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Abstract: (1) Background: Low back disorders are a leading cause of missed work and physical
disability in manual material handling due to repetitive lumbar loading and overexertion. Ergonomic
assessments are often performed to understand and mitigate the risk of musculoskeletal overexertion
injuries. Wearable sensor solutions for monitoring low back loading have the potential to improve
the quality, quantity, and efficiency of ergonomic assessments and to expand opportunities for
the personalized, continuous monitoring of overexertion injury risk. However, existing wearable
solutions using a single inertial measurement unit (IMU) are limited in how accurately they can
estimate back loading when objects of varying mass are handled, and alternative solutions in the
scientific literature require so many distributed sensors that they are impractical for widespread
workplace implementation. We therefore explored new ways to accurately monitor low back loading
using a small number of wearable sensors. (2) Methods: We synchronously collected data from
laboratory instrumentation and wearable sensors to analyze 10 individuals each performing about
400 different material handling tasks. We explored dozens of candidate solutions that used IMUs
on various body locations and/or pressure insoles. (3) Results: We found that the two key sensors
for accurately monitoring low back loading are a trunk IMU and pressure insoles. Using signals
from these two sensors together with a Gradient Boosted Decision Tree algorithm has the potential
to provide a practical (relatively few sensors), accurate (up to r2 = 0.89), and automated way (using
wearables) to monitor time series lumbar moments across a broad range of material handling tasks.
The trunk IMU could be replaced by thigh IMUs, or a pelvis IMU, without sacrificing much accuracy,
but there was no practical substitute for the pressure insoles. The key to realizing accurate lumbar
load estimates with this approach in the real world will be optimizing force estimates from pressure
insoles. (4) Conclusions: Here, we present a promising wearable solution for the practical, automated,
and accurate monitoring of low back loading during manual material handling.

Keywords: overexertion injury; ergonomics; machine learning; lumbar moment; risk assessment;
wearables; fatigue failure; lifting biomechanics

1. Introduction

Low back disorders are a leading occupational health problem, ranging from lumbar
(low back) pain to muscle strains to herniated spinal discs. Physical pain, missed work,
decreased productivity, healthcare costs, short- and long-term disability, and psycholog-
ical distress due to these low back disorders are substantial and persistent burdens on
our society. Back disorders account for about 40% of all work-related musculoskeletal
disorders [1], and about one in four workers reports dealing with low back pain [2,3].
Individuals working in manual material handling jobs (and other jobs with similar physical
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demands) are at particularly high risk for low back disorders due to repetitive lifting and
bending, which can lead to musculoskeletal overexertion (overuse) injuries [1].

Overexertion injuries result from an accumulation of microdamage caused by repet-
itive loading to musculoskeletal tissues (e.g., muscles, tendons, ligaments, bones, discs).
Overexertion injuries are consistent with a fatigue failure process: the weakening and
eventual failure of a material due to repeated loading [4–6]. When modeling this fatigue
failure process, both the number of loading repetitions and the magnitude of loading on
the musculoskeletal tissues are important for approximating the cumulative damage to
the tissues. There are multiple opportunities to use musculoskeletal loading and fatigue
failure insights to understand and reduce the risk of overexertion injuries, such as through
ergonomic assessments or continuous, personal monitoring of injury risk.

1.1. Ergonomic Assessments

Ergonomic risk assessment tools that evaluate low back loading and assess injury risk
using fatigue failure principles have shown potential for predicting the incidence of low
back disorders. For example, the Lifting Fatigue Failure Tool (LiFFT) estimates cumulative
tissue damage to the low back using an estimate of lumbar moment. Cumulative damage
across a series of lifting tasks estimated with LiFFT has been shown to explain 72–95% of
the deviance in low back disorders from epidemiological databases [4]. Ergonomic risk
assessments are traditionally performed via direct observation by a trained professional.
For instance, to perform an ergonomic assessment using LiFFT (or other assessment tools
like the NIOSH Lifting Equation [7]), an ergonomist or safety professional would monitor
a single worker during their shift, or over a subset of representative job tasks, to manually
record how much each lifted object weighed and how far away each lifted object was from
the body, then input how many times each type of lift is performed during a shift. The time
spent observing a worker depends on the variability of job tasks (e.g., short- vs. long-cycle
jobs), but is often on the order of 1–8 h per job.

While these valuable ergonomic assessments and injury risk profiles can inform the
use of ergonomic controls to minimize the risk to workers, the assessments can be time-
consuming and costly. Assessments can become prohibitively expensive when there are
a large variety of jobs at a given workplace or when job functions are remote, unobserv-
able, highly variable, or infrequent. Moreover, this kind of time-intensive professional
observation is impractical for personalized, continuous monitoring of injury risk over long
durations or across an entire workforce. Video-based solutions that leverage advances
in computer vision and machine learning have the potential to address some of these
challenges by providing a semi-automated analysis of jobs. However, this approach is
impractical for highly dynamic jobs (e.g., a construction worker moving all over a con-
struction site), or jobs where visual obstructions occur (e.g., an aerial porter climbing in
and out of arriving planes) and is not intended for personalized monitoring across an
entire workforce. To efficiently evaluate ergonomic risk across a wide range of workers,
high-risk jobs, and workplace environments, there remains a need for tools that enable the
automated, unconstrained, and widespread monitoring of musculoskeletal loading and
damage, particularly to the lower back.

1.2. Wearable Sensors at a Single Body Location for Ergonomic Assessment or
Continuous Monitoring

Small, inexpensive, wearable sensors offer a promising solution for the unconstrained
monitoring of job demands, including in confined spaces or during dynamic jobs. Wearable
solutions could automate traditional job analysis or ergonomic assessments by replacing
time-consuming observations and manual measurements with automated analytics from
wearable sensor data, potentially improving the quality (e.g., consistency, accuracy) and
quantity of data (e.g., the amount of assessment time per worker, the number of workers
evaluated). Further, wearables can be practical for continuous monitoring, providing new
opportunities to perform ergonomics assessments for remote and long-cycle duration jobs
or for personalized, daily injury risk monitoring that could inform ergonomic controls.
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Continuous monitoring also has the long-term potential to usher in a new era of preventa-
tive occupational safety and health that transforms how musculoskeletal risk is managed
and insured.

While wearable sensors offer an exciting tool for monitoring low back loading and
overexertion risks, current commercial and research technologies have some key limitations.
Current commercial products (e.g., StrongArm Fuse, Soter Analytics Clip&Go, Kinetic
Reflex, and Modjoul Smartbelt) use a single inertial measurement unit (IMU) mounted on
the waist, back, or chest and analyze motion data (e.g., trunk orientation or acceleration)
and the frequency of lifting/bending. We refer to these types of devices as wearable sensors
at a single body location (or single wearable solutions, for short). We use this terminology
because they each use hardware placed on one body location, although this hardware
unit may contain multiple different sensors that measure numerous signals (e.g., IMUs are
generally composed of accelerometers, gyroscopes, and magnetometers).

These single wearable solutions are relatively practical to implement in the workplace
and may be most amenable to job analyses that characterizes postures and task frequency,
but less well-suited for ergonomic assessments that quantitatively assess injury risk based
on musculoskeletal loading and fatigue failure principles. This is because low back loading
is dependent on factors beyond the kinematics of a single body segment, including the
mass of the object being lifted and how far away the object is from the body. So, while
these single wearable solutions can use segmental motion data to identify when a worker
performs a deep forward bend, they are generally unable to distinguish, for instance, if
the worker lifted a 5 lb box vs. a 45 lb box. The heavier mass in this example is expected
to result in 65× more tissue damage (based on LiFFT, and assuming boxes are located
25 inches anterior to the lumbar spine). There are some use cases where single wearable
solutions are expected to estimate low back loading fairly well (e.g., if the objects lifted are
of known mass and are in a fairly consistent location relative to the body). However, there
are cases where single wearable solutions are likely to be insufficient because they do not
account for varying object masses, object locations, or other external forces on the body. In
these cases, single wearable solutions could potentially provide inaccurate or misleading
information about loading and cumulative damage to the low back, or unreliable insight
on low back injury risk for a specific job, task, or worker.

1.3. Distributed Wearable Sensors for Ergonomic Assessment or Continuous Monitoring

Using multiple wearable sensors at distributed locations on the body has the potential
to provide better estimates of low back loading by capturing and integrating additional
dynamics data (e.g., body segment motions or orientations, forces or moments, muscle
activity). These distributed sensor solutions are conceptually similar to what is done in
motion analysis labs when data from cameras, force plates, and/or other measurement
modalities are combined with biomechanical models to compute the loading on the back.
An example of a commercial distributed wearable sensor system is the Xsens system that
uses up to 17 IMUs on different body segments to track motion. These data can then be
passed through analytics software (e.g., Scalefit, AnyBody) to estimate musculoskeletal
loading on the back. However, similar to single sensor solutions, distributed IMU systems
cannot automatically distinguish the mass of the object being lifted. Often, this additional
information must be entered manually, or additional sensor modalities must be added,
which increases the complexity of data collection and analysis. Thus, distributed IMU sys-
tems may only partially automate ergonomic assessments, or they may provide inaccurate
estimates of low back loading if analytics software simply assume a default object mass.

To fully automate back load monitoring, several research studies suggest that adding
force-instrumented shoes or pressure insoles along with distributed IMUs over the upper
and/or lower body is promising [8–11]. For instance, [8] showed that by combining
8–17 IMUs and force-sensing shoes, lumbar moments could be estimated within 10–20% of
peak extension moments. [9] found corroborating results, showing that with 12 IMUs and
pressure insoles the peak axial load on the L5/S1 joint could be estimated with errors <5%.
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However, there are a couple of critical limitations of these approaches. First, many
of these solutions were developed and evaluated on a limited range of manual material
handling tasks. For instance, [8] only evaluated four lifting tasks, all with a 10 kg box. It
therefore remains unclear if these combinations of wearable sensors and/or algorithms are
accurate and generalizable to a broad range of complex manual material handling motions,
as performed in real world environments. Second, these wearable solutions require a large
number of sensors distributed across the body, which introduces practical challenges related
to technology implementation, ease of use, acceptance, and adoption. For scientific research
or infrequent ergonomic assessment, the burden of distributed instrumentation may be an
acceptable trade-off for increased accuracy. However, using numerous sensors requires
longer donning and doffing times and more complexity, which presents a pragmatic barrier
for workplace adoption. To enable more efficient and widespread ergonomic assessments
or continuous monitoring of injury risk, there remains a need for a solution that requires a
smaller number of wearable sensors (to be practical) and provides validated estimates of
low back loading for a wide range of work-relevant tasks (to ensure accuracy).

1.4. Key Requirements for Wearable Ergonomic Assessment: Practical and Accurate

Based on our review of commercial technologies and scientific literature and our
conversations and observations with manual material handlers and safety professionals
across a range of industries (e.g., logistics, manufacturing, retail, agriculture, construction,
military), we identified what we believe to be a key technological gap and unmet industry
need related to ergonomic assessment and continuous personal monitoring of low back
overexertion injury risk. Specifically, we found that a portable wearable sensor tool with the
following characteristics and capabilities does not currently exist, but if it did we believe it
could be game-changing for low back injury risk assessment, monitoring, and prevention
in various industries:

1. The tool is practical to don, doff, and wear in unconstrained environments for pro-
longed periods of time by virtue of using only a small number of sensors at different
body locations. This is important for industrial acceptance, adoption, and implemen-
tation. Of note, there is no simple limit for the maximum number of sensors or body
locations that is practical, but this consideration helped motivate the approach we
took in this research (as detailed in Methods).

2. The tool provides accurate, validated, and automated estimates of low back loading
for a broad range of manual material handling tasks. This is important to ensure the
system will be reliable during use in the real world and can distinguish differences in
back loading that result from lifting objects of different weights without the need for
professional observation or manually inputting object weights or other data.

The overarching question we sought to address in this study was: if we can only use a
small number of wearable sensors to monitor low back loading, then which sensors should
we use, where should we place them, what type of algorithm should we employ to fuse
the sensor data, and how accurately can we monitor low back loading during manual
material handling tasks? To address this exploratory, multi-faceted, open-ended question,
we collected synchronized data from laboratory instrumentation and wearable sensors
across a broad range of lifting tasks and combined domain expertise in biomechanics with
techniques from machine learning to develop musculoskeletal load estimation algorithms,
similar to the approach we previously took to develop a wearable sensor system for
monitoring bone loading and overexertion injury risks in the legs of runners [12]. The
Methods section provides details on our exploratory approach and rationale.

2. Materials and Methods
2.1. Summary of Approach

Here, we briefly summarize our exploratory research approach, followed by detailed
methodology below:
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First, we identified a candidate set of wearable sensors (number, type, and location
of sensors). We bounded our candidate sensors based on biomechanical insight, prior
literature [8–11], and expected practicality for implementation in the real world. We
selected IMUs placed on body segments (feet, shanks, thighs, pelvis, trunk) and pressure
insoles placed inside the shoes (capable of estimating the interaction force and center of
pressure between the foot and shoe) as our candidate sensors. These types of sensors
are mature, and for years have been used in clinical and consumer devices that are worn
daily; for instance, IMUs are ubiquitous in fitness trackers and phones, and pressure
insoles are used for clinical screening (e.g., Orpyx) and to track running/sport performance
(e.g., ARION, ReTiSense, NURVV). We elected not to use surface electromyography (EMG)
due to practical challenges of implementing in the real world, such as their sensitivity
to sweat, hair, and sensor placement, and reliability issues over days/weeks [13]. We
also elected not to use any implantable or percutaneous sensors, or any emerging sensor
technologies that have not yet been proven to be practical, reliable, affordable, and scalable
in the real world. Focusing on mature, proven sensor technologies was with the hope and
intention of arriving at a solution that would be feasible to translate into a product for real
world use in the near future (e.g., next 2–5 years).

Second, we synchronously collected data from lab-based instrumentation and from
real wearable sensors across 10 participants each performing about 400 different manual
material handling tasks, which encompassed many different postures, movements, and
object masses that a worker may encounter in the real world.

Third, we developed wearable sensor algorithms using various combinations of
wearable sensor signals (algorithm inputs) and our lab-based gold-standard estimates of
low back loading (algorithm target). We first used idealized wearable sensor signals [12], which
consisted of lab-based data we converted into the types of signals reasonably obtained
with wearables, to develop and evaluate algorithms. An example of an idealized wearable
sensor signal is that we mapped the three-dimensional ground reaction force (GRF) vector
from an in-ground force plate onto a one-dimensional force normal to the bottom of the foot
to represent the type of signal that can be estimated from a pressure insole. This allowed
us to explore algorithms for low back load estimation without worrying if the sensor or
signal quality from a particular wearable sensor we used was a limiting factor. Next, we
used real wearable sensor signals to separately develop and evaluate algorithms, benchmark
the accuracy of current wearable sensor technologies, and assess how these may or may
not limit low back load monitoring tools. We use the terminology idealized wearable sensor
signals and real wearable sensor signals to distinguish these two complementary approaches.
Throughout, we also use the terms idealized wearable sensors and real wearable sensors to refer
to physical sensors or sensor combinations, with idealized wearable sensors referring to the
sensors that would be needed to measure the particular signals used. See [12] (as well as
the Discussion of this paper) for more rationale on the value of using idealized wearable
sensor signals when exploring new solutions for musculoskeletal load monitoring.

Finally, by applying various machine learning techniques to various subsets of ide-
alized and real wearable sensor signals, we: (1) quantified how the number of sensors
used influenced the algorithm estimation accuracy, (2) identified the most important types
and locations of sensors for low back load estimation, and (3) benchmarked how much
using real vs. idealized wearable sensor signals influenced the estimation accuracy. Below,
we describe the human participant experiment and data analysis, followed by algorithm
exploration, development, and evaluation.

2.2. Experiment Overview

Ten healthy individuals participated in the study: 3 females and 7 males (age: 25 ± 3 years;
height: 1.8 ± 0.1 m; mass: 79 ± 14 kg). All the participants gave written informed consent
to the protocol, which was approved by the Institutional Review Board at Vanderbilt
University (IRB # 141697).
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This study involved participants each performing about 400 manual material handling
tasks in a motion analysis lab. Tasks covered a broad range of bending, turning, twisting,
squatting, stooping, and reaching postures while lifting and moving boxes of 5–23 kg,
which were representative of tasks commonly performed by manual material handlers
(e.g., case pickers in a warehouse, retail workers stocking shelves, or logistics workers
at a sort facility). For instance, tasks involved moving boxes from high to low shelves,
low to high shelves, from a lateral to a forward position, diagonally between shelves, and
much more to obtain a rich, diverse, realistic, and work-relevant data set (see Video S1 for
example videos of tasks). The data collection space was outfitted with various shelves at
3 heights with labeled locations (see Figure 1A for an example setup). Box masses, shelf
heights, and actions were informed by manual lifting and ergonomics guidelines [14]. For
each task, participants were given instructions such as “move the box from position 3 to 4”
(Figure 1A) and were told to use any safe strategy to complete the task. Each task was
performed once and the participants were given rest breaks intermittently throughout
the protocol.
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Figure 1. Experimentation and wearable algorithm development overview. (A) Lab-based (green) and wearable sensor
(orange) signals were collected synchronously in a motion analysis lab while participants performed about 400 manual
material handling tasks. (B) Lab-based analysis yielded a gold-standard estimate of lumbar extension moment (Mextension).
Wearable signal analysis and algorithm development yielded wearable sensor estimates of lumbar extension moment
(M’extension). The wearable algorithm development was conducted twice, once using idealized wearable sensors (defined in
Methods) as inputs (Analysis 1) and once using real wearable sensors as inputs (Analysis 2).
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2.2.1. Lab-Based Measurement Modalities

We collected full-body kinematics and ground reaction forces (GRFs). Kinematics were
collected at 200 Hz (Vicon), then low pass-filtered at 6 Hz (3rd order, zero-lag Butterworth).
Four markers were placed on each thigh, shank, arm, and forearm; 5 markers were placed
on each foot; 6 markers were placed on the pelvis; and 4 were placed on the trunk. Addi-
tional markers were placed on the lateral and medial femoral epicondyles, the lateral and
medial malleoli, each acromion, the lateral and medial humeral epicondyles, and the distal
radius and ulna. The GRFs under each foot were collected at 1000 Hz using in-ground force
plates (AMTI). The GRFs were low pass-filtered at 10 Hz (3rd order, zero-lag Butterworth).

2.2.2. Wearable Measurement Modalities

We synchronously collected IMU-based lower body and trunk kinematics (Xsens) and
plantar pressures (Novel pedar-x, with 99 pressure sensors per insole). Kinematics were
collected at 100 Hz using the standard Xsens “lower body + trunk” configuration and
IMUs were oriented according to the Xsens participant preparation guidelines. Scaling,
calibration, and data pre-processing were performed by the Xsens software, providing a
built-in anatomical model. Plantar pressures were collected bilaterally at 100 Hz and the
total (normal) force and center of pressure were exported using the Novel software. The
synchronization of all measurement modalities was achieved through recorded analog
triggers, and any delays between measurement modalities were accounted for through
temporal alignment/calibration algorithms based on pilot testing.

2.3. Wearable Algorithm Development

A visual overview of the lab-based data analysis and algorithm evaluation workflow
is provided in Figure 1B.

2.3.1. Lab-Based Data Analysis (Algorithm Target)

We selected lumbar extension moment as our target musculoskeletal loading metric
because it can be used to estimate cumulative tissue damage to the low back using a fatigue
failure analysis [4,5,15]. We sought to estimate the time series lumbar extension moment
(as opposed to just peak moments) because this enables us to identify bending/lifting
frequency, to partition out individual movement cycles, and to better understand and
distinguish cyclic lifts vs. prolonged bending. Time series data enables the assessment of
loading and cumulative risk across all tasks, as well as the ability to perform task-specific
load and risk assessment.

Lower-body segmental and joint kinematics were estimated based on optical motion
capture data and rigid-body inverse kinematics. GRF and kinematics were combined via
rigid-body inverse dynamics to estimate joint kinetics (C-Motion, Visual3D). Time series
lab-based lumbar moment was estimated using bottom-up inverse dynamics in Visual3D.
Moments are reported in units of body weight × body height (BW × BH).

2.3.2. Wearable Sensor Signal Data Preparation (Algorithm Inputs)

We used time series wearable sensor signals as inputs to the algorithm. Idealized wear-
able sensor signals are summarized in Table 1. Real wearable sensor signals are summarized in
Table 2. The algorithm development workflow was completed twice, once using idealized
wearable sensor signals as the inputs and once using real wearable sensor signals as the
inputs (Analysis 1 and Analysis 2, Figure 1B). The lab-based target, idealized wearable
sensor signals, and real wearable sensor signals were all resampled to 100 Hz. Input signals
were normalized to z-scores during the algorithm development [16].
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Table 1. Idealized wearable sensor signals. R = right; L = left.

Idealized Wearable Sensors Idealized Wearable Sensor Signals # of Signals

8 idealized IMUs (trunk, pelvis, R/L thigh, R/L shank. R/L foot)
Segments (8): pelvis, trunk, R/L thigh, R/L shank. R/L foot

Joints (7): lumbar, R/L hip, R/L knee, R/L ankle

XYZ segment kinematics (Euler angles) 24

XYZ joint kinematics 21

Idealized pressure insoles (R/L)
3D force plate GRF transformed into foot’s coordinate

frame and projected onto 1D normal force 2

Force plate center of pressure transformed into foot’s
X/Y coordinate frame 4

Total 51

Table 2. Real wearable sensor signals. R = right; L = left.

Idealized Wearable Sensors Idealized Wearable Sensor Signals # of Signals

8 IMUs (sternum, pelvis, R/L thigh, R/L shank. R/L foot)
Segments (11): pelvis, L5, L3, T12, T8, R/L thigh, R/L shank. R/L foot

Joints (10): L5S1, L4L3, L1T12, T9T8, R/L hip, R/L knee, R/L ankle

XYZ segment kinematics (Euler angles) 33
Segment kinematics (quaternions) 44

XYZ segment velocities 33
XYZ segment accelerations 33

XYZ joint kinematics 30

Pressure insoles (R/L) Total normal force 2
X/Y center of pressure 4

Total 179

2.3.3. Algorithm Development

We explored supervised machine learning algorithms (e.g., generalized linear models,
support vector machines, neural networks) for multiple variable regression to predict the
lumbar extension moment (Mextension) focusing on techniques that could provide instanta-
neous predictions, where wearable signals from a given time sample are used to estimate
the target load metric for that same time sample. Ultimately, we achieved the most promis-
ing results with Gradient Boosted Decision Trees, a popular technique in machine learning
and well-suited to handle missing values and redundant or non-predictive inputs [17,18].
The number of input signals (tens or hundreds) also fits this approach. Furthermore, by
using a histogram-based decision tree building algorithm influenced by LightGBM [19],
we dramatically decreased the algorithm training time (to a few seconds with a few million
time samples) without a noticeable degradation in the prediction accuracy. Briefly, this
algorithm estimates the target load metric by building an ensemble of decision trees in a
stage-wise fashion, where in each stage the new tree tries to estimate (and thus, remove)
the residual error after combining the predictions of the previous trees. Our current results
are based on ensembles of approximately 100 trees. We used the scikit-learn library and
Amazon SageMaker, a cloud-based machine learning platform for algorithm development,
model training, and evaluation.

To develop the algorithm, we used k-fold validation by participant (n = 10), a com-
monly used technique to assess the generalizability of an algorithm [16]. In other words,
we used data from nine participants to train the algorithm (i.e., select hyperparameters),
and then evaluated the algorithm accuracy on data from the remaining participant. This
process was repeated for all ten participants to yield wearable algorithm estimates of the
lumbar extension moment (M’extension) for the entire dataset.

The algorithm workflow was first performed using all our candidate wearable sensor
signals; we termed this the distributed sensor algorithm. Next, to evaluate the feasibility
of using a reduced number of sensors for estimating lumbar moments, we developed
additional algorithms using a reduced number of sensor signals (termed reduced sensor
algorithms). While we explored 10 candidate wearable sensors (R/L pressure insoles, R/L
foot IMUs, R/L shank IMUs, R/L thigh IMUs, pelvis IMU, trunk IMU), when iterating
through potential reduced sensor algorithms, we assumed that a final solution would have
symmetrical bilateral sensors (e.g., if the wearable included a right insole, then it would
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also include a left insole). Thus, our 10 candidate wearable sensors actually corresponded
to 6 candidate sensor locations: trunk, pelvis, thigh, shank, and foot IMUs, and the pressure
insoles. The algorithm workflow was repeated to develop 62 additional algorithms that
each used a reduced set of 1 to 5 sensor locations (see Figure A1 of Appendix A for an
overview of all the combinations).

2.3.4. Algorithm Evaluation

We evaluated the accuracy of different sensor combinations in two stages. First, we
computed the coefficient of determination (r2) to identify the most promising reduced
sensor combinations and computed relative wearable sensor signal importance to identify
the most important sensors. Then, we identified promising or interesting sensor combi-
nations, reviewed wearable algorithm results using scatter plots and participant-specific
results, and computed additional accuracy metrics to better understand the performance
and limitations of each sensor combination.

We computed r2 for each participant across all time samples [20] for all candidate
sensor combinations. Based on our prior work on wearables for musculoskeletal load
monitoring [12,21], we have found r2 to be useful for this initial sensor combination
selection process (i.e., down selection from 62 sensor combinations here) because it provides
insight into how well wearable estimates correlate with lab-based gold-standard estimates
across the full range of lumbar moments observed. This research is early stage, so there is
no precise r2 threshold that we can define as the minimum viable, but to benchmark high
algorithm accuracy we used r2 > 0.8 as a threshold for promising solutions.

As a complementary analysis to evaluate which sensors were most important for
algorithm estimates, we applied the permutation feature importance method [22]. Feature
importance values represent the drop in model accuracy (∆r2) when an input signal is
randomly shuffled, with larger values indicating that the algorithm is more dependent
on that signal. Of note, the permutation feature importance method was used rather than
the impurity-based feature importance approach because the latter approach had some
undesirable biases (e.g., favoring high cardinality features) and is not supported with
histogram-based estimators.

Once a subset of promising sensor combinations was identified, we inspected participant-
specific results with scatter plot data to understand the performance and limitations of
each. We were particularly interested in how each sensor combination performed across
the range of lumbar moment magnitudes observed (e.g., did certain sensor combinations
perform better at low magnitudes vs. high magnitudes). We also computed the root mean
square error (RMSE). In this data set, most samples are at relatively low lumbar moment
magnitudes, but larger moments are the most damaging and dangerous to musculoskeletal
tissues. We therefore also looked specifically at algorithm performance constrained to
higher lumbar moments using mean absolute percent error (MAPE). We leveraged the
benefits of both relative (r2 and MAPE) and absolute (RMSE) accuracy metrics, along with
biomechanics knowledge of key factors that influence cumulative damage and overexertion
injury risk, to make informed suggestions about using wearable sensors to monitor back
loading across work-relevant lifting tasks.

3. Results
3.1. Results from Idealized Wearable Sensors

As expected, the maximum algorithm accuracy increased with the number of sensor lo-
cations (Figure 2). There were no single sensor solutions that yielded r2 > 0.8 (i.e., coefficient
of determination greater than 0.8 between idealized wearable sensor algorithm estimates
and lab-based lumbar moment estimates). However, there was a noticeable jump in ac-
curacy when moving from one to two sensor locations (maximum r2 = 0.74 to r2 = 0.89,
Figure 2, Table 3). When increasing the number of sensors beyond two locations, there were
only small additional improvements in the maximum algorithm accuracy (from r2 = 0.89
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using two sensor locations to r2 = 0.92 using all six sensor locations, the maximum number
of distributed sensor locations in this study).
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Figure 2. Maximum algorithm accuracy increased with number of sensor locations. Average accuracy
using idealized wearable sensors summarized here using the average coefficient of determination
(r2) across all participants. Orange dots represent the distributed sensor algorithm (right) and the
highest accuracy algorithms using 1 (left) and 2 (center) sensor locations. All the algorithms here
were developed with idealized wearable sensor signals and the target was lumbar extension moment.
The top three algorithms using one and two sensor locations are reported in Table 3. A detailed
summary of all the algorithm accuracies and the exact sensor combinations for each algorithm is
included in Figure A1.

Table 3. Algorithm accuracy for a subset of idealized wearable algorithms. Average accuracy for
the distributed sensor algorithm and the top three algorithms requiring one or two sensor locations.
Accuracies reported here correspond to data points in Figures 2 and A1.

# of Sensor Locations Idealized Wearable
Sensor Combination Algorithm Accuracy (r2)

6 Distributed sensors 0.92
2 Trunk IMU + insoles 0.89
2 Thigh IMUs + insoles 0.86
2 Pelvis IMU + insoles 0.81
1 Trunk IMU 0.74
1 Thigh IMUs 0.68
1 Pelvis IMU 0.61
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The two most important signals for estimating lumbar extension moments identified
during algorithm development were sagittal trunk angle and vertical GRFs (Figure 3).
Consistent with this, the best solution using two sensor locations is the one that combined
a trunk IMU and pressure insoles (r2 = 0.89, Figure 2, Table 3). This combination was of
highest interest to us because of its potential to be practical and accurate.
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Figure 3. Sagittal trunk angle and vertical GRFs are the most important signals for estimating lumbar
moments. Signal importances are from the idealized wearable sensor algorithm for estimating lumbar
extension moments. R = right; L = left.

The trunk IMU (alone) and fully distributed sensor set were also of interest for fur-
ther analysis. The trunk IMU provides a point of reference for the potential accuracy of
existing commercial wearables that use a single IMU to monitor lumbar loading, while the
distributed sensor set provides insight on accuracy gains with higher instrumentation cov-
erage. Therefore, we report participant-specific results and additional accuracy summary
metrics (RMSE and MAPE) for these different sensor combinations (Figure 4).

The distributed sensor algorithm resulted in an average RMSE of approximately
17 Nm (Figure 4B), equivalent to about a 241 N (0.3 BW) error in spine compression force
(assuming a 7 cm lumbar extensor muscle moment arm, [23]). The trunk IMU and pressure
insole algorithm resulted in an average RMSE of approximately 20 Nm, equivalent to about
a 282 N (0.4 BW) error in spine compression force. The trunk IMU algorithm resulted in an
average RMSE error of approximately 31 Nm, equivalent to about a 444 N (0.6 BW) error in
spine compression force. As one additional point of reference, the NIOSH Lifting Equation
recommends limiting spine compression force to less than 3400 N (4.4 BW), so these RMSE
values are about 7%, 9%, and 14% of this limit, respectively. Given the sensitivity of MAPE
when target values are close to zero, we also computed the MAPE for all samples when
the target load metric was greater than 0.05 BW × BH (which encompassed about half
of all time samples of data for each participant). The average MAPE for the upper range
of lumbar moments was 13%, 15%, and 25% for the distributed sensor, trunk IMU and
pressure insole, and trunk IMU algorithms, respectively.
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Figure 4. Algorithm accuracies for three idealized wearable sensor algorithms. (A) Lab-based (gold-standard) lumbar
extension moment vs. idealized wearable algorithm estimates of lumbar moment for all time samples for an example
participant (participant 8*). Positive moments correspond to lumbar extension moments. A line with a slope of one is
added to visualize a perfect correspondence between lab-based and wearable estimates. BW × BH = body weight × body
height. (B) Coefficient of determination (r2) for each participant. Average results (avg, bottom) are equivalent to accuracies
in Figure 2. The trunk IMU algorithm was less accurate than the trunk IMU and pressure insoles algorithm, and than the
distributed sensors algorithm (p < 0.001 and p < 0.001, respectively, based on Wilcoxon signed-rank test of the k-fold cross
validation accuracy results). Comparing accuracies from the trunk IMU and pressure insoles algorithm vs. the distributed
sensors algorithm yielded p = 0.054. Average RMSE was converted into units of Nm (using mean participant height and
weight) and included for reference.

We also observed that if the trunk IMU were substituted with thigh IMUs, then
correlations only decreased slightly from r2 = 0.74 to r2 = 0.68 with a single sensor, and
from r2 = 0.89 to r2 = 0.86 for the two sensor combination (Table 3). If the trunk IMU
were substituted with a pelvis IMU, then the correlations decreased slightly more from
r2 = 0.74 to r2 = 0.61 with a single sensor, and from r2 = 0.89 to r2 = 0.81 for the two sensor
combination (Table 3). All of the two sensor location solutions that achieved r2 > 0.8
included GRFs from pressure insoles.

Participant-specific results (Figure 4) corroborated and strengthened the average
results (Figures 2 and 3, Table 3). For instance, all ten participants exhibited high algorithm
accuracies (r2 ranging from 0.86 to 0.95) using the distributed (six sensor location) algorithm.
When moving from a single trunk IMU to using a trunk IMU and pressure insoles, every
participant exhibited an increase in r2 value (Figure 4). Scatter plot data for each participant
indicated that the improvement in r2 going from one to two sensor locations was driven
by both a decrease in the variation of data about the unity regression line and improved
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estimates at higher magnitude lumbar moments (see the example participant data in
Figure 4A). When moving from two to six sensor locations, the variation in data about the
regression line decreased more, but only slightly (Figure 4A). We also note that for two
participants (numbers 1 and 4), going from two to six sensor locations did not increase r2

at all (Figure 4B).

3.2. Results from Real Wearable Sensors

Figure 5 is analogous to Figure 3, and Figure 6 is analogous to Figure 4, except that
Figures 5 and 6 are based on algorithms using real wearable sensors rather than idealized
wearable sensors. Real wearable sensor results confirm that the most important sensor
signals for estimating lumbar extension moments are sagittal trunk angle from a trunk
IMU and vertical GRFs from pressure insoles (Figure 5). However, it is noteworthy that the
trunk angle signal importance was much higher than the vertical GRFs in the analysis using
real wearable sensors (Figure 5), whereas with idealized signals these signal importances
were of similar magnitude (Figure 3).
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Figure 5. Sagittal trunk angle and vertical GRFs are the most important signals for estimating
lumbar moments, consistent with the findings from idealized wearable sensor analysis in Figure 3.
Signal importances here are from the real wearable sensor algorithm for estimating lumbar extension
moments. R = right; L = left.

The participant-specific results (Figure 6) again corroborated and strengthened the
average results from real wearable sensor algorithms. Compared to idealized wearable
sensor algorithms, there was no discernible increase in r2 value when moving from one
sensor location (trunk IMU, r2 = 0.79) to two sensors locations (trunk IMU and pressure
insoles, r2 = 0.80). The increase in r2 from two to six sensor locations also remained relatively
small, similar to what was observed in the idealized wearable sensor analysis (Figure 4).
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Figure 6. Algorithm accuracies for three different real wearable sensor combinations. (A) Lab-based (gold-standard) lumbar
moment vs. real wearable sensor algorithm estimates of lumbar moment for all time samples for an example participant
(participant 8*). Positive moments correspond to lumbar extension moments. A line with a slope of one is added to
visualize a perfect correspondence between lab-based and wearable estimates. BW × BH = body weight × body height.
(B) Coefficient of determination (r2) for each participant. Both reduced sensor algorithms yielded accuracies that were lower
than the distributed sensor combination (p = 0.011 and p = 0.014 for the trunk IMU, and trunk IMU and insole algorithms,
respectively; based on Wilcoxon signed-rank test of the k-fold cross validation accuracy results), but the accuracy of the two
reduced sensor algorithms shown here were not different from each other (p = 0.571).

3.3. Comparison of Results from Idealized versus Real Wearable Sensors

Figure 7 provides a side-by-side comparison of algorithm performance using idealized
versus real wearable sensor signals. These plots are visualizations of the tabular results
reported in Figures 4B and 6B and provided for clarity and to assist with interpretation. The
key takeaway is that while the idealized wearable sensor analysis resulted in a noticeable
jump in accuracy when moving from one to two sensors, a similar improvement was
not observed in the real wearable sensor analysis (Figure 7). The Discussion section digs
into why.
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Figure 7. Side-by-side comparison of algorithm performance using idealized versus real wearable sensor signals. Gray
lines are each of the 10 participants’ accuracy results, and colored lines are the average (and standard deviation) across the
10 participants. Results using idealized wearable sensors are shown on the left (orange) and results using real wearable
sensors are shown on the right (blue).

4. Discussion

These findings indicate that there is strong potential to use a small number of wearable
sensors to create a portable tool for the practical and accurate monitoring of low back
loading over a broad range of manual material handling tasks. We characterized the
performance of over 60 different wearable sensor combinations and algorithms. The
solution we found to be most promising combines signals from sensors at two body
locations (an IMU on the trunk and pressure insoles under the feet) with a Gradient
Boosted Decision Tree algorithm. While idealized wearable sensor results demonstrated
promising proof-of-concept, the analysis of real wearable sensor signals revealed that
to achieve accurate lumbar moment estimates in the real world, the key technological
challenge will be to optimize force estimates and minimize variability from the pressure
insoles. With further development and validation, we believe that this type of wearable
solution has the potential to transform how ergonomic assessments are performed in
industry, to enhance the quality, quantity, and efficiency of occupational data collection,
and to expand opportunities for personalized, continuous monitoring of low back injury
risk. For example, time-series lumbar moments could be partitioned into individual
lift/bend cycles and the magnitude and frequency of loading on the low back could be
automatically input into ergonomic assessment tools like LiFFT to estimate overexertion
injury risk. Below we discuss the major technical findings from this exploratory research,
along with alternative solutions, key challenges, and new opportunities for advancement.

4.1. Which Wearable Sensors and Locations Are Most Important?

The trunk IMU and pressure insoles were identified in all analyses as together being
the most important sensors for monitoring lumbar extension moments (Figures 2, 3 and 5;
Table 3). These results match our biomechanics intuition given that lumbar moment is
strongly influenced by the weight of the object being lifted (which can be captured by
pressure insoles) and by upper-body posture (which can be estimated with an IMU on
the trunk).
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Interestingly, the trunk IMU could be replaced with thigh IMUs or a pelvis IMU with
relatively little degradation in accuracy (Table 3). Of note, the reason that the thigh and
pelvis IMU signals appear to have a low importance in Figures 3 and 5, but can actually be
useful substitutes for the trunk IMU is because they are highly correlated with other signals
and because of how the feature importance method works (see Methods). It is valuable to
acknowledge these other alternatives because some sensor locations may be preferred for
certain applications; for instance, a fall protection harness manufacturer may be able to
integrate an IMU more easily on the trunk near the D-ring or on the thighs using the leg
loops, whereas for a tool belt manufacturer it may be preferable to integrate the IMU at the
waist. In contrast, there was no substitute for the pressure insoles, which provide unique
force data that helps to distinguish if the person is lifting a heavy object vs. a light object vs.
no object at all and just bending forward. In theory, object mass could be obtained using
sensors beyond those we tested (e.g., measured directly using force-instrumented gloves,
or estimated indirectly via muscle EMG), but these again introduce added complexity and
practical implementation challenges that may be barriers to adoption for many applications.

We observed that using two sensor locations (trunk IMU and pressure insoles) sacri-
ficed minimal accuracy compared to using more sensor locations (e.g., all six distributed
sensor locations, Figures 4 and 6). This supports the idea that it may be possible to use
a relatively small subset of sensors to make workplace implementation more practical,
while still obtaining accurate estimates of back loading. These findings also demonstrate
that more sensors, or more widely distributed sensors, should not be assumed to result in
substantially more accurate musculoskeletal load monitoring tools. For monitoring lumbar
loading during manual material handling, there appears to be a sweet spot for accuracy
and practicality that involves using pressure insoles and a single IMU.

4.2. What Types of Algorithms Work Well for This Sensor Data Fusion?

All the results presented here were developed using Gradient Boosted Decision Tree
algorithms. We found this type of algorithm to work well during early exploration of the
data. Within the Gradient Boosted Decision Tree framework, we utilized the histogram-
based decision tree building algorithm, as it significantly reduces the training time with
larger datasets (>10k samples), but did not noticeably degrade prediction performance of
our algorithms, compared to traditional Gradient Boosted Decision Trees. Using this ap-
proach, input signal values are separated into bins, reducing the computational complexity
of splitting decisions and efficiently leveraging parallel computational resources [24].

In a pilot data analysis, we also explored other categories of algorithms/models,
including generalized linear models, ensemble methods (random forests), shallow neural
networks (2 hidden layers), and support vector regression. While most of these methods
(linear, support vector regressions, forests) resulted in comparable prediction results to each
other, Gradient Boosting consistently provided more accurate estimates in our preliminary
data sets. Additionally, some of these methods (most notably, support vector regression)
did not scale well with a large number of data points and became prohibitive to train.

We did not have success with traditional neural network models. This may have been
because of insufficient number of layers, nodes, or the chosen activation functions. We
note that the hyperparameter space for neural networks is significantly larger than for the
other methods we tried. We provide this brief commentary on the explored set of machine
learning algorithms for this problem domain to share our initial experiences. Our review
and evaluation of alternative algorithm approaches is not exhaustive and there are certainly
other applicable AI-based or statistical methods beyond this initial study. Such promising
candidates include convolutional neural layers and recurrent neural networks, which may
be interesting to explore in the future.

4.3. How Accurately Can We Monitor Low Back Loading during Manual Material
Handling Tasks?

The idealized results demonstrate the potential for a small number of sensors to
provide accurate estimates of low back loading. Using a trunk IMU and pressure insoles
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resulted in lumbar moment estimates that were strongly correlated with lab-based lumbar
moments (r2 = 0.89, Figure 4B). This solution performed well across the broad range of tasks
and lumbar moment magnitudes captured (Figure 4A). The RMSE and MAPE accuracy
results corroborated that this wearable sensor approach is very promising. The RMSE
corresponds to less than 10% of the peak lumbar moments during heavy lifting. For context,
we found that using just two sensor locations (trunk IMU and pressure insoles) during
about 400 different material handling tasks exhibited similar levels of accuracy (r2 = 0.89
and RMSE = 20 Nm) as those reported in [8], which combined 8–17 IMUs and force-sensing
shoes to estimate lumbar moments during 4 tasks that involved lifting and carrying a 10 kg
box (r2 = 0.93 and RMSE < 20 Nm).

The real wearable results highlighted the technological key to realizing accurate
estimates of back loading in the real world. Combining a real wearable trunk IMU and
pressure insoles resulted in lower average accuracy than with the idealized wearable
sensors (e.g., r2 = 0.80 vs. r2 = 0.89), and only marginal benefits over a real trunk IMU
alone (r2 = 0.80 vs. r2 = 0.79). This appears to be due to variability in insole force estimates
compared to vertical forces from idealized wearable sensors (i.e., from lab-based force
plates, Figure A5). In contrast, we found that trunk orientation from the real wearable
sensor (trunk IMU) was a very strong indicator of trunk orientation from idealized wearable
sensors (lab-based optical motion capture), with low variability (Figure A5). Together, this
seems to explain why GRFs were of similar importance as the trunk IMU when using the
idealized wearable sensors (Figure 3) but of much lower importance when using the real
wearable sensors (Figure 5). A key technological priority should be to reduce the variability
in the insole force estimates. The good news is that there are various ways to improve these
force estimates through advances in signal processing, calibrations, and sensor hardware,
or via the optimization of sensors for pressure/force magnitudes expected in certain tasks
such as material handling. As the variability in insole forces is reduced, the accuracy of
algorithms developed using real wearable sensors will approach the accuracy observed
using the idealized wearable sensors. We confirmed this to be true by replacing the real
pressure insole data with idealized pressure insole data during algorithm development
and finding lumbar moment estimates to have similar accuracy to our idealized wearable
sensor algorithms.

These insights highlight the benefits of using idealized signals when exploring new
wearable sensor solutions. If we used real wearable sensors alone, we may have con-
cluded that pressure insoles do not improve back loading estimates compared to a single
wearable trunk IMU. In actuality the pressure insoles provide unique and highly valuable
force data (Figures 2 and 3, Table 3) that can help distinguish when someone is lifting a
heavy object vs. simply bending forward, and that can greatly improve capabilities for
monitoring trends in low back loading (particularly at higher magnitudes). Overall, our
complementary analyses, evaluating accuracies across a range of reduced sensor algorithms
for both idealized and real wearable sensors, and ranking signal importances, provides a
systematic and effective approach to identifying key sensor signals and promising wearable
sensor combinations.

4.4. Benefits and Drawbacks of Single Wearable Sensor Solutions

The results demonstrate that a single IMU solution can perform reasonably well
for estimating lumbar moments (Table 3). The practical benefits were described in the
Introduction (e.g., relative simplicity for workplace implementation). The trunk IMU, and
to a slightly lesser extent the thigh and pelvis IMUs, provided moderately high correlation
coefficients up to r2 = 0.74 in idealized wearable sensor analysis, and up to r2 = 0.79 in
the real wearable sensor analysis. The reason for the slightly stronger correlations with
real wearable sensors for the trunk IMU algorithm is unknown, but may be due to a richer
set of candidate signals that we input into the real vs. idealized wearable algorithms (see
Table 1 vs. Table 2), which included additional spine segment and joint angle estimates
from the Xsens functional skeleton calibration, and IMU accelerations and velocities. These
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results suggest that commercial wearables that place an IMU on one of these segments
(trunk, pelvis, or thighs) are at least monitoring the types of signals that can be correlated
with lumbar moments (with proper algorithm development and training).

The critical drawback of single IMU wearables is that they fail to capture increases in
lumbar loading when different objects are lifted, and as a result they tend to perform worse
for higher lumbar moments, which unfortunately are the instances of highest ergonomic
interest since these are most damaging to musculoskeletal tissues. This accuracy limitation
at higher magnitudes is evident in plots of time series lumbar moments. For example,
the trunk IMU algorithm does not capture the increase in low back loading peaks when a
participant is picking and placing a 10 kg box (gray areas in Figure 8). In contrast, these
elevated back loads from the handheld mass are captured by solutions that use sensors
at multiple locations that include pressure insoles along with at least one IMU (Figure 8).
The time-series plots show a representative lifting task, while the scatter plots and tables
presented in the Results provide comprehensive results from all the participants and across
all the manual material handling tasks collected.
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Figure 8. Single IMU wearable does not capture key trends and peaks in lumbar loading when
objects are lifted. Time-series lab-based lumbar extension moment (green) and idealized wearable
algorithm moments developed with three different idealized wearable sensor combinations (orange).
Shown is an example lifting task from the hundreds of manual material handling tasks performed
for an example participant; 3 pick and place task cycles with a 10 kg box shown. While we only
show a subset of time-series results here, we observed similar algorithm accuracy trends across the
broad range of manual material handling tasks collected. Gray areas are approximately when the
participant was holding the 10 kg box, white areas are when the participant had no object in their
hands. The trunk IMU tends to perform worse when the box is being held or lifted, whereas the
trunk IMU plus pressure insoles, and distributed sensors, are able to better track key lumbar loading
trends (gray areas). BW × BH = body weight × body height.
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As another example, lifting objects of increasing mass with similar body posture causes
an increase in peak lumbar moments (Figure 9). Using a trunk IMU alone completely misses
the trend of increasing low back loading when individuals adopt similar trunk orientations
(i.e., postures) for each lift, while using a solution that includes both pressure insoles and
an IMU captures these increasing back load trends (Figure 9). These results confirm our
expectations from the Introduction: while a single IMU (on the trunk, or elsewhere) may
provide a reasonable estimate of back loading (or trends in loading) due to changes in
general body posture, the estimation accuracy is compromised when objects of differing
mass are handled or when other external forces are applied to the body (e.g., during
pushing, pulling, or leaning). It may also be possible to use the trunk IMU plus pressure
insoles combination during initial assessment of each worker, or intermittently over time,
in order to better calibrate the trunk IMU (alone) for each worker—in effect supplementing
the minimal single senor solution to improve accuracy and personalization. Of note, using
the pressure insoles alone yielded fairly poor accuracy (Figure A1), again highlighting the
benefits of fusing data from multiple sensor locations.
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Figure 9. Single IMU wearable does not capture increases in lumbar loading when heavier objects are lifted. Shown is an
illustrative example from one participant: peak lumbar moment of squat tasks when increasing box masses are lifted (10 kg,
15 kg, 23 kg are shown). The trunk IMU and insole algorithm, and also the distributed sensor algorithm, captures the trend
of increasing lumbar moment with heavier object mass. However, the trunk IMU algorithm does not; it predicts a similar
peak moment with each lift regardless of the mass being lifted. BW × BH = body weight × body height.

In short, caution should be taken when using a single wearable (on any body segment)
to monitor low back loading, particularly in situations where external forces are variable,
or when object masses being handled are not manually input (or otherwise accounted
for) in algorithms. Further exploration is warranted to understand the implications of
single IMU sensor accuracy within the context of risk assessment tool sensitivity, and to
understand the validity of using single wearable sensor solutions for different types or
subsets of manual material handling tasks. Wearable solutions that fuse data from multiple
sensor locations (e.g., trunk IMU and pressure insoles) are expected to provide more
accurate and reliable ways to automate ergonomic assessments or provide continuous daily
risk monitoring for material handling jobs that involve lifting objects of varying weight;
albeit with slightly more implementation complexity due to more sensor modalities, and
presuming the variability in pressure insole force estimates can be adequately reduced.
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4.5. Lateral Bending Lumbar Moment Can Also Be Estimated with a Trunk IMU and
Pressure Insoles

Lumbar extension moments have been shown to be a key metric for monitoring cu-
mulative damage to the low back and resulting injury risk (see Introduction). However,
there are also opportunities to provide a broader, multifactorial assessment of injury risk by
monitoring other musculoskeletal loading metrics with wearables. One additional metric of
interest to us was lumbar lateral bending moment, as increases in lateral bending moment
contribute to increases in back muscle and disc compression forces [25], which influence
cumulative damage to the low back. We therefore repeated the same algorithm develop-
ment and evaluation process using the idealized wearable sensor data from this study,
but using time series lumbar lateral bending moment as the target metric (Figures A2–A5).
Encouragingly, signals from the same set of wearable sensors (trunk IMU and pressure
insoles) that were identified as most important for estimating lumbar extension moments
were also the most important for estimating lateral bending moments (Figure A4). Similar
to our analysis of the lumbar extension moment, a single trunk IMU algorithm did not cap-
ture all trends in lateral bending moment, namely when the user held and moved objects
of differing mass lateral to their body (Figure A3). The trunk IMU algorithm resulted in an
average accuracy of r2 = 0.65 (Figure A5). Combining the pressure insoles with the trunk
IMU increased the accuracy to r2 = 0.83 (Figure A5). This again demonstrates how a small
set of wearable sensors (trunk IMU and pressure insoles) could provide a practical and
accurate tool for monitoring low back loading (due to both lateral and extension moments),
with only a relatively small reduction in accuracy compared to the full set of distributed
sensors tested (r2 = 0.88, Figure A5).

4.6. Limitations and Future Opportunities

Given the exploratory nature of developing next generation wearables, there were
many interesting additional areas of research that were beyond the scope we chose to
evaluate in this study. Numerous other candidate wearable sensors and emerging tech-
nologies, signal processing techniques, machine learning algorithms, and musculoskeletal
metrics of interest could be explored in future studies. Additionally, while we focus on
evaluating a tool for monitoring low back loading in a workplace environment, there are
many other exciting research and clinical applications of a low back monitoring tool. For
example, a similar wearable solution might be used in a clinical or home setting to monitor
patients during post-injury or post-surgery rehabilitation, track their progress, or assist
with return-to-work decisions.

Within the scope of this study, we note some limitations of our approach. First, the
real wearable sensors used were research-grade instrumentation. Implementing algorithms
on consumer-grade hardware, or any other hardware platform not tested here, would
require additional algorithm calibration, validation and evaluation. Second, the number
of participants tested was informed by our prior studies combining wearable sensors and
machine learning [12,21], but this kind of exploratory (non-hypothesis-driven) research
is not amenable to traditional sample size calculations. The consistency of results for
individual participants using the k-fold validation analysis suggests that our sample was
adequate, but we acknowledge that our understanding of how much data is enough to
identify promising wearable monitoring tools using diverse machine learning techniques
is continuing to evolve. Third, we did not use sensors to monitor the location of the object
being lifted relative to the body (e.g., spine). Although this distance could be estimated by
tracking multiple segments of the arms, we choose not to do this for reasons of simplicity
and practicality. For now, adding this complexity seems unnecessary given that the simpler
trunk IMU plus pressure insole solution presented here already shows strong potential for
estimating lumbar moments. Fourth, we focused on load monitoring as a key risk factor for
low back disorders, but it is worth reminding that sensors like the trunk IMU capture other
data such as twisting (spine rotation) and trunk acceleration/deceleration, which can also
be useful and complementary for injury risk assessment. Fifth, we focused on how lumbar
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moments could be used as direct inputs into the LiFFT risk assessment tool. However,
we should note that lumbar moments (and other wearable metrics like trunk orientation)
could alternatively be input into other tools or models such as the NIOSH Lifting Equation.
However, the NIOSH Lifting Equation requires some additional inputs such as a “Coupling”
factor. Fully automating wearable risk assessment using the NIOSH Lifting Equation
seems feasible, but would require some additional assumptions, modeling, and validation.
Sixth, algorithms were developed and evaluated on a broad range of movement tasks we
identified as representative of many manual material handling jobs performed in workplace
environments. The efficacy of using a trunk IMU and pressure insoles to monitor low back
loading for other tasks or jobs outside of those tested would require additional validation
and evaluation. To our knowledge, this is one of the largest databases ever collected from
synchronized laboratory instrumentation and wearable sensors in this ergonomics and
material handling domain. As such, we plan to use this dataset for future secondary
analysis, and to make it available to other researchers interested in exploring additional
research questions.

5. Conclusions

Here, we present a promising wearable solution for the practical, automated, and
accurate monitoring of low back loading during manual material handling. We found
that two key sensors for accurately monitoring low back loading are a trunk IMU and
pressure insoles. Using signals from these two sensors together with a Gradient Boosted
Decision Tree algorithm has the potential to provide a practical (relatively few sensors),
accurate (up to r2 = 0.89), and automated way (using wearables) to monitor time series
lumbar moments across a broad range of material handling tasks. The trunk IMU could
be replaced by thigh IMUs or a pelvis IMU without sacrificing much accuracy, but there
was no practical substitute for the pressure insoles. The key to realizing accurate lumbar
load estimates with this approach in the real world will be optimizing force estimates from
pressure insoles. This promising wearable solution has the potential to transform low back
injury risk assessment, monitoring, and prevention in various industries.
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Figure A1. Number of sensor locations and specific sensor combination influences algorithm accu-

racy. (Top) Average accuracy using idealized wearable sensors summarized here using the aver-
Figure A1. Number of sensor locations and specific sensor combination influences algorithm accuracy. (Top) Average
accuracy using idealized wearable sensors summarized here using the average coefficient of determination (r2). Darker
color bars correspond to an increasing number of sensor locations used in the algorithm. (Bottom) Summary of which
sensor locations were used in each reduced sensor combination. Orange grid boxes indicate that signals from that sensor
location were used for the algorithm. These results are equivalent to Figure 2 but depicted here to visualize the performance
of each specific sensor combination.
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Figure A2. Combining a trunk IMU and pressure insoles is also promising for estimating lumbar
lateral bending moment. Average accuracy using idealized wearable sensors summarized here
using the average coefficient of determination (r2). As with estimating lumbar extension moments
(Figure 2), the maximum algorithm accuracy increased with number of sensor locations. Orange
dots represent the distributed sensor algorithm (6 sensor locations), and a subset of algorithms using
1 and 2 sensor locations. All the algorithms here were developed with idealized wearable sensor
signals and the target was the lumbar lateral bending moment.



Sensors 2021, 21, 340 23 of 25

Sensors 2021, 21, x FOR PEER REVIEW 24 of 27 
 

 

 

Figure A3. Representative example of lumbar lateral bending moment estimates based on differ-

ent wearable sensor combinations. Shown are the lab-based (green) and algorithm-estimated (or-

ange) lateral bending moments for three different sensor combinations. Depicted is a subset of the 

hundreds of manual material handling tasks performed for an example participant; 4 pick and 

place task cycles with a 5 kg box shown. These results were similar to those observed when esti-

mating the lumbar extension moment (Figure 8): the single IMU wearable did not well estimate 

the higher magnitude lateral bending moments, but combining a pressure insole with at least one 

IMU improved these estimates. All the algorithms here were developed with idealized wearable 

sensor signals and the target was lumbar lateral bending moment. BW × BH = body weight × body 

height. 

 

Figure A3. Representative example of lumbar lateral bending moment estimates based on different
wearable sensor combinations. Shown are the lab-based (green) and algorithm-estimated (orange)
lateral bending moments for three different sensor combinations. Depicted is a subset of the hundreds
of manual material handling tasks performed for an example participant; 4 pick and place task cycles
with a 5 kg box shown. These results were similar to those observed when estimating the lumbar
extension moment (Figure 8): the single IMU wearable did not well estimate the higher magnitude
lateral bending moments, but combining a pressure insole with at least one IMU improved these
estimates. All the algorithms here were developed with idealized wearable sensor signals and the
target was lumbar lateral bending moment. BW × BH = body weight × body height.
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Figure A4. Vertical GRFs and frontal trunk angle are the most important signals for estimating lumbar
lateral bending moments. Signal importances are from the idealized wearable sensor algorithm for
estimating the lumbar lateral bending moment. Note that these signals can be obtained from the
same two sensors (trunk IMU and pressure insoles) that we identified as being the most important
for estimating the lumbar extension moment. R = right; L = left.
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Figure A5. Algorithm accuracies when estimating the lumbar lateral bending moment. Shown are the participant-specific
and average (avg) accuracy results from three different subsets of idealized wearable sensors: trunk IMU, trunk IMU and
pressure insoles, and all distributed sensors. Accuracy is reported as the coefficient of determination (r2) across all time
samples for a given participant.
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Figure A6. Trunk IMUs provided a relatively precise estimate of trunk orientation while pressure
insoles provided a more variable estimate of vertical force. Ten scatter plots represent each participant
and gray dots represent each time sample. Real wearable trunk orientation from an IMU correlated
well with the idealized wearable trunk angle from lab-based motion capture (A), whereas the real
wearable vertical force from pressure insoles did not correlate as well with the idealized wearable
vertical force from lab-based force plates and exhibited a higher variability (B). A line with a slope
of one is added to visualize a perfect correspondence between idealized and real wearable sensor
signals. See Tables 1 and 2 for details on idealized and real wearable sensor signals. deg = degrees;
BW = body weight.
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