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Abstract: Affected by the vibrations and thermal shocks during launch and the orbit penetration
process, the geometric positioning model of the remote sensing cameras measured on the ground
will generate a displacement, affecting the geometric accuracy of imagery and requiring recalibration.
Conventional methods adopt the ground control points (GCPs) or stars as references for on-orbit
geometric calibration. However, inescapable cloud coverage and discontented extraction algorithms
make it extremely difficult to collect sufficient high-precision GCPs for modifying the misalignment
of the camera, especially for geostationary satellites. Additionally, the number of the observed stars
is very likely to be inadequate for calibrating the relative installations of the camera. In terms of the
problems above, we propose a novel on-orbit geometric calibration method using the relative motion
of stars for geostationary cameras. First, a geometric calibration model is constructed based on the
optical system structure. Then, we analyze the relative motion transformation of the observed stars.
The stellar trajectory and the auxiliary ephemeris are used to obtain the corresponding object vector
for correcting the associated calibration parameters iteratively. Experimental results evaluated on the
data of a geostationary experiment satellite demonstrate that the positioning errors corrected by this
proposed method can be within ±2.35 pixels. This approach is able to effectively calibrate the camera
and improve the positioning accuracy, which avoids the influence of cloud cover and overcomes the
great dependence on the number of the observed stars.

Keywords: remote sensing; imaging sensor; geometric calibration; relative motion; stellar trajectory

1. Introduction

At present, geostationary remote sensing cameras (RSCs) are widely used in earth
observation and space surveillance, such as the monitoring of ocean change, meteorological
and natural disasters [1–3]. Geostationary RSCs can continuously monitor and quickly
revisit any location within the field of regard of the satellite, which offers new function-
alities not covered by low earth orbit satellites [4]. Precise orientation parameters of the
camera are preset in ground-based laboratories before launch, including the principal
point, the focal length and camera installation matrix with respect to the satellite-body
coordinate system, which contributes to establish a geometric positioning model for direct
georeferencing [5–7]. Nevertheless, owing to the launch vibration and the variation of
spatial thermal environment, the positioning model will inevitably change, which will
ultimately bring about the reduction of the geometric accuracy [8,9]. Therefore, on-orbit
geometric calibration with the references including the ground control points (GCPs), coast-
lines and stars [10–14] is an essential prerequisite for ensuring the high-precision satellite
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imagery [15–18]. However, for geostationary RSCs, subjected to the cloud coverage and the
accuracy of corresponding extraction algorithms, it is not easy to ensure the availability of a
great number of accurate GCPs through earth observation, and, additionally, the star-based
calibration method is usually limited by the number of the observed stars. Hence, an
efficient geometric calibration method being free from the weather and the number of stars
is urgently needed.

Up to now, a large number of studies have been conducted on on-orbit calibration to
improve the positioning accuracy of RSCs. The early published work commonly focused on
constructing the positioning models through GCPs in calibration test sites [19]. especially,
according to 33 GPS-surveyed GCPs in the Denver test site, the calibration of in-flight field
angle map was performed to reduce the interior orientation systematic errors of the camera
of IKONOS, and the residual errors were within ±1 pixel [20–22]. Based on the globally
distributed test sites, Valorge et al. [23] estimated the line-of-sight (LOS) biases of the
Haute Resolution Géométrique carried by SPOT-5 satellite and modified the misalignment
between the instruments and the attitude and orbit control subsystem (AOCS) reference
frame. Similarly, using a viewing geometry model, given ephemeris and attitude data,
precise camera geometry and datum transformation, Radhadevi et al. [24] address the in-
flight calibration, consisting of alignment calibration of individual sensors and calibration
between the sensors, for IRS-P6, which requires as many GCPs as possible for stability
and reliability. Furthermore, according to the calibration fields located in Denver and
Lunar Lake, the planimetric accuracy of GeoEye can be achieved as 3 m (RMS) [25–27].
However, relying heavily on the high-precision references of the calibration sites and the
number of the manually selected GCPs, the methods above usually turn out to be inefficient
and unstable.

To reduce the dependence on calibration sites and improve the efficiency, automatic
GCPs extraction methods based on geographic references, including the digital orthophoto
map (DOM) and the digital elevation model (DEM), as well as the associated feature
matching technology, have been proposed to acquire abundant GCPs. Using the correlation
method [28] to match the Orbita hyperspectral satellite images and the corresponding DOM
images in Hubei area automatically, Jiang et al. [29] carried out the geometric calibration
of Zhuhai-1 with 2102 extracted GCPs, and the calibration accuracy could be better than
0.5 pixels. For implementing the automatic geometric calibration of GF4, Wang et al. [30]
adopted the SIFT algorithm to extract the GCPs from the DOM and DEM references of
Landsat 8 and ASTER GDEM (GDEM2), and the matching accuracy was declared to
be better than 0.3 pixels. Using the GPU-ASIFT automatic GCPs extraction algorithm,
Dong et al. [31] obtained thousands of GCPs from the Landsat8 images and AW3D30 DSM
to perform the on-orbit geometric calibration for GF-4, and the final calibration accuracy
could be within 1.19 pixels. For correcting geo-referencing errors of KMSS-2 images of
Meteor-M No. 2–2 satellite, Zhukov et al. [32] performed geometric calibration based on the
bank of Landsat GCPs. In addition, in most cases, the errors after corrected did not exceed
60 m. Combined rational polynomial coefficient (RPC) model-based forward and inverse
transformation with the DEM data extraction, Ye et al. [33] designed and implemented
the automatic orthorectification system (GF1AMORS), and the experiments showed that
the automatic orthorectification process exhibited a nice accuracy and stability in both
mountainous terrain and plain terrain. Seo et al. [34] presented the direct geo-referencing
model of KOMPSAT-3A AEISS-A using GCP/Image Control Point (ICP) to correct the
distortion with under 0.5-pixel accuracy and bundle adjustment, and then the image data
were provided to users. Coupled with the Gaofen-7 satellite data, Liu et al. [35] constructed
a geometric imaging model of the area array footprint camera and proposed a coarse-to-
fine “LPM-SIFT + Phase correlation” matching strategy for the automatic extraction of
calibration control points. Compared with the calibration result using a small number of
manually collected control points, the root mean square error (RMSE) of the residual of
the control points is improved from half a pixel to 1/3, and the RMSE of the same orbit
checkpoints in the image space is improved from 1 pixel to 0.7. Li et al. [14] proposed an



Sensors 2021, 21, 6668 3 of 16

accurate geometric texture-based GCPs extraction approach for the thermal infrared remote
sensing images of Landsat 8 and GLS 2000, and the absolute matching errors in sample
and line directions could be 0.50 and 0.47 pixels. In addition, similarly, the coastlines could
also be considered as efficient references to accomplish the on-orbit calibration as well [36].
According to the GCPs obtained from the global self-consistent hierarchical high-resolution
shoreline and the coastline template matching, Chen et al. [37] developed an on-orbit
installation matrix calibration approach for the navigation of the advanced geostationary
radiation imager (AGRI) on FY-4A with the navigation error being 1.3 pixels. Although the
GCP extraction approaches above are conductive to the automatic calibration, it is obvious
that they depend heavily on the cloud coverage of the images and the distribution of GCPs.

However, due to the unpredictable cloud coverage and certain features changing
greatly compared with the reference image, eligible remote sensing images cannot always
be obtained in real time, which results in great difficulties for the conventional methods in
performing immediate calibration for urgent positioning requirements.

To avoid the GCP restrictions, Delvit et al. [38] proposed an auto-reverse method for
geometric calibration of Pleiades-HR using a couple of images from the same orbit with
inverse directions. Although this method works well without external references, it is not
applicable to other satellites without the extreme agility.

Additionally, being independent of GCPs, star-based geometric calibration, unaffected
by the eclipse and interfering daylight, is also a promising and effective method [39].
Kim et al. [40] proposed a geometric calibration using stellar sources in an earth observation
satellite, which can help monitor the geographic location accuracy of satellite images. In
addition, numerical simulation verified the effectiveness of the method. Using the ensemble
of star field images, Christian et al. [41] proposed a geometric calibration of the Orion
optical navigation camera and verified the effectiveness of the method through numerical
experiments. In addition, with the stars as the reference points, Fourest et al. managed to
perform the geometric calibration of Pleiades-HR [42]. Likewise, Li et al. [4] constructed a
rigorous stellar-based geometric positioning model for geostationary cameras and proposed
a thermal deformation positioning error correction method with the accuracy of less than
±1.9 pixels. In addition, processing the star map from the camera and star sensors for the
star coordinate acquisition, Guan et al. [43] developed a camera-star sensor installation
calibration method for Luojia 1-01 Satellite, which achieved a positioning accuracy of better
than 800 m. Although the star-based method has some advantages over conventional
methods with GCPs, it is impracticable in cases where only a few or even a single star
appears in the camera’s field of view, because inadequate stars will result in a lack of
references for estimating the calibration parameters.

As mentioned above, to avoid the restrictions of GCPs and the observed stars, in
this paper, we propose a novel on-orbit geometric calibration method using the relative
motion of observed stars for geostationary cameras. Thanks to the relative motion between
the observed stars and the camera, the stellar trajectories from consecutive multi-frames
are used to calculate the abundant object vectors (OVs) for correcting the calibration
parameters iteratively, which, effectively, overcomes the number limitation of the observed
stars. Section 2 elaborates the preprocessing of the stellar trajectory, the proposed geometric
calibration method from the relative motion, and the solution of the method. Section 3
presents the experiments and results with on-orbit observation data. Section 4 focuses on
discussing the findings of the study. Finally, the conclusions are summarized in Section 5.

2. Methodology
2.1. Preprocessing of Stellar Trajectory

In terms of the observation stars, the prediction of stellar trajectories can be performed
according to stellar constellations and satellite attitudes. Continuous observations of stars
are completed by a two-dimensional pointing mirror. We obtain a series of the star images
by controlling the optical axis of the camera and making the stars move from the left to the
right in the field of view (FoV).
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Firstly, for each star image, the centroid of the star needs to be determined accurately.
As shown in Equation (1), the centroids of the star images, generally distributed in multiple
pixels, are acquired through the widely used traditional centroid extraction method [44].
The gray value of the pixel is considered to be the weight of the corresponding position for
computing the center of the target.

x0 =
∑

x∈W
∑

y∈W
x×G(x,y)

∑
x∈W

∑
y∈W

G(x,y)

y0 =
∑

x∈W
∑

y∈W
y×G(x,y)

∑
x∈W

∑
y∈W

G(x,y)

(1)

where W is the size of target window, G(x, y) is the gray value of pixel in (x, y), and (x0, y0)
is the centroid position of the target.

Subsequently, with the relative motion of stars, the star trajectory can be obtained
from the multiple consecutive images. Theoretically, the trajectory should be a smooth
curve. However, affected by the disturbance of satellite platform, the instability of the
pointing mirror, and error in discrete sampling, the actual trajectory generally presents as
a series of irregular scattered points [45], which results in a centroid position error and
affects the subsequent positioning accuracy. Therefore, in order to improve the accuracy of
the star’s position, a smoothing spline is adopted to fitting the trajectory of the scattered
star imaging points. The model can be described as

S(g) = p∑
i

wi[yi − g(xi)]
2 + (1− p)

∫ (d2g
dx2

)
dx, (2)

where p is the smoothing parameter defined in [0, 1], wi is the weight of each point, and g
is the function of smoothing spline fitting chosen to minimize the value of Equation (2).

2.2. Geometric Calibration Model

The geometric positioning model of the camera establishes the relationship between
the image point in the focal plane and the corresponding object in the geodetic coordinate
system. Figure 1 shows the diagram of the geometric positioning model of the geostationary
camera. During operation, the satellite continuously adjusts its attitude to make the camera
face the earth for observation. Due to the high altitude and the large observable range of
the geostationary camera, the star observation could be realized by controlling the camera
to point to the deep space with a two-dimensional pointing mirror.

The rigorous geometric positioning model of the camera can be constructed as cos δ cos σ
cos δ sin σ

sin δ

 = λRo−ceRs−o(pitch, roll, yaw)Rc−s(α, β, γ)Rre f (ϕ)

 dx 0 ∆x
0 dy ∆y
0 0 − f

 u− u0
v0 − v

1

, (3)

where (u, v) is the pixel coordinate of the image point, (u0, v0) is the pixel coordinate
of the principal point O, ∆x and ∆y are the distortions of the image point in the x and y
directions on the image plane coordinate system respectively, dx and dy are the dimensions
of a pixel in the x and y directions, respectively, and f is the focal length of the optical
system. As shown in Figure 2, Rre f (ϕ) denotes the reflection matrix of the pointing mirror,
ϕ is the intersection angle of the optical axis and the normal of the pointing mirror, α, β,
and γ are the three installation angles of the camera mounted on the satellite relative to
the three axes of the satellite body coordinate system, Rc−s(α, β, γ) is the corresponding
installation matrix, pitch, roll and yaw are the pitch, roll and yaw angles of the satellite
body coordinate system relative to the orbital coordinate system, Rs−o(pitch, roll, yaw) is
the corresponding the transformation, Ro−ce is the transformation matrix from the orbital
coordinate system to the celestial coordinate system, and λ is the scale factor.
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Figure 1. Diagram of the geometric positioning model of the geostationary RSC. Op-u-v, O-x-y,
Oc-XcYcZc, Os-XsYsZs, Oo-XoYoZo and Oce-XceYceZce are the pixel coordinate system, the image
coordinate system, the camera coordinate system, the satellite body coordinate system, the orbital
coordinate system, and the celestial coordinate system, respectively. x-axis and y-axis are parallel to
u-axis and v-axis respectively. Xc-axis and Yc-axis are parallel to x-axis and y-axis, respectively. Os
and Oo is located in the centroid of the satellite. Xs points in the flight direction of the satellite, Ys is
along the horizontal axis of the satellite, and Zs is determined by the right-hand rule. Xo points in the
direction of satellite motion, Zo points to the center of the earth, and Yo is determined according to
the right-hand rule. Xce points the vernal equinox γ0, Yce is perpendicular to Xce in the equatorial
plane, and Zce is perpendicular to the equatorial plane and points to the celestial pole.

Figure 2. Schematic of the imaging system of camera. N is the normal vector, andϕ is the intersection
angle of the optical axis and the normal of the pointing mirror. is the exit vector corresponding to the
principle point of the camera.

In Equation (3), the transformation from the pixel coordinate system to the camera
coordinate system and the transformation from the camera coordinate system to the ce-
lestial coordinate system can be described as the interior positioning model and exterior
positioning model, respectively. Practically, the interior positioning model is often affected
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by the errors including the detector translation, the lens distortion, and the principal dis-
tance deviation, while the exterior positioning model is affected by the orbit measurement
error, the attitude measurement error, and the camera installation error. Therefore, it is
necessary to consider the influences of various error sources so as to construct a suitable
calibration model.

In view of the complex interior error sources and the strong coupling between the
interior parameters [6,31], a third-order polynomial is adopted to model the tangent of
directional angles of the detector to avoid excessive over-parameterization [30], and the
interior calibration model can be expressed as tan(ψx(u, v))

tan
(
ψy(u, v)

)
−1

 =

 xc/ f
yc/ f
−1

 =
1
f

 xc
yc
− f

 =
1
f

 dx 0 ∆x
0 dy ∆y
0 0 − f

 u− u0
v0 − v

1

, (4)

{
tan(ψx(u, v))
tan
(
ψy(u, v)

) =

{
a0 + a1u + a2v + a3uv + a4u2 + a5v2 + a6u2v + a7uv2 + a8u3 + a9v3

b0 + b1u + b2v + b3uv + b4u2 + b5v2 + b6u2v + b7uv2 + b8u3 + b9v3 , (5)

where ψx(u, v), ψy(u, v) are the directional angles of the image point (u, v), and a0, · · · , a9,
b0, · · · , b9 are the interior parameters.

Then, to reduce the computational complexity, a generalized installation matrix Rins
of the camera is introduced as

Rins = Rs−c(α, β, γ)Rre f =

 A1 A2 A3
B1 B2 B3
C1 C2 C3

, (6)

where α, β, γ are the exterior parameters, A1, A2, A3, B1, B2, B3, C1, C2, C3 are the elements
in the generalized installation matrix Rins.

Subsequently, based on Equations (3)–(6), the geometric calibration model is con-
structed as cos δ cos σ

cos δ sin σ
sin δ

 = λRo−ceRs−o(pitch, roll, yaw)Rins

 tan(ψxc(u, v))
tan
(
ψyc(u, v)

)
−1

, (7)

In the calibration model, both Ro−ce and Rs−o can be calculated from the attitude and
ephemeris of the satellite. The exterior parameters XE are used to describe the synthesis
of the reflect matrix and installation matrix and to compensate the installation angle error
and measurement error. Similarly, the interior parameters XI are used to describe and
compensate for the internal distortion of the camera. Using the stellar track points, the
exterior and interior parameters could be computed iteratively. Distinctly, the accuracy of
exterior and interior parameters determines the accuracy of the calibration model.

2.3. Model Solution Method
2.3.1. Relative Motion Transformation

To determine the calibration parameters, sufficient references generally referring to the
geographic data are usually required for the model calculation. In this paper, the celestial
coordinate of the star is used to solve the model parameters. Given the star’s coordinates
and the ephemeris, the OVs are introduced to represent the incident vector of the star in
the satellite body coordinate system as

OV =

 Tx
Ty
Tz

 = Ro−sRce−oPs, (8)
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where Ps = [cos δ cos σ cos δ sin σ sin δ]T is the orientation vector of the star in the celestial
coordinate system.

In the conventional star-based calibration methods [39,42], according to Equation (7),
the OVs of the stars in a single frame can be expressed as OVi = Ro−sRce−oPsi (i = 1, 2, · · · , n)
(n means the number of the stars), where Psi is the orientation vector of the ith observed
star in the celestial coordinate system. In addition, plenty of OVs are the crucial inputs to
ensure that the positioning model can be solved iteratively. However, if there are only a
few stars, or even single star in one frame, the obtained OVs are insufficient to support the
subsequent calculation.

To address this problem, we propose a method to obtain multiple OVs through the
relative motion of the stars. As shown in Figure 3, at the position Pos1, p1 on the focal plane
FP1 is the corresponding image point of the star S. In the satellite body coordinate system
Os1 − Xs1Ys1 Zs1 , LOS1P1 is the emergent LOS of p1, and OV1P1 is the OV of S. Then, after
reaching the position Pos2, on the focal plane FP2, p2 is the corresponding image point
of the star S, and p′1 is at the same position as p1 on the focal plane FP1. In the satellite
body coordinate system Os2 − Xs2Ys2 Zs2 , LOS2P2 is the emergent LOS of p2, LOS1P2 is
the emergent LOS of p′1, and OV2P2 is the OV of S. During operation, O2 − x2y2 and
Os2 − Xs2Ys2 Zs2 are the corresponding coordinate system of O1− x1y1 and Os1 − Xs1Ys1 Zs1 ,
respectively. According to the geometric relationship of imaging, the OV coincides with
the corresponding LOS. Therefore, we can obtain{ ∥∥OV1P1

∥∥ = −
∥∥LOS1P1

∥∥∥∥OV2P2
∥∥ = −

∥∥LOS2P2
∥∥ , (9)

Figure 3. The schematic diagram of relative transformation.

Since the interior and exterior parameters of the imaging system could be regarded as
invariant during the operation, the emergent LOS of the image points at the same position
on the focal plane are unchanged, namely, LOS1P1 = LOS1P2. Assume that there is a
virtual star S′ in the object space, making OV1P2 = OV1P1, where OV1P2 is the OV of S′

in Os2 − Xs2Ys2 Zs2 . Based on the above relationship expressions, it is easy to prove that∥∥OV1P2
∥∥ = −

∥∥LOS1P2
∥∥, which denotes that p′1 could be regarded as the corresponding

image point of S′ according to the imaging geometry principle. In other words, the stellar
track points p2 and p′1 can be considered as the image of the two different stars S and S′

taken at the same time.
Then, we need to figure out the values of the OVs of p′1 and p2. In Equation (8), it can

be proved that Rce−o is determined by the instantaneous position vector
→
P(t) and velocity

vector
→
V(t) of the satellite, and Ro−s also varies all the time owing to the change of the

three attitude angles. Thus, the OVs of p′1 and p2 can be obtained with the different Rce−o
and Ro−s calculated in the position Pos1 and Pos2, respectively.
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On the basis of the theory above, multiple OVs could be obtained through the relative
motion of the star. As shown in Figure 4, during the operation, the position of the star
relative to the satellite changes all the time. In a short period, the interior and exterior
parameters of the camera could be considered to be invariant. Since the camera geometry re-
mains unchanged, the stellar trajectory generated by the images taken at different times can
be regarded as the image of the multiple stars observed at the same time. Therefore, using
enough stellar track points, we construct the OVs as OVi = Ro−si Rce−oi Ps(i = 1, 2, · · · , m)
(define m as the number of the points).

Figure 4. Schematic diagram of geometric transformation of trajectory. (a) The stellar trajectory obtained by snapping the
star S at the position P1, P2, P. (b) The image of the stars S1, S2, S3 taken at the position P.

2.3.2. Model Solving

According to the different calculation order of the calibration parameters, the geomet-
ric calibration methods are mainly divided into three types: overall calibration, first exterior
calibration and then interior calibration, and first interior calibration and then exterior
calibration. To reduce the correlation between the parameters and improve the accuracy of
the interior calibration parameters, this paper adopts a stepwise calibration method [30]
to calculate the calibration parameters. First, the exterior parameters are estimated. Then,
the interior parameters are estimated in the reference camera frame determined by the
estimated exterior parameters.

According to the mentioned above equations, we transform Equation (7) as tan(ψxc(u, v))
tan
(
ψyc(u, v)

)
−1

 = λ

 A1 B1 C1
A2 B2 C2
A3 B3 C3

 Tx
Ty
Tz

, (10)

Then, Equation (11) can be transformed from Equation (10) for the calibration. S = − A1Tx+B1Ty+C1Tz
A3Tx+B3Ty+C3Tz

− tan(ψxc(u, v))

L = − A2Tx+B2Ty+C2Tz
A3Tx+B3Ty+C3Tz

− tan
(
ψyc(u, v)

) , (11)

where S and L are the residual expressions in the horizontal direction and vertical
direction, respectively.

In terms of exterior calibration, we initialize the interior and exterior parameters
with the on-ground calibration parameters, and then, for each stellar track point, linearize
Equation (11) to construct the error equation Equation (12) as

VE = A∆XE − LE, PE = E, (12)
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where A is the coefficient matrix of Equation (12), ∆XE is the correction of exterior parame-
ters, LE is the error vector calculated by the current interior and exterior parameters, and
PE is the identity weight matrix. For each stellar track point, ∆XE can be estimated by the
least-square method as

∆XE =
(

AT PE A
)−1(

AT PELE

)
, (13)

Then, exterior parameters XE could be updated as

XE = XE + ∆XE, (14)

XE is updated iteratively until ∆XE ≤ ε, where ε is the preset small positive threshold for
exterior calibration.

For interior calibration, insert the modified XE above into Equation (11), and, for each
stellar track point, linearize Equation (11) to construct the error equation, Equation (15), as

VI = B∆XI − LI , PI = E, (15)

where B is the coefficient matrix of Equation (15), ∆XI is the correction of the interior
parameters, LI is the error vector calculated by the current interior and exterior parame-
ters, and PI is the identity weight matrix. Then, we can obtain the correction of interior
parameters by the least-square method as

∆XI =
(

BT PI B
)−1(

BT PI LI

)
, (16)

Interior parameters XI could be updated as

XI = XI + ∆XI , (17)

XI is updated iteratively until ∆XI ≤ ξ, where ξ is the preset small positive threshold for
interior calibration.

2.3.3. Representation of Error

On the basis of the geometric calibration model and its solution above, we have
obtained the calibration parameters XE and XI . To evaluate the calibration accuracy, the
calibration model with the calculated calibration parameters inserted is adopted to compute
the celestial coordinate of the star corresponding to the image point, and then compared
with the theoretical coordinate derived from the star catalog.

The absolute positioning errors of the right ascension and declination directions are
respectively defined as

RAerror = σ′ − σ
DEerror = δ′ − δ

(18)

where σ′ and δ′ are the practical right ascension and declination of the star computed by
the calibration model, σ and δ are the right ascension and declination of the corresponding
star determined from the wide-field infrared survey explorer catalog according to the obser-
vation plan, and RAerror,DEerror are the absolute positioning errors in the right ascension
and declination directions respectively. According to Equation (18), the unit of RAerror
and Deerror is degree or arcsecond, while the unit of positioning error is usually pixel or
meter. To express the positioning error more intuitively, based on the angle of view and the
size of the detector, transform the units of Raerror and Deerror from degree to pixel as:

Error(pixel) = Error(deg)/(A/S), (19)

where Error(deg) and Error(pixel) are the positioning errors in degree and pixel respectively,
A is the angle of view of a single detector’s response element to the optical system, and S is
the size of the detector, which, as used in the experiment in this paper, is 1024 pixels.
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3. Experiment and Results

According to the theories above, we evaluated the proposed method based on the
real star observation short-wave infrared data of the staring camera of a geostationary
experiment satellite. The detailed information of the experiment satellite is shown in
Table 1. We collected the observations from August 2 to August 21 as the data sets, and the
specific experimental results are shown in the following.

Table 1. Parameters of the experiment satellite.

Items Detailed Parameters

Orbit altitude 36,000 km
Focal length 1250 mm (short-wave infrared)

Array sensor information 1024 × 1024 HgCdTe
Pixel size 25 µm (short-wave infrared)

Accuracy of attitude measurements 1× 10−4 ◦/s

3.1. Trajectory Fitting Results

Considering that there are many stellar trajectories, a stellar trajectory of the star
FYID1070664 observed on 2nd August is taken as an example to illustrate the experimental
results of curve fitting.

The fitting results and the distribution of fitting errors are shown in Figure 5a,b,
respectively. As shown in Figure 5a, the fitting result is a smooth curve, and most of
the track points are centered on the curve. It can be seen from Figure 5b that the fitting
errors are generally within ±0.03 pixels. Moreover, Table 2 reveals that the sum of squares
error (SSE) is close to 0 and the determination coefficient of R-Square is close to 1, which
illustrates the effectiveness of the fitting model. Thus, it could be seen that the deviation
of the collected stellar trajectory from the ideal trajectory points caused by the satellite
platform jitter, the pointing error of the pointing mirror and the sampling error could be
reduced by the curve fitting. The fitting curve could more accurately describe the positions
of the stellar track points, thereby improving the subsequent calibration accuracy.

Figure 5. Curve fitting of stellar trajectory. (a) The fitting results of smoothing spline method. (b) The
distribution of the fitting errors.

Table 2. Analysis of fitting accuracy.

SSE R-Square RMSE

Orbit altitude 0.003856 0.9776 0.01728
SSE is the sum of squares error, R-Square is the determination coefficient of the model and RMSE is the
root-mean-squared error. The closer the SSE approaches 0, the R-Square approaches 1, the better the fitting
effectiveness becomes.
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3.2. Results of Positioning Errors

In the process of calibration, the more track points there are, the more accurate the
estimated calibration parameters will be. To improve the performance of the proposed
method, stellar trajectories with more than 25 track points were selected for the experiments.
For each trajectory, five track points were randomly selected as test data for the positioning
errors, and the remaining points were used to calculate the parameters.

Due to the great fluctuation in the thermal environment around the geostationary
satellite, the space thermal deformation resulting from it will significantly change the instal-
lation angles of the remote sensing camera and affect the positioning accuracy ultimately.
Li et al. [4] found that the positioning error caused by the space thermal deformation is
periodic, with a cycle of one day approximately. Therefore, to ensure the stability of the
experiment, the data collected at a particular time (from 11:25 to 11:45 in this paper) on
20 consecutive days were picked for the experiments.

According to the calibration model, we calculate the positioning errors determined by
the initial parameters calibrated on the laboratory and the calibration parameters through
the proposed method, respectively. As shown in Table 3, compared to the initial right
ascension positioning accuracy of −6.795 pixels and the initial declination positioning
accuracy of −21.004 pixels, the geometric positioning errors after calibration are greatly
reduced. It can be seen that the positioning accuracy after correction is approximately
±0.85 pixels, andthus we need to experiment with more data to verify the positioning
accuracy of the calibration model subsequently.

Table 3. Positioning errors before and after calibration.

Initial Positioning Errors Positioning Errors after Calibration
RAerror/Pixel DEerror/Pixel RAerror/Pixel Absolute Error/Pixel DEerror/Pixel Absolute Error/Pixel

2nd August −10.384 −20.247 −0.616 0.616 −0.080 0.08
3rd August −5.081 −20.430 −0.086 0.086 0.099 0.099
4th August −6.402 −20.508 −0.484 0.484 2.892 2.892
5th August −5.181 −20.624 −0.464 0.464 1.233 1.233
6th August −5.336 −20.563 −1.210 1.21 −0.233 0.233
7th August −5.877 −20.557 −0.017 0.017 −0.127 0.127
8th August −7.975 −20.208 −0.110 0.11 −0.008 0.008
9th August −4.686 −20.414 −0.063 0.063 0.027 0.027
10th August −5.713 −21.664 1.642 1.642 −0.736 0.736
11th August −8.704 −20.375 −0.568 0.568 0.468 0.468
12th August −4.839 −21.312 −0.100 0.1 −0.446 0.446
13th August −5.371 −21.283 −0.271 0.271 −0.437 0.437
14th August −8.423 −20.874 −1.571 1.571 0.025 0.025
15th August −8.366 −21.446 −2.038 2.038 0.984 0.984
16th August −5.023 −22.626 1.076 1.076 2.793 2.793
17th August −7.060 −21.679 −0.280 0.28 −1.177 1.177
18th August −8.879 −20.206 3.712 3.712 1.505 1.505
19th August −7.201 −22.269 0.511 0.511 1.013 1.013
20th August −7.743 −21.209 −0.888 0.888 1.864 1.864
21st August −7.658 −22.182 −1.128 1.128 0.921 0.921

Mean −6.795 −21.004 −0.148 0.84175 0.529 0.8534

The 437 stellar trajectories of the whole data set for the 20 days were used to verify the
accuracy of the model. As shown in Figure 6, the positioning errors are concentrated in
the middle and scattered around, which seems to accord with the normal distribution. To
explore the property of the positioning errors, then we analyze the probability distribution
of the positioning errors and try to fit it with the normal distribution function. The results
are shown in Figure 7 and Table 4. It can be seen that the positioning errors of both the right
ascension and declination directions all stably obey normal distribution. The probability of
RAerror within ±2.24 pixels at a 95% confidence level can reach 95.44% (2σ). Similarly, the
probability of DEerror within ±2.35 pixels at a 95% confidence level can reach 95.44% (2σ).
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According to the experimental results of the real data of on-orbit satellite, it demonstrates
that the proposed approach corrects the periodic positioning errors caused by the space
thermal deformation.

Figure 6. Distribution of the positioning error.

Figure 7. (a) Probability distribution of RAerror. (b) Probability distribution of DEerror.

Table 4. Analysis of the probability distribution for the positioning error.

CL mu muci sigma sigmaci

RAerror
95%

−0.0611 (−0.1661, 0.0440) 1.1187 (1.0492, 1.1982)
DEerror 0.0234 (−0.0870, 0.1338) 1.1754 (1.1024, 1.2589)

CL is the confidence level. mu and sigma are the estimate values of the mean and the standard deviation,
respectively. muci and sigmaci are the confidence interval of mu and sigma, respectively.

4. Discussion

By analyzing the experimental results of the data collected at a specific time on
20 consecutive days, the absolute positioning errors after calibration were reduced from
21.004 pixels to 0.85 pixels. Subsequently, 437 stellar trajectories were used to verify
the accuracy of the method. In addition, the results show that the positioning errors in
the right ascension and declination directions corrected by this proposed method obey
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normal distribution stably and can be within ±2.35 pixels. In addition, the distribution
of positioning errors also explains why the minimum absolute error in Table 3 is about
0.1 pixel, and the maximum is about 3.0 pixels. Due to the random selection of the test
track points, that is, the track points for calibration were selected randomly, the estimation
of the parameters with different points are different, which affects the positioning error.
Most absolute positioning errors falls within 2.35 pixels, and occasionally the absolute
positioning errors are about 3 pixels.

Furthermore, to further analyze the influence of the number of track points on the
calibration accuracy, the experiments with 10 to 25 track points for calibrating have been
carried out and the results were shown below. As shown in Figure 8, the positioning
errors kept reducing with the increase of the number of track points. When more than
20 calibrating track points are available, the reduction of positioning error gradually slows
down and the error becomes stable. This is because the least squares method is used to
estimate the parameters. When there are fewer track points, the accuracy of the algorithm
is greatly dependent on the number of samples. Increasing the number of the track
points will obviously improve the accuracy of parameter estimation, thereby improving
the calibration accuracy. When the number reaches a certain degree, the accuracy of the
algorithm tends to be stable. Therefore, the reduction in the number of track points will
affect the positioning accuracy.

Figure 8. Influence analysis for the number of track points on the positioning accuracy.

It should be noted that, taking into account the characteristics of the normal distribu-
tion, the positioning accuracy of the model is also affected by other random errors. Random
measurement errors such as orbit measurement error and attitude measurement error may
be one of the key factors that determine the calibration accuracy of this method. In addition,
the accuracy of star centroid extraction and trajectory fitting accuracy also directly affect
the positioning accuracy of the model, which may also be a further study in the future.

5. Conclusions

For a geostationary remote sensing camera, due to the orbital heat flux and the shock
and vibration during launch, the installation structures between the camera and satellite
platform will change inevitably and ultimately bring about the reduction of the positioning
accuracy, which needs recalibrating. Nevertheless, traditional on-orbit camera calibration
methods with GCPs and stars are often affected by cloud coverage or limited to the
number of stars. To address these problems, this paper presents a novel on-orbit geometric
calibration method from the relative motion of stars for geostationary cameras. Based on
the optical system structure, a geometric calibration model is constructed. In addition,
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then the relative motion transformation of the observed stars is analyzed. According to the
analysis above, we adopt the stellar trajectory and the auxiliary ephemeris to get sufficient
input OVs for estimating the calibration parameters iteratively.

The proposed method is verified with on-orbit measurement data. Experimental
results demonstrate that the positioning model can be well-calibrated by the proposed ap-
proach and the geometric accuracy of the remote sensing images is significantly improved.
With the increase of the number of track points, the calibration accuracy is gradually
improved. Though, this method is proposed for geostationary cameras, it is likely to
be suitable and versatile for other RSCs because of the similar spatial relative motion
relationship between the satellite and the target stars.
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