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Abstract: In this paper, a computer-aided training method for hyperparameter selection of limited
data X-ray computed tomography (XCT) reconstruction was proposed. The proposed method
employed the ant colony optimisation (ACO) approach to assist in hyperparameter selection for
the adaptive-weighted projection-controlled steepest descent (AwPCSD) algorithm, which is a total-
variation (TV) based regularisation algorithm. During the implementation, there was a colony of
artificial ants that swarm through the AwPCSD algorithm. Each ant chose a set of hyperparameters
required for its iterative CT reconstruction and the correlation coefficient (CC) score was given for
reconstructed images compared to the reference image. A colony of ants in one generation left a
pheromone through its chosen path representing a choice of hyperparameters. Higher score means
stronger pheromones/probabilities to attract more ants in the next generations. At the end of the
implementation, the hyperparameter configuration with the highest score was chosen as an optimal
set of hyperparameters. In the experimental results section, the reconstruction using hyperparameters
from the proposed method was compared with results from three other cases: the conjugate gradient
least square (CGLS), the AwPCSD algorithm using the set of arbitrary hyperparameters and the cross-
validation method.The experiments showed that the results from the proposed method were superior
to those of the CGLS algorithm and the AwPCSD algorithm using the set of arbitrary hyperparameters.
Although the results of the ACO algorithm were slightly inferior to those of the cross-validation
method as measured by the quantitative metrics, the ACO algorithm was over 10 times faster than
cross—Validation. The optimal set of hyperparameters from the proposed method was also robust
against an increase of noise in the data and can be applicable to different imaging samples with
similar context. The ACO approach in the proposed method was able to identify optimal values
of hyperparameters for a dataset and, as a result, produced a good quality reconstructed image
from limited number of projection data. The proposed method in this work successfully solves a
problem of hyperparameters selection, which is a major challenge in an implementation of TV based
reconstruction algorithms.

Keywords: hyperparameter tuning; total variation (TV) regularization; iterative reconstruction;
ant colony optimization; limited data X-ray CT; computer-aided hyperparameter selection; X-ray
computed tomography; image reconstruction

1. Introduction

Despite the many advantages of using X-ray computed tomography (XCT) as a tool
for medical analysis, the high radiation dose delivered to the patient during clinical exams
remains a major concern. Reducing the radiation dose of XCT imaging has become a
significant research topic. This can be implemented in two methods: one is to lower the
photon flux in the XCT data acquisition process [1], the other is to reconstruct an XCT
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image from limited projection data [2,3]. The first method results in a high level of noise in
the sinogram, whereas results from the second method suffer from artefacts when using
conventional analytical reconstruction methods such as the filtered back-projection (FBP)
algorithm [4]. Even though iterative methods are proven in many studies to produce
good quality images when the projection data is not theoretically sufficient for exact
image reconstruction [5,6], their implementations are mathematically more complex and
computationally costly than analytical methods. When it comes to the success of limited
data XCT, the total variation (TV) image reconstruction methods are shown to be superior
in terms of handling the missing data. Efficient implementation of TV algorithm and their
hyperparameter selection are critical for these algorithms to provide all the benefits to
limited data CT. Missing data could happen for many reasons, but in medical application
if we can produce the same images with fewer projections this could lead to lower dose to
the patient.

In our previous study [7], the adaptive-weighted projection-controlled steepest de-
scent (AwPCSD) algorithm was proposed, which implements the edge-preserving function
for cone-beam XCT (CBCT) reconstruction with limited data. This algorithm is able to ad-
dress the problem of over-smoothing in the reconstructed image when using conventional
TV norm as a regularization term. It also requires fewer hyperparameters for the imple-
mentation than the adaptive-steepest-descent projection onto convex sets (ASD-POCS) [8]
approach, which significantly reduces the hyperparameter space. Apart from that, the work
also pointed out how sensitive each hyperparameter is, and which ones affect the quality
of the reconstructed image more than others. Some suggestions on the appropriate values
for some hyperparameters were also given. The tuning of hyperparameters for TV-based
XCT reconstruction is tedious work that requires an expert/experienced user to know
which hyperparameter is needed to be adjusted in which direction. In addition, most of the
hyperparameters are data-specific which makes it almost impossible to apply the same set
of hyperparameters to data with different scanning scenarios, let alone different anatomical
sites. Manual adjusting of the hyperparameters for iterative algorithms is commonly found
in many studies [9,10]; a Freund and Shapire’s hedge approach was shown in [11].

To alleviate the difficulty of hyperparameter tuning for TV-based reconstruction
algorithms, it is desirable to have an automatic algorithm that can identify an optimal set
of hyperparameters. This has been an active area of research over the years and there have
been many studies which have attempted to develop an automated hyperparameter tuning
using different methods. Recently, Shen et al. [12] considered the case of iterative XCT
reconstruction with TV minimization where each entry of TV hyperparameter controls the
weight of an image pixel. They proposed a hyperparameter tuning policy network (PTPN)
that employs deep reinforcement learning to train a system that can intelligently determine
the direction and magnitude of each TV hyperparameter by observing an input image
patch. In their study, the experiment was performed on fan-beam CT scanning geometry
with 180 projections equally spaced over a 2π angular range.

The ant colony optimisation (ACO) approach is a probabilistic technique, which is
used in computer science to solve computational problems such as finding good paths in
discrete graphs [13]. Its use in hyperparameter optimisation in XCT reconstruction context
is not extensive. Zheng et al. [14] employed this approach to learn the best hyperparameter
setting in their iterative algorithm, which consisted of the ordered subset simultaneous
iterative reconstruction technique (OS-SIRT) algorithm to constrain a data fidelity and a 2D
filter with an unsharp masking for regularisation.

The contributions of this work can be explained as follows:

• The ACO approach for the complex non-linear problem of TV hyperparameter se-
lection was used to select the optimal hyperparameters for the TV-regularised recon-
struction algorithm. This work uses the AwPCSD algorithm [7] as a TV regularized
reconstruction method, but any other TV regularizing algorithm can be tuned using
the exact same approach. The reason for choosing this algorithm is that the AwPCSD
algorithm implements the adaptive-weighted TV regularisation, which is able to pre-
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serve the edges of the reconstructed image better than alternatives with less sensitive
hyperparameters required [7].

• The ACO approach in the proposed algorithm was able to identify optimal hyperpa-
rameters appropriate for a dataset and produce a good quality reconstructed image
using limited numbers of projection data. The whole process does not require any
knowledge about the iterative reconstruction algorithm from the user, nor the inter-
vention during its implementation.

• The reconstructed image from the proposed algorithm was compared with the results
from other ways of choosing hyperparameters and the conjugate gradient least square
(CGLS) algorithm [15], visually and quantitatively. In addition, the optimal set of
hyperparameters from the proposed algorithm was used to reconstruct images from
the projection data with different levels of noise and different angle arrangements. The
same set of experiments was also tested with different imaging samples to demonstrate
the robustness of the proposed algorithm.

The main contribution of the paper is to develop a robust computer-aided and auto-
matic parameter optimization in a TV-based XCT algorithm. The organization of this paper
is as follows: in Section 2, the method of adaptive weighted TV minimization approach
used to reconstruct image in this study is explained, as well as the hyperparameters re-
quired to implement the AwPCSD algorithm. The concept of the ACO approach to select
the hyperparameters is also introduced in this section. In the first part of Section 3, the
results from the training dataset of the 4D Extended Cardiac-Torso (XCAT) phantom [16,17]
are presented. Then, the optimal setting of hyperparameters obtained from the training
stage is tested with different samples of the XCAT phantom that have been parametrised
differently. The results from the testing data are presented in the second part of Section 3 to
show the robustness of the proposed algorithm. In Section 4, the conclusion is presented.

2. Background and Related Works

Over the past few years, a number of regularization terms have been introduced for
under-sampled or noisy measurements such as TV, tight frame (TF) and nonlocal means
(NLM) [12]. Minimization of TV norm as a regularization term is a common approach in
many studies such as [2,8,18,19]. In their studies, a constrained TV minimization algorithm
for image reconstruction in cone-beam CT is proposed. However, the main disadvantage of
using TV as a regularization term is the over-smoothing of the reconstructed image which
leads to the loss of low-contrast information [18,19]. Another concern of the TV-based
regularization algorithms is that they are very sensitive to the hyperparameters, which
are used to control the weights of the objective functions in the TV optimization problems.
It is of the utmost importance to get these hyperparameters right in order to achieve the
desired quality of image output.

2.1. The Total Variation Reconstruction Method

A typical minimization problem of iterative XCT reconstruction can be proposed as:

x∗ = argminx||Ax − b||2 + G(x) (1)

where x∗ is an approximated solution, x is a vector representing a 3D image voxel in
lexicographical order, A is a system matrix describing the intersections between each X-ray
and the image voxels. Vector b represents the projection data measured on the image
detectors at various projections. The first term of Equation (1) is the data consistency
constraint which minimizes the discrepancy between a forward projection of the image to
be reconstructed and measured projection data. The second term, G(x), is a regularization
term, which reflects a priori information of the desired image. The regularization is added
to reduce the space of possible solutions. As a regularization term in this study, we are
interested in the minimization of the adaptive weighted TV (AwTV) norm of the image,
as proposed by Liu et al. [19]. When the local voxel intensity difference is small, a strong
weight can be given to emphasize the TV minimization of the non-edge region. Conversely,
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a weaker weight may be given for a larger voxel intensity difference to preserve the edge
region of the image to be reconstructed.

The TV algorithm used is the AwPCSD algorithm that was developed earlier [7,8,11].
This algorithm is available in an open access software TIGRE toolbox: a MATLAB/Python
GPU toolbox for X-ray CT image reconstruction [20]. The AwPCSD algorithm was de-
veloped to reconstruct the volumetric image from cone-beam CT projection data. The
algorithm required two phases implemented alternately until the stopping criterion is
satisfied.

The first phase is the iteration of the simultaneous algebraic reconstruction technique
(SART) [21] to enforce the data-consistency according to the following two constraints:

I. data fitting condition
|Ax − b| ≤ ε (2)

where ε is an error bound that defines the amount of acceptable error between pre-
dicted and observed projection data.

II. non-negativity constraint
x ≥ 0 (3)

The second phase is TV optimization, which is performed by the adaptive steepest
descent to minimize the AwTV norm of the image. The step size in TV optimization phase
is automatically computed in the AwPCSD algorithm. The AwPCSD algorithm is able to
preserve the edges of the reconstructed image with small numbers of hyperparameters
to calibrate. The following pseudo-code in Algorithm 1 summarizes the structure of the
AwPCSD algorithm.

Algorithm 1: Pseudo code for the Adaptive-weighted Projection-Controlled Steepest Descent (AwPCSD) algorithm

Inputs: x0, β, βred, ε, ng, δ;
Procedure:
Set w = 0, η = 1, k = 1;
while stopping criteria not met

for w = 1: wt do
xSART = x(w);
∇(w)

p = ||AxSART − b||;
if (∇(w)

p
2 > ε) then

for nangles do

xSART = xSART + βV−1 ATW
(→

b − A
→
x
)

;

end for
end if

xPOCS = max(0, xSART);
β = β× βred ;
n = 0;

x(0)AwTV = xPOCS;

if (w > 0 and ∇(1)
p

2 > ε) then

η = k
(
∇(w)

p

∇(I)
p

)
;

end if

s(n) =
(

∂||x(n)||AwTV
∂x(n)

)
;

for number of sub-iteration = 1:ng do
xn+1

AwTV = xn
AwTV − η × s(n)

||s(n)|| ;
end for

end for
x(w) = xnt

AwTV ;
Until stopping criteria are met
end while
Output: x(w)
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2.2. Hyperparameters for Total Variation-Based Reconstruction Algorithms

The AwPCSD algorithm [7,11] requires the following five hyperparameters to imple-
ment the algorithm:

2.2.1. Data-Inconsistency-Tolerance Parameter (ε)

The ε hyperparameter specifies the maximum L2 error to accept image as valid. As
expressed in Equation (2), the value of this hyperparameter controls the level of data-
consistency between the predicted and observed projection data. This hyperparameter
is used as one of the stopping criteria of the TV algorithm. The algorithm ceases its
implementation when the currently estimated image satisfies the following condition:

c < −0.99 and dd ≤ ε (4)

where c is the cosine of the angle between the TV and data-constraint gradients, dd is the L2
error between the measured projections and the projections computed from the estimated
image in the current iteration.

2.2.2. Total Variation Sub-Iteration Number (ng)

The ng hyperparameter specifies a number of sub-iteration that the TV optimisation
phase is performed in each iteration of the algorithm

2.2.3. Relaxation Parameter (β)

This is the hyperparameter that the SART process depends on. The value of β starts
from 1.0 and slowly decreases until it reaches 0.0 according to the value of the next
hyperparameter, βred.

2.2.4. Reduction Factor of Relaxation Parameter (βred)

This hyperparameter reduces the value of β in the SART phase as the algorithm
proceeds to the next iteration. The recommended setting for βred found in our previous
work is a value larger than 0.98 but smaller than 1. The β and βred hyperparameters involve
in another stopping criterion, following this condition:

β < 0.005 (5)

The algorithm stops when the value of β falls below 0.005 as no further difference
between the reconstructed images of the current and adjacent iteration can be noticed.

2.2.5. Scale Factor for Adaptive-Weighted Total Variation Norm (δ)

The δ hyperparameter controls the strength of the diffusion in the AwTV norm during
each iteration [22]. The AwTV norm makes it possible to consider the gradient of the
desired image and to take into account the changes of local voxel intensities.

3. Proposed Approach: Hyperparameter Tuning Method Using Ant Colony
Optimisation (ACO)

The computer-aided hyperparameter tuning method for TV-based XCT reconstruction
algorithm for limited data is proposed in this work. As explained in the previous section,
the five hyperparameters required for the AwPCSD algorithm need to be selected properly
for the reconstruction to work at its best. Some hyperparameters are set based on findings
from our previous work [7], i.e., relaxation parameter (β) is set to 1, reduction factor of
relaxation parameter (βred) is set to 0.99 and scale factor for adaptive-weighted TV norm (δ)
is set to the 90th percentile of the histogram of an image reconstructed using the OS-SART
algorithm. Apart from these, there are still two hyperparameters, the data-inconsistency-
tolerance parameter (ε) and the TV sub iteration number (ng) that require proper setting.

To identify the proper values of ε and ng, we employ the ACO algorithm [13] to select
the optimal set of hyperparameters for a given set of limited projection data. The ACO is a
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swarm intelligence approach to search for good paths in discrete graphs, as proposed in [13].
It is a modification of the Ant System algorithm, which was first introduced by Dorigo
et al. in [23,24]. The ACO approach is a probabilistic technique and has been successfully
implemented in numerous optimisation problems as reported in [13]. It belongs to the
class of metaheuristic approaches, which can provide approximate solutions when the
global optimum is unobtainable due to incomplete information. Its use in hyperparameter
optimisation in the CT reconstruction context is not extensive. As briefly mentioned earlier,
Zheng et al. [14] employed this approach to learn the best hyperparameter setting in their
iterative algorithm.

The overall picture of the hyperparameter selection algorithm using ACO method for
CBCT reconstruction is shown in Figure 1. The detailed explanation of the method in this
section is based on this diagram. Starting with the initialisation stage, the initial images are
defined. These are previous iteration best image (prev-iter-best) and previous generation
best image (prev-gen-best), which are both defined to be zero images as a starting point.
The previous iteration best image (prev-iter-best) and the previous generation best image
(prev-gen-best) are the reconstructed image with the highest score from the previous
iteration and previous generation, respectively. Also, the pheromones of all values of
hyperparameters are initially set to 1, such that the probability for an individual ant to
choose any option is equal.

In the context of the problem in this work, the number of hyperparameters to be
selected is five as required by the implementation of the AwPCSD algorithm. Apart from
these, there are still two hyperparameters, data-inconsistency-tolerance parameter (ε) and
TV sub-iteration number (ng), that require proper setting. The ACO algorithm is employed
to identify the optimal hyperparameter setting for the AwPCSD reconstruction algorithm
for a given set of limited projection data.

In each iteration of the algorithm, the process loops through each ant in the colony.
The prev-iter-best is used as a base image for all ants. An individual ant chooses the value
of each hyperparameter setting following the probability, which is computed based on the
pheromone using the following equation:

Pi =
τi

∑R
q=0 τq

(6)

where τi is the pheromone for the choice of hyperparameter value i and R is the total
number of available choices for the hyperparameter. In the first iteration, the pheromones
of all the hyperparameters are set to 1, making it possible for each ant in the first generation
to freely choose any choices. Each ant then moves on to the reconstruction process, carrying
choices of hyperparameters it has chosen. This process involves running several instances
of the AwPCSD reconstruction algorithm. For each run of the AwPCSD algorithm, one
iteration of the algorithm is performed. The reconstructed image from each ant is compared
with the reference image and a correlation coefficient (CC) is computed and used as a score.
In this study the reference image is a true image of the XCAT phantom model, in clinical
studies where images with full projections are available, those could be used as a reference
image instead. This step is repeated until all ants in a colony have finished their moves.
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The reconstructed image with the highest score among all the ants in that generation
is kept as the current generation best(current-gen-best) image result. After one generation
of ants is finished, the score of each reconstructed image obtained from the reconstruction
using each hyperparameter configuration is separately recorded for each hyperparameter
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value in that configuration. Then, all of the scores of each hyperparameter value in that
generation of ants is averaged. This average score is used to update the pheromone for that
choice of hyperparameter value for the next generation of the ant colony. The pheromone
update equation is:

τm+1
i = (1− σ)τm

i + si (7)

where si is the average score of all ants choosing the choice i of hyperparameters, τi
m is the

pheromone of the choice i of hyperparameters for the mth generation of ants and σ is the
pheromone evaporation factor with a value between 0 and 1. The values of pheromones
are normalised between 0 and 1. The pheromone for each choice of hyperparameter is
updated based on the score obtained from the reconstructed image. This is to ensure
that the choices which produce a highly-scored reconstructed image attract more ants in
the next generation of ant colony. Then, two conditions are checked. The first condition
checked is whether the score of the current-gen-best image is greater than that of the
prev-gen-best image. If the answer is no, the algorithm launches another generation of
ant colony replacing prev-gen-best with current-gen-best. If the answer is yes and the
maximum number of iterations is not reached yet, the algorithm launches the new iteration
and replacing prev-iter-best and prev-gen-best images with current-gen-best image. Apart
from these two conditions, the stopping criteria as explained in Equations (8) and (9) are
also checked for each reconstructed image. If these stopping criteria are met, the algorithm
is stopped. Otherwise, the whole process is repeated until the user-defined maximum
number of iterations is reached. At the end of the implementation, the hyperparameter
configuration with the highest score is an optimal hyperparameter setting for a given data.
Furthermore, the reconstructed image from this setting is obtained as an optimal result
from the AwPCSD reconstruction algorithm.

The ACO approach in the proposed algorithm is able to identify optimal hyperpa-
rameters appropriate for a dataset and produce a good quality reconstructed image using
limited numbers of projection data. The whole process does not require any knowledge
about the iterative reconstruction algorithm from the user, nor the intervention during
its implementation. The reconstructed image from the proposed algorithm is compared
with the results from other ways of choosing parameters, visually and quantitatively. In
addition, the optimal set of hyperparameters from the proposed algorithm is used to
reconstruct images from the projection data with different levels of noise and different
angle arrangements. The same set of experiments was also tested with different imaging
samples to demonstrate the robustness of the proposed algorithm.

4. Results and Discussion

The experimental results and discussion are presented in this section. The details
of the dataset used for the experiments are explained, as well as the quantifying metrics.
Then, the proposed method was implemented in the training stage and the results were
presented and compared with other algorithms. Finally, the set of hyperparameters were
tested with different experimental settings.

4.1. The Digital 4D Extended Cardiac-Torso (XCAT) Phantom

In this work, datasets from the digital 4D Extended Cardiac-Torso (XCAT) Phan-
tom [16,17] were used in the experiments. The thorax anatomy structure of the phantoms
was selected to show the performance of the proposed algorithm. Three datasets simulated
from the XCAT phantom were used for training and testing purposes. For the training, one
dataset was used as shown in Figure 2. The chosen voxel size is 128 × 128 × 128.

Poisson and Gaussian noise [25,26] were added to the input projection data to simulate
realistic noise. The case of default noise in the experiment was a combination of Poisson
noise with maximum photon count of 60,000 and the Gaussian noise with mean and
standard deviation of 0 and 0.5, respectively.
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For the testing purpose, two different XCAT phantom datasets were generated with
different parametrization from the training dataset. Further details are explained in sub-
section of testing on different samples.
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4.2. Evaluation Metrics

The evaluation metrics for an implementation of the proposed method, as well as a
comparison with other algorithms are explained as follows:

4.2.1. Correlation Coefficient (CC)

As mentioned in the methodology section, the CC metric is used to compute a score
representing an imaging performance of particular hyperparameter configuration by com-
paring the reference image with the reconstructed image from each ant. The definition of
CC metric can be expresses in the following equation:

CC =
Cov

(
f̂ (x), f (x)

)
σ f̂ (x)σf (x)

(8)

where Cov( f̂ (x), f (x)) is the covariance between the true and reconstructed images, σ f̂ (x) is
the standard deviation of the true image, σf(x) is the standard deviation of the reconstructed
image. The value of CC ranges from −1 to 1 where −1, 0 and 1 represent a total negative
linear correlation, no linear correlation and total positive linear correlation, respectively.

4.2.2. Universal Quality Index (UQI)

The UQI is one of the two metrics that was used to quantify the differences between
image reconstruction results. This metric evaluates the degree of similarity between the
reconstructed and reference images.The UQI can be described as:

UQI =
2cov(µ, µtrue)

σ2 + σ2
true

2µµtrue

µ2 + µ2
true

(9)

where µ and µtrue represent intensity of a reconstructed and a reference image, respectively,
cov(·,·), σ2 and µ are the covariance, variance and mean of intensities, respectively. A UQI
value ranges from zero to one, where a value closer to one suggests better similarity to the
reference image.

4.2.3. Relative Error (e)

The relative error is another metric that is used to quantify the differences between
the results. It can be computed as a relative 2-norm error using the equation below:

relative error (e) =
‖image− imagere f ‖2

‖imagere f ‖2
(10)
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4.3. Training of Hyperparameters

For the training of hyperparameters using the proposed method, the following general
parameters for the algorithm were defined: maximum number of iterations = 50, maximum
number of generations of ant colony = 10, number of ants in a colony = 50, evaporation
rate = 1. The configurations for the five hyperparameters in this experiment are displayed
in Table 1.

Table 1. Hyperparameter configurations for this study.

Hyperparameters Values

Data-inconsistency-tolerance parameter (ε) 0, 50, 70, 100, 200, 500, 2 × 103, 1 × 104, 1 × 105, 5 × 105

TV sub-iteration number (ng) 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30

Relaxation parameter (β) 1

Reduction factor of relaxation parameter (βred) 0.99

Scale factor for adaptive-weighted TV norm (δ) 0.0213

The values of three hyperparameters are fixed, as explained earlier. These values
remain constant for all hyperparameters configurations. There are 10 values for ε and
15 values for ng. The range of ε is chosen very wide to cover measurement and modelling
error. Upper limit for sub iteration ng was chosen to allow for acceptable computational
time when the parameter optimisation is completed. In total, there are 150 hyperparameter
configurations to be optimised by the proposed algorithm. Each of an ant in a colony
(in one generation) chooses the values of hyperparameters, ε and ng, to search for the
optimal hyperparameter configuration for a given data. The performance of the proposed
algorithm was evaluated in a limited data scenario by using the data set with 50 projection
views, equally sampled from 0 to 360◦ with an increment of 7.2◦ between each angle. The
testing computer used for the experiment was an Intel Core i7-4930K CPU at 3.40 GHz
with 32 GB RAM. The single GPU in use is an NVDIA GeForce GT 610.

To evaluate the performance of the proposed method, the reconstructed image ob-
tained from the optimal hyperparameters was compared with results from three other cases.
The first case is the reconstruction result from the CGLS algorithm. The second case is the
AwPCSD reconstruction algorithm using an arbitrary set of hyperparameters. The arbitrary
set represents the way a user who is not familiar with the TV based CT reconstruction
might have chosen this set of hyperparameters. The last case used for comparison is a cross-
validation method [27], which is a technique that is used to evaluate predictive models
by splitting the original data into training and testing sets. In one trial of cross-validation
technique, a projection from one particular angle is removed from the available projection
data. This projection is used as a testing data, while the remaining projections are used
as a training set. The AwPCSD algorithm is implemented on the training set in parallel
using each configuration of hyperparameters. Then, the reconstructed image obtained
from each hyperparameter configuration is used to simulate the projection data of the
same angle as that of the testing data that is taken out earlier. The root-mean-square error
(RMSE) is measured between the simulated projection data and the testing data. Next,
the cross-validation method moves on to the next trial, where the projection of adjacent
angle is used as a testing data. The same procedure is repeated until the last angle of
projection is used as a testing data. After all trials are finished, an average RMSE error of
each hyperparameter configuration is computed. The best performing configuration is the
one with the lowest average RMSE error and vice versa. The method is implemented in
this work to evaluate the performance of the proposed method in terms of the quality of
reconstruction, as well as the computational time.

Since the results of the cross-validation method are evaluated on testing data, which
is not included in the data used to produce the results (training data), the cross-validation
method is thus a good benchmark to compare with the proposed method. The proposed
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method, as well as the other three methods, were implemented with the simulated Extended
Cardiac-Torso 4 (XCAT) phantom projection data, following the experimental setting
explained in the next section.

After all the iterations of the proposed algorithm, the scores of the hyperparameter
configurations as chosen by ant colony in the last iteration are shown in Figure 3. These
scores are computed based on accumulated probability over the entire implementation of
the proposed method.
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According to Figure 3, the hyperparameter configuration with the highest score is
chosen as an optimal set of hyperparameters. The optimal set of hyperparameters found
by the proposed and the cross-validation methods, as well as the arbitrary setting are
displayed in Table 2. Note that for the CGLS algorithm, no hyperparameter is required.
The maximum number of iteration for three cases is specified at 50. However, the CGLS
algorithm converges and stops at the iteration number 15 and the AwPCSD algorithm with
the arbitrary setting converges and stops at the iteration number 5.

Table 2. Different sets of hyperparameters used to compare the performance of the proposed algorithm.

Hyperparameter Selection Methods ε ng β βred δ

Proposed
algorithm 2000 10 1 0.99 0.0.0213

Arbitrary setting 700 100 1 0.99 0.0.0213

Cross-validation 0 8 1 0.99 0.0.0213

Comparing the computational time for all four cases, the CGLS algorithm is the
one with the shortest time as it only takes a couple of seconds to finish its 15 iterations.
For the AwPCSD algorithm with the arbitrary setting of hyperparameters, it takes ap-
proximately 2 min. The hyperparameter learning process using the proposed algorithm
takes approximately 1.45 h to finish. The cross-validation algorithm is the one with the
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longest computational time. It takes approximately 47.15 h to finish the entire process.
Cross-sectional slices of the reconstruction results from all cases are shown in Figure 4, in
comparison with an exact phantom image.
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From a visual inspection of Figure 4, the reconstructed image from the proposed
algorithm and the cross-validation method are rather similar to each other. Not much
outstanding difference can be observed in the images from both cases. However, they are
ones that are the most similar to the exact phantom image, as they contain sharper edges
than the blurry result from the arbitrary setting. Even though the CGLS algorithm is able to
recover small features as well as edges, the image is relatively noisy compared to the result
from the proposed algorithm and the cross-validation method. To make a comparison
clearer, we analysed one-dimensional profile plots of all the results along an arbitrary row
of a cross-sectional slice as shown in Figure 5. The 1D plot of all the results is shown in
Figure 6, in comparison with the reference exact phantom.
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According to the plots in Figure 6, the one-dimensional profiles from the proposed
ACO algorithm and the cross-validation method are the most aligned with the profile from
the exact image. This is particularly true around the edges, where the abrupt changes occur.
In some areas, the profile from the proposed algorithm is more aligned to the exact image
than that of the cross-validation method. But there are also some other areas where the
cross-validation method is better aligned. Hence, the results from these two algorithms
do not have any outstanding difference. In line with the visual inspection of Figure 4, the
profile from the AwPCSD algorithm using the set of arbitrary hyperparameter settings
shows that the algorithm failed to recover the edge information of the image. This can be
seen between pixel numbers 30 to 60, where the profile plot is rather flat. The result from
the CGLS is a middle ground between the first two cases. Although the CGLS algorithm
is able to recover most of the image features, the result is much noisier compared to the
proposed ACO algorithm. The result from the AwPCSD algorithm with the arbitrary setting
can be improved further by re-selecting the values of hyperparameters and implement
the algorithm again. It is a time-consuming and tedious process and there is no way
to guarantee that the chosen hyperparameters will be the optimal ones. This highlights
the significance and advantage of having the proposed computer-aided hyperparameter
selection algorithm, which helps to save time and resource of the user to find an optimal
set of hyperparameters.

4.4. Testing the Trained Hyperparameters

To evaluate the robustness of the proposed method, the optimal set of hyperparameters
obtained from the training stage was used to reconstruct images in different scenarios. The
details of each experiment are explained in the following sub-sections.

4.4.1. Different Noise Levels

In the first test, the same dataset as that of the training stage was used, but three dif-
ferent noise levels were added to the projection dataset as explained in the following: Noise
1 case: Poisson noise = 30,000 maximum photon count and Gaussian noise with mean = 0,
standard deviation of 1, Noise 2 case: Poisson noise = 20,000 maximum photon count and
Gaussian noise with mean = 0, standard deviation of 3, Noise 3 case: Poisson noise = 10,000
maximum photon count and Gaussian noise with mean = 0, standard deviation of 5.

The AwPCSD algorithm was used to reconstruct the images by taking each of the
noise level cases as an input. Cross-sectional slices of the reconstructed results in all cases
are shown in Figure 7.
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According to Figure 7 and Table 3, the results from the AwPCSD with arbitrary setting
are clearly the worst among the others. This is because the cross-sectional slices are rather
blurry, and the relative errors are the biggest with the lowest UQI values in all cases. The
CGLS results are better than those of the arbitrary setting but are still corrupted by noise,
getting worse as the noise level increases. Quantitatively, the relative errors and the UQI
values show that the cross-validation method is in similar range to that of the proposed
algorithm in all cases apart from relative error in the noise 3 case. New parameter tuning is
able to produce images almost as good as those of the cross-validation method. As cross-
validation method is much more computationally expensive in terms of the training time,
this makes the method impractical in real use. The cross-validation method is implemented
here for a comparison purpose. The point we are making in this experiment is to prove
that the proposed algorithm is able to achieve almost the same quality of the result as that
of the cross-validation method, but in a much more reasonable time frame. The experiment
in this section proves that the same set of hyperparameters from the proposed method
is robust against an increase of noise in the projection. The reconstructed images from
the proposed algorithm are still able to maintain a superior quality over almost all other
methods in all the noise cases.

Table 3. Relative errors and UQI of image reconstruction results with XCAT Thorax phantom.

Case ecross eproposed earbitrary eCGLS UQIcross UQIproposed UQIarbitrary UQICGLS

Default 5.25% 6.70% 29.13% 19.26% 0.9970 0.9959 0.9322 0.9749

Noise 1 6.95% 8.97% 29.62% 20.64% 0.9959 0.9938 0.9293 0.9711

Noise 2 11.23% 13.32% 31.42% 23.22% 0.9905 0.9857 0.9182 0.9631

Noise 3 18.37 18.01% 32.86% 31.83% 0.9737 0.9717 0.9071 0.9330

4.4.2. Different Sets of Projection Angles

Further analysis with multiple arrangements of the angles used to acquire the projec-
tion data was implemented to ensure that the results are not unique to only one specific
angle arrangement. In this test, the same dataset as that of the training stage was also used.
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The projection data used in the training of hyperparameters contains 50 projection views,
equally sampled from 0 to 360◦ angle with an increment of 7.2◦ between each projection.
This hyperparameter setting obtained from the training was tested with four other different
angle arrangements with a fixed number of projections. The first two angle arrangements
are the projection data collected over 360◦ with 7◦ and 5.9◦ increments, respectively. The
other two arrangements are collected over 180◦, with 3.6◦ and 3.52◦ increments. Cross-
sectional slices of the reconstructed images with different angle arrangements using the
same set of hyperparameters from the training stage of the proposed algorithm are shown
in Figure 8.
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The difference images between the cross-sectional slices in Figure 8 and the exact
phantom are displayed in Figure 9 to better observe the differences in each case.
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Figure 9. The difference between reconstructed images using proposed methods with reference data using the set of
hyperparameters from the proposed algorithm with respect to different angle arrangement. The display window is [0–0.02].

The results in Figure 8 and the difference images in Figure 9 show that the hyper-
parameter setting obtained from the proposed algorithm is able to reconstruct almost
the same quality of image even when the angle arrangement of the projection data was
changed.
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4.4.3. Different Samples

In this part, the robustness of the proposed algorithm was evaluated by applying the
trained hyperparameter setting to the reconstruction of different samples. Two different
XCAT phantom datasets were generated with different parametrisation from the training
dataset. The first dataset is a male phantom with the chosen voxel size of 128 × 128 × 70.
The second one is a female phantom with some modifications of the general parameters
used to generate the phantom. The detail of the different modifications between these two
phantoms is shown in Table 4. Cross-sectional slices of the two phantoms are shown in
Figure 10.

Table 4. The parametrisation details of the two phantoms [11].

Parametrisation Details Male Female

motion option beating heart only respiratory only

length of beating heart cycle 1 s 5 s

starting phase of the heart 0.0 0.4

wall thickness for the left ventricle (LV) non-uniform uniform

LV end-systolic volume 0.0 0.5

start phase of the respiratory 0.0 0.4

anteroposterior diameter of the ribcage, body and
lungs 0.5 1.2

heart’s lateral motion during breathing 0.0 0.5

heart’s up/down motion during breathing 2.0 3.0

breast type prone supine

factor to compress breast half compression no compression

thickness of sternum ~0.4 mm 0.6 mm

thickness of scapula 0.35 mm 0.55 mm

thickness of ribs 0.3 mm 0.5 mm

thickness of backbone 0.4 mm 0.6 mm
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In this experiment, the experimental setting used in the previous experiment with the
first set of XCAT phantoms remains the same, i.e., the default case is 50 projection views,
equally sampled from a 360◦ with Poisson noise of 60,000 maximum photon count and
Gaussian noise with mean and standard deviation of 0 and 0.5, respectively.

In the same way, the same sets of hyperparameters used in the previous experiment
as displayed in Table 2 were used to reconstruct images of the testing datasets, as well as
the CGLS algorithm. The results of the male phantom are shown and discussed first. The
cross-sectional images are shown in Figure 11.
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According to Figure 11, the reconstruction using the set of hyperparameters obtained
from the training dataset still able to produce good quality of image, comparing to other
methods. We then implement the proposed method directly to the projection simulated
from the male phantom to further analyse the difference between these two cases. The
cross-sectional slices are shown in Figure 12. The relative errors and the UQI, as well as the
sets of hyperparameters used in each method are presented in Table 5.
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Table 5. Relative errors and UQI of image reconstruction results from the male phantom using each set of hyperparameters
and the CGLS algorithm [15].

Sets of Hyperparameter/Method Relative Error (%) UQI ε ng

Proposed method from the training dataset 8.26 0.9946 2000 10

Proposed method with the male phantom 5.33 0.9980 70 22

Cross-validation from the training dataset 10.63 0.9909 0 8

Arbitrary setting 12.78 0.9863 700 100

CGLS 15.94 0.9798 N/A N/A
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According to Figure 12 and Table 5, it can be concluded that the set of hyperparameters
obtained from the proposed algorithm with the training set can be applied to different
imaging samples and produce a result which is superior to CGLS and TV with arbitrary
parameters. However, the set of hyperparameters obtained from directly implementing
the proposed algorithm with the male phantom projection shows even better results. This
experiment proves that the selection of hyperparameter for the TV regularisation algorithm,
specifically for the AwPCSD algorithm, is data-specific. The optimal set of hyperparameters
from one training dataset can still be applied to different image sampling within a similar
context. However, the optimal result might not yet be achieved. It is significant to fine-tune
the hyperparameters, in order to obtain the optimal result for a given data. This is the
advantage that the proposed algorithm offers, to avoid the tedious process of manual
hyperparameter tuning. The same pattern of experiment is performed on the female
phantom and the results, as presented in the Figures 13 and 14 and Table 6, confirm the
conclusion stated above.
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Figure 13. Cross-sectional slices of the reconstructed images from the female phantom using different method and
hyperparameter settings. The display window is [0–0.07].

Sensors 2021, 21, x FOR PEER REVIEW 19 of 22 
 

 

Table 5. Relative errors and UQI of image reconstruction results from the male phantom using 
each set of hyperparameters and the CGLS algorithm [15]. 

Sets of Hyperparameter/Method Relative Error (%) UQI ε ng 
Proposed method from the training dataset 8.26 0.99462000 10 
Proposed method with the male phantom 5.33 0.9980 70 22 
Cross-validation from the training dataset 10.63 0.9909 0 8 

Arbitrary setting 12.78 0.9863 700 100 
CGLS 15.94 0.9798N/A N/A

According to Figure 12 and Table 5, it can be concluded that the set of hyperparam-
eters obtained from the proposed algorithm with the training set can be applied to differ-
ent imaging samples and produce a result which is superior to CGLS and TV with arbi-
trary parameters. However, the set of hyperparameters obtained from directly imple-
menting the proposed algorithm with the male phantom projection shows even better re-
sults. This experiment proves that the selection of hyperparameter for the TV regularisa-
tion algorithm, specifically for the AwPCSD algorithm, is data-specific. The optimal set of 
hyperparameters from one training dataset can still be applied to different image sam-
pling within a similar context. However, the optimal result might not yet be achieved. It 
is significant to fine-tune the hyperparameters, in order to obtain the optimal result for a 
given data. This is the advantage that the proposed algorithm offers, to avoid the tedious 
process of manual hyperparameter tuning. The same pattern of experiment is performed 
on the female phantom and the results, as presented in the Figures 13, 14 and Table 6, 
confirm the conclusion stated above. 

            (a) Exact image       (b) Proposed algorithm     (c) Cross-validation 

 
            (a) Exact image         (d) Arbitrary setting             (e) CGLS 

Figure 13. Cross-sectional slices of the reconstructed images from the female phantom using different method and hy-
perparameter settings. The display window is [0–0.07]. 
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Figure 14. Cross-sectional slices of (a) the exact image, (b) the reconstruction from the proposed method directly imple-
mented on the female phantom data, (c) the reconstruction using the set of hyperparameters from the training dataset. The
display window is [0–0.07].
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Table 6. Relative errors and UQI of image reconstruction results from the female phantom using each set of hyperparameters and the
CGLS algorithm [15].

Sets of Hyperparameter/Method Relative Error (%) UQI ε ng

Proposed method from the training dataset 7.52 0.9963 2000 10

Proposed method with the female phantom 5.55 0.9982 70 18

Cross-validation from the training dataset 8.84 0.9950 0 8

Arbitrary setting 16.70 0.9800 700 100

CGLS 19.35 0.9752 N/A N/A

5. Conclusions

In this paper, a computer-aided hyperparameters optimisation algorithm for limited
data CT reconstruction using the TV regularisation algorithm is proposed. In the pro-
posed algorithm, the AwPCSD algorithm is used as a reconstruction algorithm. The ACO
approach is employed to select the optimal set of hyperparameter for the reconstruction
with the AwPCSD algorithm, which is crucial for the reconstruction result. Initially, the
ranges of hyperparameter values are specified. The proposed algorithm searches through
all possible configurations via a colony of ants and evaluates each configuration based on
the score obtained from the comparison between the reconstructed image and the reference
image. The pheromones are left for all configurations according to the scores, to attract
ants in the next generation. At the end of the implementation, the set of hyperparameters
with the highest score is considered as the optimal setting for a given projection data. The
implementation of the proposed algorithm is fully automatic, without the need of human
intervention during the processes. The experimental results showed that the images recon-
structed using the proposed algorithm are superior to the results from CGLS algorithm and
the AwPCSD algorithm using the arbitrary hyperparameter setting. Although the results
of the proposed algorithm are slightly inferior to those of the cross-validation method as
measured by the quantitative metrics, the computational time of the proposed algorithm is
much shorter, being approximately over 10 times faster than the cross-validation method.
Furthermore, the optimal set of hyperparameters from the training data is robust against
an increase of noise in the projection data. The reconstructed images from the proposed
algorithm are still able to maintain a superior quality over almost all the methods in all
the noise cases. In addition, the optimal set of hyperparameters from one training dataset
can still be applicable to different imaging samples with a similar context. Depending on
the requirements of users in terms of imaging quality, the better result can be achieved
by directly applying the proposed algorithm to the data. This is the advantage that the
proposed algorithm offers, to avoid the tedious process of manual hyperparameter tun-
ing. The computational time for ACO compared to a cross validation is also a significant
advantage.

Finally, the limitations of this work should also be mentioned. Firstly, the implementa-
tion of TV-based regularization algorithms is highly dependent on hyperparameter values.
The results presented in this work were based on some pre-defined values as mentioned in
the experimental result section, i.e., β = 1, βred = 0.99, δ = 0.0213. Although these values
were taken from the conclusion of our previous work [7], different datasets may require
different optimal values. The proposed method in this work was developed based on the
configurations of two varying hyperparameters, in order to reduce the level of complexity
for an initial proof of concept. Compared to our previous studies for parameter selection
in [11], the proposed method in this work offers lower computational time while providing
the same optimal parameters.

6. Future Work

The improvement of results for this work can be implemented in several directions.
Firstly, the proposed method can be extended to include more/broader ranges of hy-



Sensors 2021, 21, 591 20 of 21

perparameters in its implementation. However, this comes at the cost of higher level of
complexity and longer computational time. Secondly, an efficiency of the proposed method
can be studied on a real CT measurement data, where the noise of the system is more
realistic and unpredictable.
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