studies in swarm robotics. Turk. J. Electr. Eng. Comput. Sci. 2007, 15, 115–147.
19. Brambilla, M.; Ferrante, E.; Birattari, M.; Dorigo, M. Swarm Robotics: A Review from the Swarm Engineering Perspective. Swarm

Intell. 2013, 7, 1–41. [CrossRef]
20. Mermoud, G.; Upadhyay, U.; Evans, W.C.; Martinoli, A. Top-Down vs. Bottom-Up Model-Based Methodologies for Distributed

Control: A Comparative Experimental Study. In Experimental Robotics: The 12th International Symposium on Experimental Robotics;
Springer: Berlin/Heidelberg, Germany, 2014; pp. 615–629. [CrossRef]

21. Dorigo, M.; Tuci, E.; Groß, R.; Trianni, V.; Labella, T.H.; Nouyan, S.; Ampatzis, C.; Deneubourg, J.L.; Baldassarre, G.; Nolfi, S.; et al.
The SWARM-BOTS Project. In Swarm Robotics; Şahin, E., Spears, W.M., Eds.; Springer: Berlin/Heidelberg, Germany, 2005;
pp. 31–44.

22. Dorigo, M. Swarm-Bots and Swarmanoid: Two Experiments in Embodied Swarm Intelligence. In Proceedings of the 2009
IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology, Milan, Italy, 15–18
September 2009; Volume 2, pp. 2–3. [CrossRef]

23. Rubenstein, M.; Ahler, C.; Hoff, N.; Cabrera, A.; Nagpal, R. Kilobot: A low cost robot with scalable operations designed for
collective behaviors. Robot. Auton. Syst. 2014, 62, 966–975. [CrossRef]

24. Pinciroli, C.; Trianni, V.; O’Grady, R.; Pini, G.; Brutschy, A.; Brambilla, M.; Mathews, N.; Ferrante, E.; Di Caro, G.; Ducatelle, F.; et al.
ARGoS: A Modular, Parallel, Multi-Engine Simulator for Multi-Robot Systems. Swarm Intell. 2012, 6, 271–295. [CrossRef]

25. Rohmer, E.; Singh, S.P.N.; Freese, M. CoppeliaSim (formerly V-REP): A Versatile and Scalable Robot Simulation Framework.
In Proceedings of the International Conference on Intelligent Robots and Systems (IROS), Tokyo, Japan, 3–7 November 2013.

26. Milner, R. The Space and Motion of Communicating Agents; Cambridge University Press: Cambridge, UK, 2009; Volume 20.
[CrossRef]

27. Krivine, J.; Milner, R.; Troina, A. Stochastic Bigraphs. Electron. Notes Theor. Comput. Sci. 2008, 218, 73–96. [CrossRef]
28. Sevegnani, M.; Calder, M. Bigraphs with sharing. Theor. Comput. Sci. 2015, 577, 43–73. [CrossRef]
29. Benford, S.; Calder, M.; Rodden, T.; Sevegnani, M. On Lions, Impala, and Bigraphs: Modelling Interactions in Physical/Virtual

Spaces. ACM Trans. Comput. Hum. Interact. 2016, 23. [CrossRef]
30. Mansutti, A.; Miculan, M.; Peressotti, M. Multi-agent Systems Design and Prototyping with Bigraphical Reactive Systems.

In Distributed Applications and Interoperable Systems; Magoutis, K., Pietzuch, P., Eds.; Springer: Berlin/Heidelberg, Germany, 2014;
pp. 201–208.

31. Taki, A.; Dib, E.; Sahnoun, Z. Formal Specification of Multi-Agent System Architecture. In Proceedings of the ICAASE 2014
International Conference on Advanced Aspects of Software Engineering, Constantine, Algeria, 2–4 November 2014.

32. Pereira, E.; Potiron, C.; Kirsch, C.M.; Sengupta, R. Modeling and controlling the structure of heterogeneous mobile robotic
systems: A bigactor approach. In Proceedings of the 2013 IEEE International Systems Conference (SysCon), Orlando, FL, USA,
15–18 April 2013; pp. 442–447. [CrossRef]

33. Agha, G. Actors: A Model of Concurrent Computation in Distributed Systems; MIT Press: Cambridge, MA, USA, 1986.
34. Gassara, A.; Bouassida Rodriguez, I.; Jmaiel, M.; Drira, K. Executing bigraphical reactive systems. Discret. Appl. Math. 2019,

253, 73–92. [CrossRef]
35. Sevegnani, M.; Calder, M. BigraphER: Rewriting and Analysis Engine for Bigraphs. In Computer Aided Verification; Chaudhuri, S.,

Farzan, A., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 494–501.
36. Perrone, G.; Debois, S.; Hildebrandt, T. A model checker for Bigraphs. In Proceedings of the ACM Symposium on Applied

Computing, Riva, Trento, Italy, 26–30 March 2012. [CrossRef]
37. Brambilla, M.; Brutschy, A.; Dorigo, M.; Birattari, M. Property-Driven Design for Robot Swarms: A Design Method Based on

Prescriptive Modeling and Model Checking. ACM Trans. Auton. Adapt. Syst. 2014, 9. [CrossRef]
38. Cybulski, P. Tracking_Bigraph Library. Available online: https://github.com/zajer/trs (accessed on 15 January 2021).
39. Cybulski, P. Exemplary Implementation of A Software to Transform TBRS into State Space. Available online: https://github.

com/zajer/trs-ssp-bridge (accessed on 5 January 2021).
40. Cybulski, P. A Library for Calculating State Space Policies. Available online: https://github.com/zajer/state_space_policy

(accessed on 15 January 2021).

http://dx.doi.org/10.1007/978-3-319-34096-8_8
http://dx.doi.org/10.1007/s00521-010-0355-y
http://dx.doi.org/10.1109/IROS.1993.583135
http://dx.doi.org/10.1007/s11721-012-0075-2
http://dx.doi.org/10.1007/978-3-642-28572-1_42
http://dx.doi.org/10.1109/WI-IAT.2009.377
http://dx.doi.org/10.1016/j.robot.2013.08.006
http://dx.doi.org/10.1007/s11721-012-0072-5
http://dx.doi.org/10.1017/CBO9780511626661.
http://dx.doi.org/10.1016/j.entcs.2008.10.006
http://dx.doi.org/10.1016/j.tcs.2015.02.011
http://dx.doi.org/10.1145/2882784
http://dx.doi.org/10.1109/SysCon.2013.6549920
http://dx.doi.org/10.1016/j.dam.2018.07.006
http://dx.doi.org/10.1145/2245276.2231985
http://dx.doi.org/10.1145/2700318
https://github.com/zajer/trs
https://github.com/zajer/trs-ssp-bridge
https://github.com/zajer/trs-ssp-bridge
https://github.com/zajer/state_space_policy

	Introduction
	Methods and Materials
	Bigraphs
	State Space
	Behavior Policy

	Results
	Introductory Scenario
	Bigraphical Reactive System
	State Space
	Behavioral Policy

	More Advanced Example
	Bigraphical Reactive System
	State Space
	Behavior Policy

	Discussion
	
	
	References

