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Abstract: Global navigation satellite system (GNSS) receivers use tracking loops to lock onto GNSS
signals. Fixed loop settings limit the tracking performance against noise, receiver dynamics, and the
current scenario. Adaptive tracking loops adjust these settings to achieve optimal performance for a
given scenario. This paper evaluates the performance and complexity of state-of-the-art adaptive
scalar tracking techniques used in modern digital GNSS receivers. Ideally, a tracking channel
should be adjusted to both noisy and dynamic environments for optimal performance, defined by
tracking precision and loop robustness. The difference between the average tracking jitter of the
discriminator’s output and the square-root Cramér-Rao bound (CRB) indicates the loops’ tracking
capability. The ability to maintain lock characterizes the robustness in highly dynamic scenarios. From
a system perspective, the average lock indicator is chosen as a metric to measure the performance
in terms of precision, whereas the average number of visible satellites being tracked indicates the
system’s robustness against dynamics. The average of these metrics’ product at different noise levels
leads to a reliable system performance metric. Adaptive tracking techniques, such as the fast adaptive
bandwidth (FAB), the fuzzy logic (FL), and the loop-bandwidth control algorithm (LBCA), facilitate
a trade-off for optimal performance. These adaptive tracking techniques are implemented in an
open software interface GNSS hardware receiver. All three methods steer a third-order adaptive
phase locked loop (PLL) and are tested in simulated scenarios emulating static and high-dynamic
vehicular conditions. The measured tracking performance, system performance, and time complexity
of each algorithm present a detailed analysis of the adaptive techniques. The results show that the
LBCA with a piece-wise linear approximation is above the other adaptive loop-bandwidth tracking
techniques while preserving the best performance and lowest time complexity. This technique
achieves superior static and dynamic system performance being 1.5 times more complex than the
traditional tracking loop.

Keywords: global navigation satellite system (GNSS); adaptive scalar tracking loop (A-STL); fast
adaptive bandwidth (FAB); fuzzy logic (FL); loop-bandwidth control algorithm (LBCA); piece-wise
linear approximation of non-linearities (PLAN)

1. Introduction

A global navigation satellite system (GNSS) receiver needs to maintain lock on the
satellite signals in order to decode their navigation message and determine the pseudo-
range [1]. Locking onto and following the signal’s Doppler frequency, carrier phase, and
code phase is referred to as tracking [2]. A GNSS receiver must utilize the best possible
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means to track the signals since it leads to a better pseudo-range estimation, and in turn, to
a more precise and reliable position, velocity, and time (PVT) solution. However, noise,
receiver dynamics, and multi-path effects make this a challenging task.

Before tracking can be initiated, the signal must first be acquired: a coarse synchroniza-
tion of the carrier and code is determined for each received GNSS signal [1]. The tracking
uses this coarse estimation to initialize the scalar tracking loops (STLs). These loops im-
prove the estimates by continuously monitoring the signal. They synchronize to the carrier
frequency and Doppler offset with a frequency locked loop (FLL), the carrier phase with a
phase locked loop (PLL), and the code phase with a delay locked loop (DLL). An STL tracks
each of the received GNSS signals independently from the others. An alternative approach
is to track and adapt the channels jointly with vector tracking (VT) [3], but currently there
are several hardware implementation issues that currently limit practical use [4]. Therefore,
VT is not considered for the remainder of the paper. The conventional digital tracking
loop consists of a correlator, a discriminator, a loop filter, and a numerically controlled
oscillator (NCO) [5]. The integration time τint, the correlator spacing, the discriminator
type, the order, the noise bandwidth of the loop filter, and the oscillator determine the
tracking performance at a given carrier-to-noise density ratio (C/N0).

Depending on the scenario, different loop settings are ideal. Dynamics stress the
tracking loop’s accuracy, whereas noise limits precision [6,7]. The former is characterized
by changes in position, velocity, acceleration, jerk, or even higher orders of dynamics.
The latter arises due to the thermal noise, the oscillator phase noise, quantization noise,
signal interference, and other noise sources [8]. Multi-path, fading effects, and scintillation
also shape the noise and introduce biases [9]. The loop bandwidth of conventional STLs
presents a trade-off between the ability to stay locked in the presence of dynamics and the
amount of filtered noise to achieve better precision [6]. A large loop bandwidth is ideal for
dynamic scenarios, as it presents tracking lock robustness, but results in low noise rejection
and limits precision. A small loop bandwidth is suitable for noisy scenarios, as it rejects
most noise, but dynamics can easily disrupt the loop and break the lock. Therefore, loop
bandwidth tuning directly impacts tracking loop performance. However, it is impossible
to choose a single, static value ideal for all scenarios and signals. Further, the geometry,
path-loss, and environment between the receiver and each satellite in the constellation
directly impact each signal’s dynamics and noise. Hence, even in a single scenario, each
signal has an ideal loop bandwidth, which requires individualized tuning.

Adaptive loop-bandwidth tracking techniques address this problem by adapting the
loop bandwidth of the STL depending on the scenario conditions [7]. These techniques
determine a suitable loop bandwidth based on the tracking channel’s behavior. One
method is the fast adaptive bandwidth (FAB) technique [10–13]. It uses a loop bandwidth
dependent cost function, which serves to estimate the loop bandwidth in the next iteration.
A second method is the fuzzy logic (FL) technique [14,15]: This technique updates the
loop bandwidth based on a fuzzy decision of adequate inputs. The inputs can be any
tracking channel information such as the discriminator’s output and its statistics. A third
technique is the loop-bandwidth control algorithm (LBCA) [16]. This algorithm updates
the loop bandwidth performing a weighted difference of estimated noise and estimated
signal dynamics. Alternative tracking methods with Kalman filtering (KF) are promising
and have gained popularity in the literature [17–23]; however, this approach still has some
hardware implementation limitations and will not be considered for the remainder of
the paper.

This paper expands a conference paper [7] by including the theory of adaptive track-
ing techniques and improving the scope of the results. It implements various adaptive
loop-bandwidth tracking techniques on a GNSS receiver and verifies them. Furthermore, it
presents a method to evaluate the performance and complexity of these techniques. The
FAB, the FL, and the LBCA are implemented in the GOOSE© receiver [24,25]. The GOOSE
receiver is a GNSS receiver with an open software interface. This receiver is tested in
simulated scenarios with different dynamics and noise cases. This paper aims to achieve
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a static and dynamic system performance comparison between different adaptive track-
ing techniques. The system performance is also compared with the complexity of each
implemented algorithm. It leads to a complete evaluation of the implemented adaptive
tracking techniques.

The rest of the paper is organized as follows. Section 2 presents a detailed STL
background, followed by a precise description of the implemented variable loop-bandwidth
tracking techniques in Section 3. Section 4 analyzes the metric used to evaluate the tracking
and system performance and evaluates the complexity of adaptive loop-bandwidth tracking
techniques. The experimental setup and implementation in an open software interface
GNSS hardware receiver are described in Section 5. Section 6 presents the results of the
adaptive loops. These results are synthesized and discussed in Section 7. Finally, Section 8
concludes and indicates future work.

2. Scalar Tracking Loops

This section presents an introduction to standard digital STLs. Two models explain
the operation of the STL. First, the non-linear model in the discrete-time domain describes
the main components of an STL. Second, a linear model in the z-domain addresses the STL
transfer function and the STL discrete state space model (SSM). These two representations
include sufficient background to describe the behavior of STLs fully.

2.1. Non-Linear Model

GNSS receivers commonly deploy FLLs, PLLs, and DLLs [1]. All three of these loops
track a different signal parameter (i.e., Doppler frequency, carrier phase, or code phase) but
have similar architectures. Figure 1 shows the non-linear STL model in the discrete-time
domain [2]. The STL consists of a detector, a loop filter, an NCO, and a replica generator.

Detector Loop Filter
εu[n]

NCOReplica Generator

y[m]

ε̇s[n]

εs[n]
ŷ[m]

Figure 1. Architecture of a conventional scalar tracking loop (STL). ©IEEE. Adapted, with permission,
from [7].

The first STL component is the detector. The detector calculates the error εu[n] of
the representative tracking parameter. The error εu[n] is determined by comparing the
incoming signal y[m] and an estimated replica of the signal ŷ[m]. Figure 2 presents the
general structure of a detector. A GNSS receiver correlates an input signal with a locally
generated replica to retrieve the GNSS signal. Therefore, a multiplier and an integration
and dump (IAD) stage correlate a vector on input data samples, to extract the correlation
in-phase and quadrature-phase (IQ) samples. The correlator decimates the signal to a
sample-rate related to the integration time τint, resulting in multi-rate processing. The noise
(i.e., the variance of the error εu[n]) is inversely proportional to the integration time τint of
the IAD. Hence, the larger the integration time τint, the higher the processing gain—the less
noisy the errors εu[n]. However, with larger integration time, the loop response becomes
slower, and consequently, it is less sensitive against signal dynamics. The last component of
the detector is the discriminator function. It determines the error εu[n] for a specific signal
parameter (i.e., Doppler frequency, carrier phase, or code phase) based on the correlation
IQ samples. Each tracked signal parameter requires a different discriminator.
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DETECTOR

× IAD Discriminator
y[m] εu[n]

ŷ[m]

Figure 2. Architecture of the detector. ©IEEE. Adapted, with permission, from [7].

The second component of the STL is the loop filter. It shapes the noisy errors εn[n]
to a smoothed error rate ε̇[n]. Hence, the filter input is an un-smoothed signal, and the
filter output a smoothed one. The loop bandwidth affects the response time and noise
suppression capabilities of the loop filter. Small loop bandwidths are ideal for suppressing
unwanted noise, whereas large loop bandwidths respond quicker to signal dynamics.
The loop filter is typically implemented as an infinite impulse response (IIR) filter [1,2,5].
The order of the IIR loop filter regulates the robustness of the tracking against high-
order dynamics. A higher-order loop filter can track higher-order components of the error
signal but adds complexity, and the possibility for instability in the system. The resulting
smoothed error rate ε̇s[n] drives an NCO. The NCO integrates the output of the loop
filter and sends the smoothed error εs[n] to the replica generator. The replica generator
reconstructs a new estimate ŷ[m] for the for the signal. The tracking loop minimizes the
error εu[n] such that the generated replica signal ŷ[m] converges to the input signal y[m].

2.2. Linear Model

The linear model of an STL simplifies Figure 1 by removing the non-linear mapping of
the discriminator and the multi-rate conversion of the correlator [2]. A discrete approxima-
tion of continuous-time systems is performed. This section considers the backward Euler
transform (BET) [26,27] as it is used in current STL implementations. Figure 3 presents the
linear model in the z-domain. The input signal ε[n] represents the carrier phase offset, the
frequency Doppler, or the code phase offset of the input signal y[m]. The same functional
blocks to Figure 1 are visible, but linearized.

COMPARATOR

−

+

LOOP FILTER

NCO

+ F(z)

N(z)

ε[n] εu[n]

ε̇s[n]εs[n]

Figure 3. Linear model of the STL. ©IEEE. Adapted, with permission, from [7].

The STL transfer function is often analyzed without considering the SSM representa-
tion analysis. This hinders the comparison with other tracking methods that are commonly
represented by its SSM representation (e.g., KF-based STLs). Therefore, it is necessary to
consider the transfer function and SSM representation since they are valuable concepts that
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serve to understand the STL behavior fully. From Figure 3, the controllable canonical form
of the discrete SSM can be calculated [28]:

xp×1[n]− xp×1[n− 1]
τint

=


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
0 0 0 · · · 0


︸ ︷︷ ︸

Acontp×p

xp×1[n] +


αp−1
αp−2

...
α0


︸ ︷︷ ︸
Bcontp×1

εu[n] (1)

εs[n] =
[
1 0 0 · · · 0

]︸ ︷︷ ︸
Ccont1×p

xp×1[n] = x1[n] (2)

where x is the discrete state vector, p is the order of the STL, Acont is the state matrix, Bcont is
the input matrix, and Ccont is the output matrix of the SSM in the continuous-time domain.
Bcont contains the coefficients αk of the STL. Equation (1) can be further developed:

xpx1[n] = (Ip×p −Acontp×p τint)
−1︸ ︷︷ ︸

Adiscrp×p

xp×1[n− 1] + (Ip×p −Acontp×p τint)
−1Bcontp×1 τint︸ ︷︷ ︸

Bdiscrp×1

εu[n] (3)

where Ip×p is the identity matrix, Adiscr the discrete state matrix and Bdiscr the discrete
control matrix.

Extending the previous equation, the following expression is achieved:

xp×1[n] =


1 τint τ2

int · · · τ
p−1
int

0 1 τint · · · τ
p−2
int

...
...

. . . . . .
...

0 0 0 · · · τint
0 0 0 · · · 1

xp×1[n− 1] +


∑

p−1
k=0 αkτ

p−k
int

∑
p−1
k=0 αkτ

p−k−1
int

...
α0τint

εu[n] (4)

Performing the z-transform Z(·) of Equations (2) and (4), the open loop transfer
function Ho(z) of the discrete SSM can be obtained:

Ho(z) =
Z(εs)

Z(εu)
= Ccont1×p

(
Ip×p −Adiscrp×p z−1

)−1
Bdiscrp×1 =

=
p−1

∑
k=0

αkτ
p−k
int

(1− z−1)p−k =
p−1

∑
k=0

αkτ
p−k−1
int

(1− z−1)p−k−1︸ ︷︷ ︸
F(z)

τint

1− z−1︸ ︷︷ ︸
N(z)

(5)

where F(z) is the transfer function of the loop filter and N(z) the transfer function of
the NCO.

From the open loop transfer function, the closed loop transfer function Hc(z) can
be obtained:

Hc(z) =
Z(εs)

Z(ε) =
Ho(z)

1 + Ho(z)
=

F(z) · N(z)
1 + F(z) · N(z)

(6)
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The zeros and poles of the closed loop transfer function depend on the coefficients
of the tracking loop αk and the integration time τint. Hence, the one-sided normalized
bandwidth BN of the closed-loop transfer function is dependant on these coefficients:

2BN(α0, α1, · · · , αp−1) = 2B(α0, α1, · · · , αp−1)τint =
1

2πj

∮
|z|=1

Hc(z)Hc(z−1)z−1dz (7)

where B is the one-sided equivalent noise bandwidth.
The adaptive tracking techniques are implemented in a third-order STL. Therefore,

the SSM and transfer function of a third-order STL are analyzed in Figure 4 displaying its
linear model.

COMPARATOR

−

+

LOOP FILTER

NCO

+ α0

α1

α2

τint
1−z−1 + τint

1−z−1 +

τint
1−z−1

ε[n] εu[n] x3 x2

ε̇s[n]x1 = εs[n]

Figure 4. Linear model of a third-order STL.

The equivalent discrete SSM is:x1[n]
x2[n]
x3[n]

 =

1 τint τ2
int

0 1 τint
0 0 1

×
x1[n− 1]

x2[n− 1]
x3[n− 1]

+

α2τint + α1τ2
int + α0τ3

int
α1τint + α0τ2

int
α0τint

εu[n] (8)

εs[n] =
[
1 0 0

]
×

x1[n]
x2[n]
x3[n]

 = x1[n] (9)

The open loop transfer function is characterized as:

Ho3(z) =
α2τint(1− z−1)2 + α1τ2

int(1− z−1) + α0τ3
int

(1− z−1)3 (10)
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and the closed loop transfer function as:

Hc3(z) =
α2τint(1− z−1)2 + α1τ2

int(1− z−1) + α0τ3
int

(1− z−1)3 + α2τint(1− z−1)2 + α1τ2
int(1− z−1) + α0τ3

int
(11)

If the integration time tends to zero (τint → 0), the analog one sided equivalent
loop bandwidth is equal to the digital one [29–31]. The relation between the analog loop
bandwidth and the third-order tracking loop coefficients is well-known [1,32]:

B =
α2

2α1 − α2α0 + α2
1

4(α2α1 − α0)
(12)

A relation between these coefficients can simplify the previous expression [1]:

Bcont3×1 =

α2
α1
α0

 =

 2.4 ·ω
1.1 ·ω2

ω3

 (13)

where ω is the so-called natural frequency. Further developing Equation (12), the relation
between the loop bandwidth B and ω is achieved:

B =
ω

0.7845
(14)

A change of the loop bandwidth B leads to an update of the natural frequency w that, in
turn, reconfigures the loop filter coefficients (i.e., the control matrix Bcont3×1 ). The following
section shows three methods that adapt the loop bandwidth of an STL sub-optimally.

3. Variable Loop-Bandwidth Tracking Techniques

Variable loop-bandwidth tracking techniques set a connection between the loop band-
width and time-varying scenario conditions [7]. In dynamic scenarios, a fast loop response
with a large loop bandwidth is preferred to follow the dynamics, whereas, in stationary
scenarios, a noise-rejecting low loop bandwidth is appropriate. Variable loop-bandwidth
tracking techniques adapt the loop bandwidth depending on the noise and signal dynamics
of the tracking channel. They facilitate optimal operation for the tracking loops.

Figure 5 shows the general structure of this technique [33]. The loop bandwidth B[n]
and a set of measurements R[n] are the inputs to the adaptive loop-bandwidth estimator.
These techniques estimate a loop bandwidth B̂[n]. Since the set of measurements is noisy, a
Schmitt trigger module reduces the noise instabilities of the loop bandwidth estimate.

The Schmitt trigger only changes the next loop bandwidth B[n + 1] by ∆B if the
absolute difference between the estimated loop bandwidth and the actual one exceed ∆B:

B[n + 1] =


0 if n = 0
B̂[n] + ∆B if B̂[n]− B[n] ≥ ∆B ∧ n > 0
B̂[n]− ∆B if B[n]− B̂[n] ≤ ∆B ∧ n > 0
B[n] otherwise

(15)

A big ∆B value (e.g., 10 Hz) could unstable the tracking due to big loop bandwidth changes,
but a very low value (e.g., 0.01 Hz) could also cause instabilities due to excessive changes. 0.5 Hz
has been found an appropriate value for ∆B. Finally, the updated loop bandwidth B[n + 1]
changes the coefficients of the STL’s transfer function (see Equations (13) and (14)).

This section presents three techniques from this category: the FAB, the FL, and
the LBCA.
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Detector Loop Filter
εu[n]

NCOReplica Generator

Variable
Loop-Bandwidth

Technique

B[n]

R[n]

Schmitt
Trigger

B̂[n]

B[n + 1]y[m]

ε̇s[n]

εs[n]
ŷ[m]

Figure 5. General architecture of the implemented variable loop-bandwidth tracking techniques.

3.1. Fast Adaptive Bandwidth (FAB)

The FAB tracking technique is a model-based approach and estimates the input signal
parameters (thermal noise, phase noise, or steady state error (SSE)) of the STL [33]. A model
is used to define a loop-bandwidth dependent cost function c[n, B[n]]. Setting the first
derivative of the cost function to zero with respect to the loop bandwidth B[n], leads to
the minimum loop bandwidth Bmin to which the STL can handle the estimated dynamics
while filtering as much noise as possible.

The three-sigma rule-of-thumb of the tracking loop error is a commonly selected cost
function [6]:

c[n, B[n]] = σs
ε [n, B[n]] = σs

thermal[n, B[n]] +
εsse[n, B[n]]

3
(16)

where σs
ε is the jitter of the smoothed error, σs

thermal is the thermal noise, and εsse is the
dynamic stress error. Since σs

ε is loop-bandwidth dependent, the first order derivative of
σs

ε regarding the loop bandwidth can be performed. Setting the derivative to zero, the
minimum loop bandwidth Bmin is estimated [6]:

∂σs
ε [n, B[n]]
∂B[n]

= 0→ B[n] = Bmin (17)

The estimated minimum loop bandwidth Bmin depends on the linear C/N0, the
integration time τint, the order p, and the steady state line-of-sight (LOS) dynamics ∂pR

∂tp .
As an example, if the FAB is implemented in a third-order PLL, the following cost

function is achieved equalling to zero the first derivative of the smoothed carrier phase
error jitter σs

θ :

Bmin =
7

√√√√√√
(

2η3 ∂3R
∂t3

)2

1
C/No

(
1 + 1

2τintC/No

)( 360
2π

)2 (18)

In this case, Bmin is dependent on the linear C/N0 in Hz, the integration time τint in
seconds and the LOS jerk dynamics ∂3R

∂t3 in deg/s3. For a third-order PLL, the constant η
equals to 0.7845. The C/N0 and steady state LOS dynamics must be estimated, whereas
the other parameters are fixed.

Several considerations must be taken into account when implementing the FAB. First,
the noisy output of the discriminator makes it difficult to measure the SSE correctly (even
more for higher order loops). One solution is to accumulate the noisy measurements
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for a large interval [10] or to implement a dynamic error filter [11]. Second, an abrupt
change of the estimated optimal loop bandwidth Bmin may create tracking instabilities, and
needs to be minimized. An empirical scaling factor for the dynamic stress estimator and a
constrained loop bandwidth addresses this issue [11]. Another solution is to smooth the
loop bandwidth update using the Newton-Raphson method and an IIR filter [12].

Figure 6 shows the structure of the implemented three-sigma rule-of-thumb based
FAB: a C/N0 estimator, a dynamic stress estimator, the FAB, a gradient decent, an IIR filter
and a threshold limiter. Each component is explained in the subsequent paragraphs.

Detector Loop Filter
εu[n]

NCOReplica Generator

y[m]

ε̇s[n]

εs[n]
ŷ[m]

Dynamic
Stress

Estimator

C/N0
Estimator

Three-Sigma
Rule-of-Thumb

FAB

B[n]

Gradient
Descent

+
IIR Threshold

Limiter

Schmitt
Trigger

ε̂sse[n]

C/N0[n]

Bmin[n] Bs
GD[n]

B̂[n]

B[n + 1]

IQ

Figure 6. Architecture of the three-sigma rule-of-thumb based Fast Adaptive Bandwidth (FAB). ©IEEE. Adapted, with
permission, from [7].

The C/N0 estimator updates each tracking epoch. The dynamic stress estimator first
filters the discriminator’s output. The filter is a first order IIR filter with a decay time of ∆t.
The value of ∆t represents the algorithm’s sensitivity to dynamics. Second, it performs the
p–th derivative of the filtered discriminator’s output µu

ε in order to achieve an estimated
SSE LOS dynamic measurement ε̂sse:

ε̂sse =

∑
p
i=0(−1)i

(
p
i

)
µu

ε [n− i]

∆tp (19)

where
(

p
i

)
is the binomial coefficient. Since the un-smoothed error is normalized, ε̂sse is

in units of (cycles/sp).
Continuing with the example of the third-order PLL, the dynamic stress estimator

estimates the LOS jerk dynamics. This module filters the phase discriminator’s output µu
θ

and measures the angular jerk dynamics θ̂sse:

θ̂sse[n] =
µu

θ [n]− 3µu
θ [n− 1] + 3µu

θ [n− 2]− µu
θ [n− 3]

∆t3 (20)
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Next, the LOS jerk dynamics ∂3R
∂t3 in deg/s3 is calculated as the following:

∂3R
∂t3 [n] = 360◦ × ε̂sse[n] (21)

Abrupt loop bandwidth changes may result in tracking instabilities. Therefore, the
gradient descent method and a first order IIR filter smooth out the update. The gradient
descent method updates the actual loop bandwidth B[n] gradually:

BGD[n] =

{
B[n] + τint · Bmin[n]−B[n]

|∆Bmin[n]|
if |∆Bmin[n]| > 0.01

Bmin[n] otherwise
(22)

where ∆Bmin[n] is,
∆Bmin[n] = Bmin[n− 1]− Bmin[n] (23)

The updated loop bandwidth BGD[n] depends on the actual loop bandwidth B[n], the
estimated minimum loop bandwidth Bmin[n] and the previous estimated loop bandwidth
Bmin[n− 1]. To avoid instabilities, BGD[n] equals Bmin[n] when |∆Bmin[n]| is below 0.01 Hz.

Next, an IIR filter smooths BGD[n], achieving Bs
GD[n]. Finally, the filtered loop band-

width is passed through a threshold limiter that constraints Bs
GD[n] between a maximum

BMax and a minimum BMax allowed loop bandwidth:

B̂[n] =


BMax if Bs

GD[n]τint > BMaxτint

Bs
GD[n] if BMinτint ≤ Bs

GD[n]τint ≤ BMaxτint

BMin if Bs
GD[n]τint < BMinτint

(24)

Two main observations of the FAB can be made prior to implementation. First, the
speed of the SSE estimation ε̂sse determines the speed of the algorithm to react against
signal dynamics. The standard cost function (see Equation (16)) used does not consider
other sources of signal dynamics such as clock drift and low order transient dynamics.
Hence, it is possible that Bmin decreases erroneously due to the fact that ε̂sse is negligible
and other dynamic sources are not included. Second, the complexity of the algorithm can
be significant due to the Bmin estimation at high-order STLs.

3.2. Fuzzy Logic (FL)

Compared to the FAB technique, FL based tracking techniques significantly simplify
the control algorithm. Figure 7 shows the implemented FL algorithm structure. The
FL consists of four stages: pre-processing, fuzzy control rules, defuzzification, and post-
processing [15]. The pre-processing stage converts the discriminator’s output into two
fuzzy sets: The standard deviation σu

ε and the absolute mean |µu
ε |. The former fuzzy input

represents the tracking channel’s noise, whereas the latter indicates the error dynamics.
These fuzzy sets are finally normalized:

Ñ =
σu

ε

σu
ε + |µu

ε |
(25)

D̃ =
|µu

ε |
σu

ε + |µu
ε |

(26)

where Ñ is the normalized estimated noise and D̃ the normalized estimated dynamics.
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÷
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f PS
D̃

f ZO
D̃

f PL
D̃

f PS
Ñ
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Figure 7. Architecture of implemented Fuzzy Logic (FL) technique. ©IEEE. Adapted, with permission, from [7].

Next, the fuzzy control rules are applied. The zero f ZO, the positive-small f PS and the
positive-large f PL linear membership functions weight each normalized estimation [15].
These fuzzy functions are characterized as follows:

f ZO[n, ψ[n]] =


Tψ

Fuzzy−ψ[n]

Tψ
Fuzzy

if 0 ≤ ψ[n] ≤ Tψ
Fuzzy

0 otherwise
(27)

f PS[n, ψ[n]] =


ψ[n]

Tψ
Fuzzy

if 0 ≤ ψ[n] ≤ Tψ
Fuzzy

1−ψ[n]
1−Tψ

Fuzzy
if Tψ

Fuzzy ≤ ψ[n] ≤ 1

0 otherwise

(28)

f PL[n, ψ[n]] =


ψ[n]−Tψ

Fuzzy

1−Tψ
Fuzzy

if Tψ
Fuzzy ≤ ψ[n] ≤ 1

0 otherwise
(29)

where ψ[n] is the input estimation (Ñ or D̃) and Tψ
Fuzzy is the function threshold that defines

the regions of these three fuzzy functions. The relation between the thresholds of D̃ and
Ñ is:

TÑ
Fuzzy = 1− TD̃

Fuzzy (30)

Figure 8 shows the fuzzy functions for D̃ and Ñ. These functions have a triangular
shape. The base of these triangles is so wide that it allows each fuzzy input to be a member
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of two sets at least. An interesting observation is the symmetry between the weighted
estimates since D̃ = 1− Ñ:

f ZO[n, D̃[n]] = f PL[n, Ñ[n]] (31)

f PS[n, D̃[n]] = f PS[n, Ñ[n]] (32)

f PL[n, D̃[n]] = f ZO[n, Ñ[n]] (33)

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Figure 8. Fuzzy functions for normalized estimates D̃ and Ñ. ©IEEE. Reprinted, with permission,
from [7].

The deffuzication stage combines the degrees of membership of each fuzzy rule. The
best-known deffuzification method of the FL technique is the center of gravity (COG) [14].
The method used in this paper is similar to the fuzzy mean method (FMM) [34]. In contrast
to the previous method, integration is done instead of an average. The fuzzy-weighted
estimates are combined with a fuzzy weighting matrix Wfuzzy

3×3 :

P[n] =
3

∑
i=1

3

∑
j=1

f i[n, Ñ[n]] f j[n, D̃[n]]Wfuzzy
i,j (34)

where { f 1, f 2, f 3} are { f Z0, f PS, f PL} respectively.
The fuzzy weighting matrix Wfuzzy

3×3 is a hollow matrix in which the upper triangle
matrix has positive elements, and the lower triangle matrix negative values. Table 1 shows
the structure of Wfuzzy

3×3 [7].

Table 1. Structure of the fuzzy Matrix Wfuzzy
3×3 .

D̃

ZO PS PL

Ñ
ZO 0 >0 >0
PS <0 0 >0
PL <0 <0 0

The postprocessing unit scales the resultant value P[n] by S and multiplies it by the
current loop bandwidth B[n], achieving the final control signal c[n]:

c[n, P[n], B[n]] = P[n] · S · B[n] (35)
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Next, the loop bandwidth is updated:

BF[n] = B[n] + c[n, P[n], B[n]] (36)

Finally, as the FAB technique, a threshold limiter constraints the loop bandwidth (see
Equation (24)).

Two examples are addressed. If the normalized dynamics D̃ tends to zero, the nor-
malized noise Ñ goes to one. Therefore, f ZO[n, D̃[n]] and f PL[n, Ñ[n]] tend to one and the
other fuzzy functions to zero. Consequently, P[n] is:

P[n] = Wfuzzy
3,1 < 0 (37)

The updated loop bandwidth B[n + 1] decreases each iteration since the control signal
is always negative. Due to the loop bandwidth decrease, the control signal c[n] increases.
After some iterations, B[n] and c[n] tends to zero. This proves the lower bound stability of
the algorithm.

In the opposite case, if D̃ tends to one, the normalized noise Ñ goes to zero. In such a
case, P[n] = Wfuzzy

1,3 > 0 and the loop bandwidth increases together with the control signal.
The bigger the loop bandwidth, the bigger the update (see Equation (35)). This can lead to
instabilities due to abrupt changes of the loop bandwidth. Since there is no upper bound,
the same threshold limiter as in the FAB technique is implemented.

3.3. Loop-Bandwidth Control Algorithm

Similar to the FL method, the LBCA [16] uses the discriminator’s statistics to adapt the
loop bandwidth. However, it uses a normalized bandwidth BN dependent sigmoid-based
weighting function to combine these values. Figure 9 shows the structure of the LBCA.

PREPROCESSING LOOP-BANDWIDTH CONTROL ALGORITHM

NORMALIZATION

Detector Loop Filter
εu[n]

NCOReplica Generator

y[m]

ε̇s[n]

εs[n]
ŷ[m]

Mean
Estimate

Standard
Deviation
Estimate

+ ÷

|µu
ε [n]|

σu
ε [n]

×

gMax g[n, BN ]

+
D̃[n]

B[n]

+

Schmitt
Trigger

B̂[n]

c[n]

B[n + 1]

−

+

+
+

+

+

Figure 9. Architecture of loop-bandwidth control algorithm (LBCA). ©IEEE. Adapted, with permission, from [7].
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The algorithm’s inputs are the absolute mean |µu
ε | and the standard deviation σu

ε

estimates of the discriminator’s output. The absolute mean |µu
ε | is interpreted as the

dynamics and the standard deviation σu
ε as the noise of the tracking channel. The signal

dynamic estimate is normalized, similar to the FL approach.
At the core, the LBCA is a weighing function g[n, BN ]. The weighting function g[n, BN ]

and the normalized dynamic estimate D̃, that is scaled by the maximum value of the
weighting function gMax, determine the control signal c[n, BN ]:

c[n, BN ] = gMax · D̃[n]− g[n, BN ] (38)

The control signal c[n, BN ] and the current loop bandwidth B[n] determine the esti-
mated loop bandwidth B̂[n]:

B̂[n] = B[n] + c[n, BN ] (39)

The weighting function g[n, BN ] directly determines the adaption performance of the
LBCA. It is a linear combination of m normalized positive sigmoid functions:

g[n, BN ] =
m

∑
k=1

wkSigk(Sk(BN [n]− Pk)) =

w1
...

wm


T

×

 Sig1(S1(BN [n]− P1))
...

Sigm(Sm(BN [n]− Pm))

 (40)

where Pk is the shift parameter, Sk is the horizontal scaling and wk the vertical scaling. The
sigmoid function Sig(x) is defined as [35]:

Sig(x) =
1

1 + e−x (41)

The maximum value of the weighting function gMax is the sum of the vertical scal-
ing values:

gMax =
m

∑
k=1

wk (42)

gMax indicates the maximum update the algorithm can perform at each iteration. It
implicitly constrains the control value:

|c[n, BN ]| ≤ gMax (43)

If the noise and signal dynamics estimates are reliable, a larger gMax value is appropri-
ate to facilitate faster reaction.

The shape of the weighting function g[n, BN ] is crucial to achieving stable functionality
and optimal performance. Two examples follow to illustrate the weighting function
g[n, BN ] in extreme cases. In both cases, the maximum of the weighting function is unitary
(gMax = 1). In the first example, a noisy static scenario causes the estimated normalized
dynamics D̃ to tend to zero. In this case, the loop bandwidth should decrease in order to
filter as much noise as possible. Therefore, the weighting function must be more significant
than D̃ to have a negative control value. However, if the loop bandwidth approaches zero,
the weighting function should also tend to zero to avoid a negative loop bandwidth and
destabilize the STL. In the PLL, the loop bandwidth should be greater than a certain value
to not lose lock due to clock-error frequency drifts [36]. If a temperature-compensated
crystal oscillator (TCXO) is used, a good minimum normalized PLL bandwidth is around
0.06. Values less than the selected minimum normalized loop bandwidth are located in the
low normalized dynamic region. In this region, the weighting function approaches zero,
and the normalized bandwidth stops decreasing.

In the second example, the opposite scenario is considered. High signal dynamics at
high C/N0, in which the normalized dynamics tend to one. Since the STL must react as
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fast as possible to signal dynamics, the loop bandwidth should increase. Consequently,
the weighting function is lower than D̃ in order to have a positive control value c[n]. A
condition is that the analog to digital mapping does not hold anymore if the normalized
bandwidth is bigger than 0.4 [29–31]. Therefore, values bigger than 0.4 are located in
the high normalized dynamic region.In this region the weighting function is close to one,
meaning that the loop bandwidth can no longer increase.

The mentioned extreme scenarios are helpful to achieve a first glance of the weighting
function’s shape. However, intermediate scenarios in which the signal dynamics and noise
are equivalent must also be noted. These cases occur in the transient region.The value of
the weighting function in this region is the normalized dynamic threshold TLBCA. TLBCA
determines the sensitivity to normalized dynamics. The higher the threshold, the less
sensitive to signal dynamics.

Figure 10 shows the shape of the weighting function being a linear combination of
two sigmoid functions.

g[n, BN ] =

[
w1
w2

]T

×
[

Sig(S1(BN − P1))
Sig(S2(BN − P2))

]
(44)

The biases P1, P2 determine the borders of the regions, the horizontal scaling S1, S2
indicate the slope of the transition between regions, and the vertical scaling w1, w2 define
the sensitivity to normalized dynamics.
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DYNAMICS REGION

Figure 10. Weighting function of LBCA.

The weighted function’s complexity is significant due to the sigmoid function in
which a division of an exponential is required. An approach to reduce the complexity is
to perform an approximation using the piecewise linear approximation of nonlinearities
(PLAN) technique [37]:

SigPLAN(Sk(BN − Pk)) =



1 if Sk(BN − Pk) ≥ 5

0.03125 · Sk(BN − Pk) + 0.84375 if 2.375 ≤ Sk(BN − Pk) < 5

0.125 · Sk(BN − Pk) + 0.625 if 1 ≤ Sk(BN − Pk) < 2.375

0.25 · Sk(BN − Pk) + 0.5 if 0 ≤ Sk(BN − Pk) < 1

1− SigPLAN(Sk(BN − Pk)) if Sk(BN − Pk) < 0

(45)

Figure 11 shows the comparison between the weighting function and its piece-wise
linear approximation. The approximation errors are located in the limits between regions.
However, it is a good approximation since there is maximum error of 0.15 %. In the next
section, both weighted functions are evaluated.
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Figure 11. Comparison between sigmoid weighting function and its piecewise linear approximation.

4. Evaluation Method of Adaptive Loop-Bandwidth Tracking Techniques

This section analyses the most adequate quality factors that represent the performance
and the complexity of adaptive tracking techniques.

4.1. Tracking Performance

Two parameters that define an adaptive tracking technique’s tracking performance
are considered: the Cramér-Rao bound (CRB) and the one-sigma rule threshold of the
unsmoothed error σth

εu . The CRB indicates the minimum error variance of an unbiased
estimator [38], whereas the one-sigma rule threshold is a conservative threshold that
ensures a stable tracking lock if the tracking error is less than this threshold [1]. The
standard deviation of the discriminator’s error σu

ε is a good performance metric [8]. The
tracking performance is defined as the difference between the average σu

ε and the lower
bound standard deviation σu

LB:

PTracking = σu
ε − σu

LB (46)

The average of σu
ε , σu

ε , is defined as:

σu
ε =

Ksim

∑
n=0

σu
ε [n]

Ksim
(47)

where Ksim is the discrete simulation time in samples. Ksim is represented as the product
between the simulation time Tsim in seconds and the logging data rate fs in Hz:

Ksim = Tsim fs (48)

Since the adaptive tracking techniques are implemented in a third-order Costas PLL,
the PLL tracking performance is analyzed. Considering the PLL as a time of arrival (ToA)
unbiased estimator [39], the resulting square-root CRB of the un-smoothed carrier phase
error θu in meters is:

σu
LB =

(
λ

2π

)√
1

2τintC/N0

(
1 +

1
2τintC/N0

)
(49)
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where λ is the wavelength of the GNSS signal and the term 1 + 1
2τintC/N0

is the squaring
loss. Figure 12 shows the lower bound of the un-smoothed carrier phase error with an
integration time τint of 20 ms at different C/N0 levels.

25 30 35 40 45 50

10
_
3

10
_
2

Figure 12. Square root CRB of the un-smoothed carrier phase error at different C/N0 levels,
τint = 20 ms.

From the three-sigma rule-of-thumb, the carrier phase error jitter σs
θ must be less

than a conservative threshold to ensure stable tracking and no cycle-slips [1]. This upper
threshold is also applied to the un-smoothed phase error jitter σu

θ . Since a two-quadrant
arctangent discriminator is used, the one-sigma rule threshold in meters is:

σth
θu =

1
3
× Ω

4
× λ

2π
=

π

12
× λ

2π
=

λ

24
(50)

where Ω is the phase pull-in range in radians. The 1/12 factor in Eqution (50) is included
because the one-sigma rule threshold is one-third of the three-sigma rule threshold and
one-fourth of Ω is selected to have a conservative threshold.

4.2. System Performance

The system performance considers the performance of all the tracking channels to-
gether. The average lock indicator for each tracking channel is an appropriate metric to
measure the system performance in terms of precision [40,41].

Since this study evaluates the performance of the PLL, the phase-lock indicator (PLI)
is considered:

PLI =
I2
p −Q2

p

I2
p + Q2

p
(51)

where Ip and Qp are the in-phase and quadrature prompt correlation values.
The selected quality factor is the average of the PLI with respect the discrete simulation

time Ksim and the accumulated number of tracked satellite vehicles (SVs) NAcc
sat :

PLI =
NAcc

sat

∑
l=0

Ksim

∑
n=0

PLIl [n]
KsimNAcc

sat
(52)

If a SV is tracked at least once during the simulation, the PLI of this SV is considered
to calculate PLI.
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In order to measure the system performance in terms of robustness against dynamics,
a good quality factor is the average number of visible satellites being tracked Nsat:

Nsat =
Ksim

∑
n=0

Nsat[n]
KsimNTotal

sat
(53)

where NTotal
sat is the total number of visible satellites in the scenario.

A final metric is achieved combining (52) and (53):

PSystem = PLI×Nsat (54)

The average system performance PSystem with respect the C/N0 levels determines the
overall performance of the adaptive tracking technique.

PSystem =
NCN0

∑
k=1

Pk
System

NCN0
(55)

where NCN0 is the number of C/N0 levels. The system performance metric PSystem which
accounts for both noise and dynamics for tracking, is a novel contribution of this paper.

4.3. Complexity

A theoretical method to quantify an adaptive tracking technique’s complexity is
to measure the number of required mathematical operations. This method provides a
“best-case” comparison, and neglects any implementation limitations. Table 2 shows
the theoretical number of additions, multiplications, divisions and different operations
required for each case. The total number of operations for each adaptive tracking technique
is labeled in colors from the highest, in red, to the lowest number of operations, in green.

Table 2. Complexity of the adaptive loop-bandwidth tracking techniques based on the number of operations.

Tracking Technique Sub-Module
Number of Operations:

Additions Multiplications Divisions Other

FAB

Dynamic Stress Estimator 4 6 1 -
Three-Sigma FAB 1 11 2 7√·
Gradient Descent 3 1 1 -

Total 8 18 4 1

FL
Dynamic/Noise Estimator 4 4 2 -

FL Algorithm 13 25 0 -

Total 17 29 2 0

LBCA
Dynamic/Noise Estimator 2 1 1 -

LBCA algorithm 4 5 1 exp

Total 6 6 2 1

LBCA + PLAN
Dynamic/Noise Estimator 2 1 1 -

LBCA algorithm 4 6 0 -

Total 6 7 1 0

Since the algorithms are implemented in software, the time complexity is a good
practical complexity indicator. The time complexity measures the processing time the
algorithm takes in software on the processing platform. Although this approach depends on
how exemplary the algorithm’s software implementation is, the results show a correlation
between the number of operations and the time complexity. The time complexity is
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measured in an Intel Skylake micro-architecture with a clock speed of 3700 MHz. The code
is implemented in C++, and a for-loop is used to iterate the operation of a loop filter 3× 108

times. The chrono library is used to measure the processing time of the algorithm [42].
Also, the performance profiler tool for Linux operf serves to have a statistical report of the
libraries used during the algorithm’s execution [43]. In order to avoid multi-threading,
the taskset command is used to bind the application process to one single core [44]. Table
3 shows the total time complexity TC in seconds, the average time complexity at each
iteration TIter in nanoseconds, and the added time complexity TAdded compared to the
standard loop filter TStandard

C (i.e., with no adaption algorithms). The TAdded values are
labeled in colors from the most complex algorithm, in red, to the less complex one, in green.
The iteration time complexity is defined as:

TIter =
TC

3× 108 × 109 (nanoseconds) (56)

and the added time complexity is expressed as:

TAdded =
TC

TStandard
C

(times) (57)

Table 3. Time complexity of the adaptive loop-bandwidth tracking techniques, 3× 108 iterations.

Tracking Total Time Complexity Iteration Time Complexity Added Time Complexity
Technique TC (s) TIter (ns) TAdded (Times)

Standard 18.1 60.3 1

FAB 133.7 445.8 7.4×

FL 55.0 183.5 3.0×

LBCA 31.9 106.4 1.8×

LBCA + PLAN 27.8 92.8 1.5×

The FAB technique presents high complexity due to the seventh root (see Equation (18)).
This is verified from the profiler report, which shows high use of the pow function from
the libm library [45]. The derivation of the Newton-Raphson method [46] can approximate
this operation in order to achieve a lower complexity. However, this approximation is not
performed in the actual implementation. The FL technique presents a lower time complexity
than the FAB technique but higher than the LBCA. The profiler report of the LBCA shows
the use of the exp function from the libm library [45]. The piece-wise linear approximation of
the weighting function in the LBCA technique removes that function’s utilization, reducing
the algorithm’s complexity.

5. Experimental Setup

This section describes the experimental setup and the expected results.

5.1. Receiver and Algorithm Implementation

The GOOSE© platform, developed by Fraunhofer IIS and marketed through TeleOrbit
GmbH, is a GNSS receiver with an open software interface [24,25]. A picture of the receiver
is shown in Figure 13. The receiver is based on a Xilinx Kintex7 field-programmable gate
array (FPGA), depicted in green, connected to an external processor, in purple, using a
peripheral component interconnect express (PCIe) interface. The FPGA receives digital
samples from a customized tri-band radio-frequency front-end (RFFE), in red. One acquisi-
tion module and sixty tracking channels are implemented, which can be controlled by an
external processor.
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Processing intense portions of the tracking stage are implemented in hardware (“Track-
ing Correlators”) and the remainder in software (“Tracking Loops”). The correlators and
the NCOs are implemented on an FPGA, whereas the software part includes the discrim-
inators, the loop filters, and the adaptive tracking algorithms. Figure 14 shows a block
diagram of the entire receiver. The analog hardware is shown in red, the digital firmware
in green, and the digital software in blue. It also contains the RFFE, an analog-to-digital
converter (ADC), signal conditioning, acquisition, the receiver manager, symbol decoding,
and the PVT engine.

Figure 13. Photo of the GOOSE receiver @Fraunhofer IIS/Paul Pulkert.
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RFFE ADC

Antenna

Firmware

Signal
Conditioning
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Figure 14. GOOSE architecture diagram.

Each tracking channel contains a second-order FLL, a third-order Costas PLL and
a second-order DLL with PLL-assisted-DLL (PAD) enabled. The FLL is first enabled in
order to track and refine the acquired Doppler frequency. Once a stable frequency lock is
achieved, the transition to the FLL-assisted-PLL (FAP) is done. In this stage the PLL lock
indicator is stabilizing with the assistance of the FLL. After obtaining a good and stable
PLL lock, the FLL gets disabled in order to improve the tracking accuracy. In this final
stage, the bit synchronization is performed to decode the navigation message and get a
PVT solution. If the PLL lock deteriorates, the receiver goes back to the previous stage FAP
by default in order to recover the carrier lock. However, for these tests this condition is
disabled in order to evaluate correctly the adaptive carrier phase tracking capabilities.

The purpose is to evaluate the performance and the complexity of each variable
loop-bandwidth tracking technique implemented in this receiver’s PLL against simulated
scenarios with different dynamics and noise levels. In this study, only Global Positioning
System (GPS) L1 C/A signals are considered. Moreover, the algorithms are evaluated at an
integration time τint of 20 ms. Table 4 shows the initial configuration of the DLL, FLL, and
PLL that is used for all the tests.
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Table 4. Initial configuration of the DLL, FLL and PLL for each tracking channel.

DLL FLL PLL

Order 2 2 3
B [Hz] 0.1 15 8

Discriminator CELP Diff Atan Atan

The FAB, the FL, the LBCA, and the LBCA with PLAN algorithms are implemented
on the GOOSE receiver in software. These adaptive tracking techniques are configured to
adapt the loop bandwidth of a third-order Costas PLL.

5.1.1. FAB Configuration

Since the integration time τint is 20 ms, a loop bandwidth bigger than 18 Hz could desta-
bilize the tracking because of the wrong mapping from analog to digital domain [29–31].
Hence, the selected upper bound BMax of the threshold limiter (see Equation (24)) is set to
18 Hz. It has been observed that a PLL loop bandwidth lower than 4 Hz cannot remain
in lock, probably because of permanent signal dynamics due to nonlinearities. Conse-
quently, in case the estimation tends erroneously to zero, a lower bound 4 Hz is set in the
threshold limiter.

B̂[n] =


18 if Bs

GD[n] > 18
Bs

GD[n] if 4 ≤ Bs
GD[n] ≤ 18

4 if Bs
GD[n] < 4

(58)

In the following section, the FAB algorithm’s performance is evaluated in terms of
the filtered time ∆t of the steady state error dynamics estimator (see Equation (20)). This
parameter is selected since it directly affects the algorithm’s sensitivity to dynamics.

5.1.2. FL Configuration

Table 5 shows the empirically selected values of the fuzzy matrix Wfuzzy
3×3 [7].

Table 5. Selected values of the fuzzy Matrix Wfuzzy
3×3 .

D̃

ZO PS PL

Ñ
ZO 0 0.5 0.75
PS −0.25 0 0.5
PL −0.5 −0.25 0

The same threshold limiter as in the FAB technique is used (see Equation (58)). Another
parameter to consider is the fuzzy threshold Tψ

Fuzzy. Based on the three-sigma rule-of-
thumb, the optimal normalized dynamics can be calculated [16]. Dopt is the optimal
normalized dynamics in order to achieve best tracking performance. For a third-order PLL
the optimal normalized dynamics Dopt is 1/7. In the following section, the FL technique’s
performance is evaluated, varying the normalized dynamics fuzzy threshold TD̃

fuzzy around
Dopt. Moreover, the effects of the scale factor S is shown.

5.1.3. LBCA Configuration

The selected weighting function is a linear combination of two sigmoid functions and
has the following expression:

g[n, BN ] = S
[

TLBCA
1− TLBCA

]T

×
[

Sig(50(BN − 0.06))
Sig(250(BN − 0.36))

]
(59)
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The biases constraints the normalized bandwidth BN . The algorithm cannot go below
a BN lower than 0.06. In theory, the lower limit should be set at zero if there is no signal
dynamics. However, it is considered that there is always some dynamics due to the clock
drift or other non-linearities. Therefore, 0.06 is chosen as a lower limit. The upper limit
is chosen due to the mapping limitation from the analog domain to the digital domain.
The empirically selected horizontal scaling values have an adequate slope in the borders
between regions. The vertical scaling depends on the normalized dynamics threshold
TLBCA, and a scale factor S. The former parameter determines the sensitivity to dynamics,
whereas the latter indicates the maximum loop bandwidth update of the algorithm. S is
equivalent to gMax:

gMax = S · (TLBCA + 1− TLBCA) = S (60)

As in the FL configuration, TLBCA must be around the optimal normalized dynamics
Dopt. Different normalized dynamics threshold TLBCA values and scale factors gMax are
presented in the following section.

5.2. Evaluation Setup

Figure 15 presents the test set-up. It is the same as with previous studies [16], where
a Spirent GSS9000 radio-frequency constellation simulator (RFCS) generates controlled
scenarios. The simulation duration is 20 min and the simulation repeats for different C/N0
levels. In this case, the simulation repeats 8 times, from 24 dBHz to 52 dBHz in 4 dB steps.
Since the sensitivity of the acquisition is lower than the sensitivity of the tracking, the
simulation always starts at the highest C/N0 level, 52 dBHz. The C/N0 level is reduced by
4 dB in 30 s intervals, until reaching the desired level. For example, 3.5 min are necessary
to reach a C/N0 level of 24 dBHz. Therefore, in order to assure that the measured tracking
and system performance is reliable, the last 10 min of the simulation are considered,
Tsim = 600 s. Only GPS L1 C/A signals are generated by the RFCS, as only these signals
are evaluated in this study. However, for future evaluations, other GNSS signals will also
be considered.

Figure 15. Setup for the simulation. ©IEEE. Adapted, with permission, from [7].

The generated scenarios are either static or have receiver dynamics. The static scenar-
ios represent stationary use-cases such as GNSS reference stations, whereas the dynamic
scenarios represent harsh vehicular conditions. Figure 16 shows the sky-plot of both sce-
narios. There are 10 visible satellites during the simulation. However, SV G1 disappears
behind the horizon after two minutes of simulation and SV G30 rises above the horizon
near the end of the simulation. Therefore, the maximum number of visible satellites NTotal

sat
is limited to eight.
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Figure 16. Sky-plot of simulated scenario.

Figure 17 shows the LOS jerk dynamics of six out of the eight GPS SVs in the simulated
dynamic scenario. The first 10 min of the simulated dynamic scenario is static. In this
way, the adaptive tracking converges to a steady estimation of the loop bandwidth equal
to the one in the simulated static scenario. After 10 min of simulation, the high dynamic
vehicular scenario begins. The simulated trajectory presents the highest LOS dynamics at
low elevation satellites, whereas high elevation ones have reduced dynamics. For example,
SV G4 is located in the zenith, and a maximum LOS jerk of 1 g/s is observed, whereas SV
G17 presents the highest LOS jerks dynamics with 8.7 g/s. Figure 17b focuses on the time
with the highest dynamics. In this period, the tracking of most of the satellites will be lost.
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(b) Zoom to highest dynamics time period
Figure 17. Jerk line-of-sight dynamics of simulated dynamic scenario.

Before evaluating the adaptive tracking techniques, the tracking and system per-
formance of the traditional PLL are measured. This helps to observe the performance
improvement of adaptive loop-bandwidth tracking techniques compared to standard track-
ing. A single tracking channel is tested to evaluate the tracking performance, and the
tracking outputs, including the correlator IQ values, discriminator outputs, current loop
bandwidth, and the estimated C/N0, are logged. For the system performance, all the eight
visible GPS SVs are considered and the open GNSS receiver protocol (OGRP) is used for
logging the receiver measurements [47,48]. The average system performance PSystem metric
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for the standard PLL and the adaptive algorithms are calculated (see Equation (55)). Lastly,
basic Pareto optimization [49–51] is applied to identify the best techniques based on the
static PSystem and dynamic PSystem trade-off.

The data rate fs of the logged measurements equals 1/τint. Since the integration time
τint is 20 ms, the data rate is 50 Hz. Therefore, considering Equation (48) and Tsim = 600 s,
the discrete simulation time Ksim equals 30,000 samples.

6. Results

The results are separated into four sections. First, the static performance is evaluated
to show tracking capabilities in noise only environments. Second, dynamic performance is
measured to show the capabilities for vehicular applications. Third, the synthesis of all
the gathered results is performed. The last section presents a final comparison between
system performance and time complexity. The dataset used to plot the presented results
are available on the cloud [52].

6.1. Static Scenario

Figure 18 shows the GNSS-Receiver with Open Software Interface (GOOSE) receiver’s
tracking and system performance in a static scenario at different PLL loop bandwidths and
C/N0 levels. Figure Figure 18a presents the tracking performance of SV G4. The one-sigma
rule threshold σth

θu in meters is also included. Values greater than σth
θu indicate that the lock

of the tracking is likely lost and experiencing severe cycle slips. Therefore, only values
below this threshold can be regarded as being on a stable track. The tracking performance
at different loop bandwidths differs in order of millimeters. The results have the same
tendency as previous results obtained by another GOOSE receiver [16]. At a higher C/N0
level, a bigger loop bandwidth reduces the tracking error difference. This is due to the
fast response of the filter to correct the carrier phase error. On the contrary, if the C/N0
decreases, a lower loop bandwidth is adequate to reduce the error’s noise.
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(a) Tracking performance of SV G4
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(b) System performance
Figure 18. Static performance of standard PLL at different C/N0 levels and loop bandwidths.

The system performance PSystem is the product between the average PLI, PLI, and the
average number of tracked visible satellites Nsat (see Equation (54)). Figure 18b shows
the system performance of the GOOSE receiver at different C/N0 levels. At high C/N0
values, all bandwidths achieve good performance. However, at low C/N0, broader loop
bandwidths result in poor performance. This shows how effective a narrow loop bandwidth
can suppress noise effects.

Figure 19 includes the tracking performance of SV G4 using the FAB PLL (see
Figure 19a) and the system performance considering all the visible SVs (see Figure 19b).
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The FAB technique changes its sensitivity to dynamics depending on the IIR filter decay
time ∆t to estimate the SSE (see Equation (20)). Hence, different decay times are evaluated
to see how this parameter affects the static performance. If the time of filtered data is
less than 0.5 s, the algorithm is too sensitive to dynamics, and the tracking performance
deteriorates at low C/N0. From a system perspective, this configuration is the only one
that does not achieve PVT at 28 dBHz. The system performance is equivalent to the other
configurations at higher C/N0 levels. If the decay time ∆t is above 0.8 s, the tracking
performance deteriorates at higher C/N0 level. An intermediate ∆t such as 0.7 s seems to
have the best tracking performance. Therefore, an adequate IIR filter with a decay time ∆t
is determined to be between 0.6 s and 0.8 s.

Figure 20 shows the average loop bandwidth of the adaptive FAB PLL BAPLL. The
average loop bandwidth is calculated as:

BAPLL =
Ksim

∑
k=0

BAPLLk

Ksim
(61)
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(b) System performance
Figure 19. Static performance of FAB PLL at different C/N0 levels.
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Figure 20. Average FAB PLL loop bandwidth of SV G4 trackingin static scenario.

The added error bars indicate the maximum and minimum estimated loop bandwidth
during the entire simulation. If ∆t is less than 0.5 s, the average loop bandwidth is around
17.5 Hz for all the C/N0 levels. The estimated loop bandwidth goes beyond 18 Hz, but
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the threshold limiter constraints it to 17.5 Hz in order to avoid destabilizing the tracking.
On the contrary, if the decay time ∆t is above 0.8 s, the algorithm does not detect any
steady-state dynamics. Therefore, the estimated loop bandwidth tends to zero. However,
the threshold limiter constraints the loop bandwidth to 4.5 Hz.

Figure 21 shows the static performance of the FL PLL. The normalized dynamic
function threshold TD̃

Fuzzy defines the sensitivity to dynamics, and the scale factor S indicates
the speed of the update rate. Different function thresholds and scale factors are selected to
evaluate the FL. At high C/N0 levels, each configuration’s tracking error performance is
similar (see Figure 21a). Conversely, at lower C/N0, the tracking performance degrades if
the FL is too sensitive (TD̃

Fuzzy = 0.1) or too insensitive (TD̃
Fuzzy = 0.2) to signal dynamics.

An intermediate threshold such as TD̃
Fuzzy = 0.14 results in better tracking performance.

The same behaviour is observed in the system performance (see Figure 21b). At 28 dBHz,
TD̃

Fuzzy = 0.1 and TD̃
Fuzzy = 0.2 presents worse performance than TD̃

Fuzzy = 0.14.
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(a) Tracking performance of SV G4
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(b) System performance
Figure 21. Static performance of FL PLL at different C/N0 levels.

Figure 22 reveals that a decrease in TD̃
Fuzzy leads to a bigger average loop bandwidth

BAPLL. If the scale factor S increases, the maximum and minimum value of the estimated
loop bandwidth also rise. This indicates that the loop bandwidth oscillates over a broader
range, and it can be a problem at low C/N0 levels. Another interesting observation is
the algorithm’s behavior once the lock is lost. For instance, at 24 dBHz, all the presented
configurations lose the tracking lock. On the one hand, if the configuration is too sensitive
to signal dynamics (e.g., TD̃

Fuzzy = 0.1), the loss of lock is interpreted as signal dynamics,
and the loop bandwidth increases at each iteration. Since there is a threshold limiter,
the loop bandwidth is constrained to the upper limit, 17.5 Hz. On the other hand, if the
configuration is less sensitive to dynamics, the loop bandwidth correctly decreases to zero
when there is a lock loss. However, the loop bandwidth is limited to the lower bound,
4.5 Hz.

Figure 23 shows the static performance of the LBCA STL. The LBCA technique de-
pends on the maximum value of the weighting function gMax and the normalized dynamic
threshold TLBCA (see Figure 23a). As the FL technique, gMax indicates the amount of oscil-
lation of the loop bandwidth, and TLBCA sets the sensitivity to signal dynamics. Figure 23a
shows that a low gMax (e.g., 0.01) can still track the signal at 24 dBHz. However, at a
system level, the lock of at least 4 SV cannot be achieved and there is no PVT solution (see
Figure 23b). An LBCA configuration with a higher gMax makes the loop bandwidth update
unstable at that C/N0 level, and even the lock of SV G4 is lost. It is also observed that a
higher normalized dynamic threshold TLBCA results in a worse tracking error difference.
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Figure 22. Average FL PLL loop bandwidth of SV G4 tracking in static scenario.
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(b) System performance
Figure 23. Static performance of loop-bandwidth control algorithm (LBCA) PLL at different C/N0 levels.

As expected, a lower gMax leads to a smaller oscillation range of the estimated loop
bandwidth (see Figure 24). Also, a decrease in TLBCA increases the average loop band-
width estimate.
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Figure 24. Average LBCA PLL loop bandwidth of SV G4 tracking in static scenario.
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Figure 25 shows the tracking performance of the LBCA with PLAN interpolation
STL. Due to approximation errors, the lock of SV G4 is not achieved at 24 dBHz even with
a low gMax. These errors make the algorithm respond slower to achieve adequate loop
bandwidth. Otherwise, the static tracking performance of this algorithm seems to be very
similar to the LBCA technique.
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(b) System performance
Figure 25. Static performance of LBCA PLL with PLAN interpolation at different C/N0 levels.

Figure 26 reveals that the average loop bandwidth estimate of this technique is similar
to the one without the piece-wise approximation.

6.2. Dynamic Scenario

First, the performance of the standard tracking should be analyzed with different PLL
loop bandwidths. Figure 27a shows that a loop bandwidth below 10 Hz loses the tracking
lock of the SV G17 due to the large LOS dynamics at any C/N0 level. If the loop bandwidth
is bigger than 10 Hz, the tracking can handle the LOS dynamics of SV G17. At lower C/N0
levels (e.g., 32 dBHz), a loop bandwidth of 14 Hz has the best performance, whereas, at a
higher C/N0, a loop bandwidth between 16 Hz and 18 Hz is preferable. Figure 27b shows
the system performance of the dynamic scenario. Loop bandwidths lower than 10 Hz
achieve a PVT solution from 40 dBHz, mainly because it can track other SV with lower LOS
dynamics. However, the system performance is still worse than higher bandwidths. Only
a PLL loop bandwidth of 16 Hz can achieve a PVT down to 32 dBHz. At 28 dBHz, a loop
bandwidth of 8 Hz has the best system performance, even without a PVT solution.
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Figure 26. Average LBCA + PLAN PLL loop bandwidth of SV G4 tracking in static scenario.
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(b) System performance
Figure 27. Dynamic performance of standard PLL at different C/N0 levels and loop bandwidths.

The following results present a detailed description of the adaptive tracking tech-
niques’ capability to maintain the tracking lock against the dynamic scenario. Ideally, these
techniques increase the loop bandwidth once signal dynamics are detected.

Figure 28 includes the tracking the tracking performance of SV 17 (Figure 28a) and
the system performance (Figure 28b) of the FAB technique at different C/N0 levels. A
lower filtered time ∆t of the SSE estimator makes the algorithm react faster to dynamics.
For instance, a ∆t lower than 0.5 s presents better tracking performance than the other
configurations. It also presents the best system performance. However, this configuration
makes the algorithm too sensitive to dynamics, always having the maximum loop band-
width possible (17.5 Hz) independent of the C/N0 level (see Figure 29). If ∆t is greater than
0.7, the algorithm cannot track SV 17 at any C/N0 level. With this configuration, the loop
bandwidth goes to the lower threshold 4.5 Hz at any C/N0 level. With ∆t equal to 0.7 s,
the estimated loop bandwidth achieves a value between the thresholds. Once dynamics
are present, the FAB tries to increase the loop bandwidth to follow the signal dynamics.
However, the algorithm does not succeed in maintaining the lock. A better solution should
be a ∆t between 0.5 s and 0.7 s.
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(b) System performance
Figure 28. Dynamic performance of FAB at different C/N0 levels.
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(a) C/N0 at 32 dBHz
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(b) C/N0 at 44 dBHz
Figure 29. PLL loop bandwidth update with FAB of SV G17 tracking in dynamic scenario.

Figure 30 shows the dynamic performance of the FL technique. A lower TD̃
Fuzzy

presents better tracking and system performance. Figure 30a shows that a TD̃
Fuzzy equals

to 0.1 achieves the lock of SV 17 down to 40 dBHz, whereas TD̃
Fuzzy = 0.2 do not achieve

lock at any C/N0 level. Regarding the system performance, any configuration of the FL
technique does not achieve a PVT solution up to 36 dBHz (see Figure 30b).
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(b) System performance
Figure 30. Dynamic performance of FL at different C/N0 levels.

Figure 31 shows how the PLL loop bandwidth adjusts during the dynamic scenario
using the presented FL configurations. At 32 dBHz, all the configurations of the FL fail with
tracking the signal. When the fuzzy technique with the lowest TD̃

Fuzzy loses lock, unlike the
other configurations, the loop bandwidth goes to the maximum loop bandwidth threshold.
This means that the loss of lock is considered as dynamics. This result is incorrect since the
loop bandwidth should tend to zero to filter all the erroneous phase errors. At 44 dBHz, all
the FL’s presented configurations can track the signal dynamics except with low sensitivity
to dynamics, TD̃

Fuzzy = 0.2. Once this last configuration loses lock, the loop bandwidth goes
to the lower loop bandwidth threshold, 4.5 Hz.
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(a) C/N0 at 32 dBHz
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(b) C/N0 at 44 dBHz
Figure 31. PLL loop bandwidth update with FL of SV G17 tracking in dynamic scenario.

Figures 32 and 33 show that the LBCA technique presents a better dynamic perfor-
mance with a lower dynamic threshold (TLBCA = 0.14). A bigger scale factor gMax improves
the tracking performance of SV 17 (see Figure 32a) because of the bigger loop bandwidth
update. However, a bigger update can lead also to instabilities and worse performance in
the presence of lower LOS dynamics. Figure 32b shows that, at TLBCA = 0.2, a lower scale
factor can achieve better system performance at some C/N0 levels (e.g., 40 dBHz).
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(b) System performance
Figure 32. Dynamic performance of LBCA at different C/N0 levels.

At 32 dBHz, the LBCA technique cannot achieve lock at any configurations (see
Figure 33a). The same as in the FL technique happens when the algorithm is too sensitive
to dynamics (e.g., TLBCA = 0.14) that it goes erroneously to the highest loop bandwidth
when the lock is lost. At 44 dBHz, all the configurations can track SV 17 during the dynamic
scenario. Figure 33b presents the effects of the dynamic threshold and the scale factor. A
bigger dynamic threshold leads to bigger bias of the estimated loop bandwidth. This is also
observed in Figure 24. Moreover, a bigger scale factor results in a noisier loop bandwidth
estimate, but with a better capability to react faster.
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(a) C/N0 at 32 dBHz
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(b) C/N0 at 44 dBHz
Figure 33. PLL loop bandwidth update with LBCA of SV G17 tracking in dynamic scenario.

The LBCA with PLAN interpolation presents a similar dynamic performance as the
LBCA at high C/N0 levels (see Figure 34). At lower C/N0, the dynamic performance
using a scale factor of gMax = 0.1 and a normalized dynamics threshold TLBCA = 0.14
stands out above the rest of the configurations. This configuration maintains the lock even
at 32 dBHz. In addition, the configuration with gMax = 0.1 and TLBCA = 0.2 has poor
tracking performance at 44 dBHz. However, the system performance is similar to the other
configurations at that C/N0 level.
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Figure 34. Dynamic performance of LBCA with PLAN interpolation at different C/N0 levels.

The LBCA + PLAN technique with S = 0.1 and TLBCA = 0.14 is the unique adaptive
tracking technique that can still track the signal at 32 dBHz in the presence of high LOS jerk
dynamics. Once dynamics are present, the estimated loop bandwidth goes from 11 Hz to
17.5 Hz to follow the phase error dynamics (see Figure 35a). After that, the loop bandwidth
goes back to 11 Hz and repeats when new dynamics are detected.

The LBCA + PLAN technique with S = 0.1 and TLBCA = 0.2 loses lock at time
t = 1000 s (see Figure 35b). This explains the poor tracking performance of this config-
uration at that C/N0 level (see Figure 34a). The high scale-factor causes unstable loop
bandwidth estimates. It can happen that, once dynamics are present, the loop band-
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width estimate has such a low value that it is not able to respond to signal dynamics and
loses lock.
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(b) C/N0 at 44 dBHz
Figure 35. PLL loop bandwidth update with LBCA with PLAN interpolation of SV G17 tracking in dynamic scenario.

6.3. Total System Performance

This section summarizes the previous sections’ obtained results, taking a single quality
factor that determines the adaptive tracking techniques’ system performance in a static and
a dynamic scenario. The average system performance PSystem (see Equation (55)) for both
the static and dynamic scenario is calculated and displayed in Table 6. The labels-column
in this table is used for further analysis in a subsequent section. Furthermore, for each
tracking technique, the best system performance is marked in green, whereas the worst
one is in red.

Table 6. System performance of adaptive tracking techniques.

Tracking Technique Configuration Label PSystem Static PSystem Dynamic

Standard PLL

BPLL = 5Hz P1 0.718 0.351
BPLL = 8Hz P2 0.715 0.410

BPLL = 12Hz P3 0.675 0.492
BPLL = 16Hz P4 0.608 0.581

FAB
∆t = 0.8 s T1 0.730 0.343
∆t = 0.7 s T2 0.713 0.399
∆t = 0.5 s T3 0.574 0.593

FL

S = 0.01, TD̃
Fuzzy = 0.14 T4 0.720 0.473

S = 0.1, TD̃
Fuzzy = 0.14 T5 0.708 0.470

S = 0.1, TD̃
Fuzzy = 0.1 T6 0.695 0.503

S = 0.1, TD̃
Fuzzy = 0.2 T7 0.678 0.398

LBCA
S = 0.01, TLBCA = 0.2 T8 0.727 0.458
S = 0.1, TLBCA = 0.2 T9 0.691 0.444

S = 0.1, TLBCA = 0.14 T10 0.706 0.543

LBCA + PLAN
S = 0.01, TLBCA = 0.2 T11 0.708 0.466
S = 0.1, TLBCA = 0.2 T12 0.708 0.451

S = 0.1, TLBCA = 0.14 T13 0.707 0.602
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6.4. Performance vs. Complexity Comparison

Figure 36 contains the performance and complexity comparison of the implemented
adaptive tracking techniques for a third-order PLL in a static (Figure 36a) and dynamic
scenario (Figure 36b). These graphs combine the data of Tables 2 and 6.
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Figure 36. System performance vs. added time complexity comparison.

In the static scenario, the standard tracking loop has the best average system per-
formance with a PLL loop bandwidth of 5 Hz (P1), whereas the worst performance is
performed with 16 Hz (P4). However, the opposite occurs in the dynamic scenario. A
greater loop bandwidth improves the average system performance. This shows the big
trade-off that exists in standard tracking loops between the loop bandwidth and the type
of scenario.

The adaptive tracking algorithms should minimize this trade-off, having a good
performance in both scenarios. The FAB technique with a high decay time ∆t (e.g., 0.8 s, T1)
results in best performance in static scenario, but poor in dynamic scenario. A lower decay
time (e.g., 0.5 s, T3) have the opposite behavior—poor in static and good in dynamic. There
is no minimization of the mentioned trade-off. The FAB technique presents poor results,
while having high complexity.

The FL technique presents good system performance in a static scenario with
TD̃

Fuzzy = 0.14 (T4, T5). A lower (T6) or a higher (T7) fuzzy threshold decreases the perfor-
mance. In a dynamic scenario, a lower fuzzy (T6) threshold achieves better performance.
T6, T5 and T4 show an improvement over the standard PLL. However, the complexity is
still significant.

The LBCA and LBCA with PLAN interpolation achieve good system performance,
while having a low complexity. In the LBCA technique, a lower scale factor gMax presents
better performance in the static and the dynamic scenario with the same normalized
dynamics threshold (TLBCA = 0.2, T8 and T9). Furthermore, a lower TLBCA deteriorates
the static system performance, but improves the dynamic one. In the LBCA with PLAN
interpolation, the presented configurations (T11, T12, T13) have the same good static system
performance. The dynamic performance of T13 stands out above all the adaptive tracking
techniques. To conclude, this technique presents the best performance, maintaining the
lowest complexity.

7. Discussion

The previous section collects all the obtained results to evaluate the FAB, FL, LBCA,
and LBCA + PLAN techniques. The adaptive tracking techniques are evaluated in a static
and a dynamic scenario at different C/N0 levels. For each scenario, one specific tracking
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channel (SV G4 in static, SV G17 in dynamic) is analyzed to understand how the presented
algorithms work using different configurations. In addition, the metric for the system
performance (see Equation (55)) is measured for each adaptive tracking technique and
compared to its complexity (see Figure 36).

Figure 37 compares the measured static system performance with the dynamic system
performance of the adaptive tracking techniques with different configurations. This Figure
is based on Table 6 and synthesizes all the previous sections’ results into a single graph.
The performance of the standard PLL at different loop bandwidths is also included. The
dashed black line is an interpolation of the standard tracking results. Above this line,
the values present a better system performance than the standard PLL, whereas results
located below this line indicate a worse system performance. The STL clearly demonstrates
the loop-bandwidth trade-off between static and dynamic scenarios The best-performing
adaptive tracking technique should have the highest average system performance in static
and dynamic scenarios.

0.5 0.55 0.6 0.65 0.7 0.75

0.3

0.35

0.4
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0.5

0.55

0.6

0.65

Figure 37. System performance comparison between dynamic and static scenario.

The FAB technique (T1, T2, T3) has a similar performance as the standard PLL while
having the highest complexity. Therefore, although not all the possible configurations have
been tested, it seems that this technique does not bring any improvement. A better choice
of the decay time ∆t can improve the performance of this algorithm. The FL technique
presents better performance than the standard tracking except for one configuration, T7.
A fuzzy threshold TD̃

Fuzzy of 0.2 makes the algorithm too sensitive to noise, worsening the
dynamic performance (see Figure 30b). Also, the high scale factor (S = 0.1) results in a
more unstable tracking, leading to a worse static performance at low C/N0 (see Figure 21b).
The other configurations (T4, T5, T6) are above the standard PLL’s performance. A lower
fuzzy threshold TD̃

Fuzzy than configuration T7 gains dynamic and static performance (T5, T4).

If TD̃
Fuzzy is even lower (T6), the dynamic performance improves with the trade-off of losing

some static performance. The LBCA technique also achieves a good performance except for
T9. A large scale factor (gMax = 0.1) with a high normalized threshold dynamics TLBCA, as
in the FL technique, can make the tracking unstable. A lower scale factor (T8) significantly
improves the static performance and slightly the dynamic performance, whereas a low
threshold dynamics (T10) significantly improves the dynamic performance and slightly
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the static one. Finally, the LBCA with PLAN technique presents better performance than
standard PLL in all the presented configurations (T11, T12, T13). These three configurations
have the same static performance, and the dynamic performance is improved significantly
when the normalized threshold dynamics is equal to the optimal normalized dynamics
(TLBCA = 1/7).

The green dotted line in the top right of the graph is the Pareto front [49–51]. It isolates
a set of optimal values to facilitate the trade-off between static and dynamic performance.
All other values are sub-optimal in the Pareto sense. There are three values on the Pareto
front: T3, T8 and T13. However, T3 (FAB) exhibits faulty behavior as it always adapts to the
minimum loop bandwidth of 4.5 Hz, and cannot be used for reliable tracking. Therefore,
it is excluded. The remaining correct performance-optimal adaptive tracking techniques
are LBCA with PLAN using S = 0.1 and TLBCA = 0.14 (T13), and LBCA with S = 0.01 and
TLBCA = 0.2 (T8). The optimization demonstrates the superiority of LBCA based adaptive
algorithms with the correct tuning.

8. Conclusions

This paper presents a method to compare the performance and complexity of differ-
ent state-of-the-art adaptive loop-bandwidth tracking techniques. First, the theoretical
background of an STL is presented. Second, the FAB, the FL, and the LBCA adaptive
tracking techniques are described. Third, the metrics used to evaluate the adaptive tracking
techniques are analyzed. Furthermore, each adaptive tracking technique’s complexity is
measured in terms of the required number of operations as well as the time complexity.
Fourth, the algorithms are implemented on the GOOSE receiver platform with simulated
static and dynamic scenarios. The dynamic scenarios represent harsh vehicular movement.

The results show each algorithm’s tracking and system performance in a static and
a dynamic simulated scenario. The FAB presents insignificant improvements compared
to STLs, has poor system performance and is the most complex adaptive algorithm. The
FL is conceptually simple and shows—when tuned correctly– significant improvement to
STLs. It is an algorithm with much potential. The LBCA and LBCA + PLAN techniques
have superior system performance with the least amount of complexity. These algorithms–
depending on the configurations–are also determined optimal in the static to dynamic
trade-off, illustrating a clear advantage.

A broader statistical evaluation to test the adaptive tracking techniques with a wider
variety of configurations, C/N0 levels, and scenarios is proposed for future work. It
can additionally include multi-path and non-line-of-sight (NLOS) effects. This would
improve the generalization and applicability of the adaptive tracking algorithms, and make
these less dependent on the chosen scenarios. However, this paper presents an initial
investigation and includes a framework to evaluate the adaptive techniques. The adaptive
techniques in this paper are only evaluated for the PLL. However, a tracking channel also
has a DLL and FLL. Therefore, future work to incorporate adaptive techniques to these
loops are also proposed. The results for the LBCA and FL have shown that these algorithms’
performances are sensitive to their configurations. Therefore, further research to optimize
the configurations are suggested. Furthermore, a vector-based LBCA approach which
considers multiple GNSS SVs simultaneously is also suggested. Lastly, an extension of the
adaptive loop-bandwidth algorithm can be done by also adapting the integration time.

This paper encloses an initial study of robust tracking techniques with the primary
objective of developing a method that achieves the best performance while maintaining
low complexity. The LBCA with the PLAN interpolation is currently the best candidate
among the other techniques.
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Abbreviations
The following abbreviations are used in this manuscript:

ADC analog-to-digital converter
BET backward Euler transform
C/N0 carrier-to-noise density ratio
COG center of gravity
CRB Cramér-Rao bound
DLL delay locked loop
FAB fast adaptive bandwidth
FAP FLL-assisted-PLL
FL fuzzy logic
FLL frequency locked loop
FMM fuzzy mean method
FPGA field-programmable gate array
GNSS global navigation satellite system
GOOSE GNSS-Receiver with Open Software Interface
GPS Global Positioning System
IAD integration and dump
IIR infinite impulse response
IQ in-phase and quadrature-phase
KF Kalman filtering
LBCA loop-bandwidth control algorithm
LOS line-of-sight
NCO numerically controlled oscillator
NLOS non-line-of-sight
OGRP open GNSS receiver protocol
PAD PLL-assisted-DLL
PCIe peripheral component interconnect express
PLAN piecewise linear approximation of nonlinearities
PLI phase-lock indicator
PLL phase locked loop
PVT position, velocity, and time
RFCS radio-frequency constellation simulator
RFFE radio-frequency front-end
SSE steady state error
SSM state space model
STL scalar tracking loop
SV satellite vehicle
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TCXO temperature-compensated crystal oscillator
ToA time of arrival
VT vector tracking
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