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Abstract: Ultrasonic guided wave monitoring is regularly used for monitoring the structural health
of industrial pipes, but small defects are difficult to identify owing to the influence of the environ-
ment and pipe structure on the guided wave signal. In this paper, a high-sensitivity monitoring
algorithm based on adaptive principal component analysis (APCA) for defects of pipes is proposed,
which calculates the sensitivity index of the signals and optimizes the process of selecting principal
components in principal component analysis (PCA). Furthermore, we established a comprehensive
damage index (K) by extracting the subspace features of signals to display the existence of defects
intuitively. The damage monitoring algorithm was tested by the dataset collected from several pipe
types, and the experimental results show that the APCA method can monitor the hole defect of
0.075% cross section loss ratio (SLR) on the straight pipe, 0.15% SLR on the spiral pipe, and 0.18%
SLR on the bent pipe, which is superior to conventional methods such as optimal baseline subtraction
(OBS) and average Euclidean distance (AED). The results of the damage index curve obtained by the
algorithm clearly showed the change trend of defects; moreover, the contribution rate of the K index
roughly showed the location of the defects.

Keywords: pipe; ultrasonic guided wave monitoring; high-sensitivity defect identification; adaptive
principal component analysis; nondestructive evaluation

1. Introduction

With the increase in the service life of oil and gas pipes, various kinds of defects or
damage will occur gradually. The ultrasonic guided wave testing technique [1–4], with
its advantages of long propagation distance, low attenuation, and large detection range
compared with the conventional methods (such as magnetic flux leakage, eddy current,
and X-ray [5–7]), has thus been widely used in structural health monitoring (SHM) and
nondestructive testing (NDT) for pipe structures.

During testing for pipe defects, monitoring by ultrasonic guided waves has a higher
signal-to-noise ratio (SNR) and sensitivity compared with detection [8,9]. The transducer
is fixed permanently to reduce the manual operation and the environmental noise. By
comparing the real-time measurement signal with the original signal, the defect of a pipe
can be inspected more intuitively [10–12]. However, the sensitive of the commercial guided
wave system is only 0.6% SLR [13]. In a previous study, Rose verified the possibility of
detecting a pipe with 0.36% SLR in simulation, and the monitoring performance was found
to be better [14], and Jacob [15] also found in the experiment that the hole defect of 0.25%
SLR can be monitored on the straight pipe, but if the hole defect is produced after a bend
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region of the bent pipe, it can hardly be monitored. There are two main difficulties in the
micro defect monitoring of pipes:

1. In the continuous monitoring of a pipe, there is still a probability that the instrument
will produce large noise while working normally;

2. Slight differences in the monitoring signals exist at different times of the day, and
due to the influence of temperature on the materials, the guided wave propagation is
affected too [16].

The traditional solution to these problems is to increase the excitation power and
transducer coupling efficiency at the instrument level and to establish the temperature
compensation at the signal preprocessing level [17]. However, many neglected factors that
are difficult to check also limit the monitoring performance.

During monitoring signal processing research, the pipe signal recorded by an instru-
ment, in which the temperature influence has been compensated by optimal time-domain
stretch method [18], is used in various defect evaluation algorithms. For example, the origi-
nal signal is subtracted from the test signal after Hilbert envelope processing to identify the
defects, which is a method called optimal baseline subtraction (OBS) [19]. In later research,
by calculating the Euclidean distance between the original signals and the test signals,
a boundary distance was set to assess the defects, called the average Euclidean distance
method (AED) [20,21], which also improves monitoring sensitivity. Although the above
methods are commonly used, the calculation information is redundant, and some useless
points in the collected signal will interfere with the results.

Feature space decomposition reduction technology has been found to have great
potential in enhancing the representativeness of data [22]. Principal component analy-
sis (PCA), which uses this technology, is a commonly used data dimension reduction
method [23,24]. It aims to find the principal components related to the main features in
the data to represent the original signals, so it is less affected by random noise caused
by the environment. Independent component analysis (ICA) is also used to decompose
the feature space [25]. It is simple to extract effective signals from complex signals, but
the extracted components are independent, which makes it difficult to separate the noise
signals from a Gaussian distribution.

In order to improve the sensitivity of detecting small defects, the adaptive principal
component analysis algorithm (APCA) is proposed in this paper. Based on the traditional
PCA, an adaptive link is added to the selection process of the principal component to
enhance the sensitivity of the monitoring algorithm. In Section 2, we introduce the basic
preprocessing of signals and the principle of APCA for defect identification. Section 3 shows
the performance of the APCA algorithm for straight pipes, bent pipes, and spiral pipes, as
well as a comparison of APCA with OBS and AED. Conclusions follow in Section 4.

2. Signal Processing Methods
2.1. Pre-Processing

For the guided wave signal collected by the instrument, due to the noise caused by
the instrument or the transducer, the guided wave signal is usually preprocessed before
the application of the monitoring algorithm to identify the defect. It mainly includes
Butterworth data filtering and Hilbert envelope extraction, the application of both of which
has been proved to improve the signal-to-noise ratio and to reduce the influence of the end
surface and weld [26,27]. The Hilbert envelope of the filtered signal was obtained after
removing the bias, which can be written as the following Equations (1) and (2):

x̂(t) = x̃(t) /

√
1
n ∑n

i=1 x̃(i)2 (1)

xe(t) =

√
x̂(t)2 +

(
1
π

∫ x̂(t− τ)

τ
dτ

)
(2)
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where x̃(t) is the signal after filtering and removing the bias (Figure 1b). An example of the
Hilbert envelope of guided wave signals (xe(t)) in our experiment is exhibited in Figure 1c.
It can be seen that the envelope signal had more prominent defect characteristics than the
instrument signal (Figure 1a).
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Figure 1. The guided wave signal of straight pipe with hole defect (0.45% SLR). (a) Instrument 
signal; (b) Filtered signal; (c) Envelope signal. 
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out the above preprocess. In the second stage, the test signals were collected on pipe with 
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area to the cross section of pipe, and it is used to measure the degree of defect and can be 
expressed as the following Equation (3): 
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gorithm. 
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Figure 1. The guided wave signal of straight pipe with hole defect (0.45% SLR). (a) Instrument signal; (b) Filtered signal; (c)
Envelope signal.

In the first stage, we collected original signals on the undamaged pipe and carried
out the above preprocess. In the second stage, the test signals were collected on pipe with
different cross section loss ratio (SLR) of hole defects; the SLR refers to the ratio of defect
area to the cross section of pipe, and it is used to measure the degree of defect and can be
expressed as the following Equation (3):

SLR =
d ∗ h

π ∗ D ∗ T
(3)

where d is the diameter of hole defect, h is the depth of holing, D is the diameter of pipe,
and T is the thickness of pipe. In addition to that, the original signals and test signals are
also temperature compensated to avoid the interference of temperature; this compensation
method [28] can refer to the previous research of our laboratory. The signal processing
conditions and transducer installation conditions of the two stages are the same, which
also lays the foundation for the implementation of the later monitoring algorithm.

2.2. Feature Decomposition

Suppose that the number of collected original signals is m and that each signal contains
n sampling points and is regarded as a vector xi; then, the original signals matrix can be
expressed as Equation (4):

Xn×m= [x1 x2 . . . xm]=


x11 x12 · · ·
x21 x22 · · ·

x1m
x2m

...
...

. . .
xn1 xn2 · · ·

...
xnm

 (4)

First, an n-order covariance matrix C is constructed for the Xn×m, and the eigenvalues
and eigenvectors of the covariance matrix C are also calculated, which can be expressed as
Equations (5) and (6):

C =
1
n

n

∑
i
(xi − x)(xi − x)T (5)

USUT = C (6)

The matrix U obtained by the operation is an n × n characteristic matrix, and the
matrix S is a diagonal matrix composed of eigenvalues λ1, λ2 . . . λn; the eigenvalues are
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sorted from large to small in matrix S. Selecting the column of matrix U as the vector, we
will get n eigenvectors u1, u2, u3 . . . un. Then, the dimension-reduced k-dimensional
matrix Yk×m can be obtained by the following Equation (7):

Yk×m =


y11 y12 · · ·
y21 y22 · · ·

y1m
y2m

...
...

. . .
yk1 yk2 · · ·

...
ykm

 = UT
k ·Xn×m (7)

where Uk is taken from the first k vectors of matrix U, which is also called the principal com-
ponent matrix. The subspace supported by it is called the principal component subspace
(PCS), which is used to measure the fitting degree of test signals and original signals; Yk×m
is the projection of the signals on the PCS, the greater the distribution difference, the
greater the projection value. Un−k is taken from the last n-k vectors of matrix U, and it also
supports the residual subspace (RS), which is used to measure the residual between the test
signals and the principal component model. Then, the damage evaluation index should be
established, which is based on the above two subspaces.

According to the previous discussion, the PCA mapped the data into PCS and RS, and
then two statistics were introduced—Hotelling T2 (T2) and the squared prediction error
(SPE) [29,30]—to monitor the occurrence of defect.

T2 was used to measure the information size and change range in the PCS. It is defined
as the following Equations (8) and (9):

T2 = xi
TUk Sk

−1 UT
k xi < Ta (8)

Ta =
k
(
n2 − 1

)
n(n− k)

Fa(k, n− k) (9)

where Fa is the F distribution of statistics, Sk is a diagonal matrix composed by first k
eigenvalues λ1, λ2 . . . λk of C. a is the confidence level (generally 99%), and Ta is the control
limit of T2.

The SPE was used to measure the deviation size of the test signal in the RS. It is
defined as the following Equations (10) and (11):

SPE =
∣∣∣∣∣∣UT

n−k ·xi

∣∣∣∣∣∣ 2 < Qa (10)

Qa= θ1

[
Cah0
√

2θ2

θ1
+ 1 +

θ2h0(h0 − 1)
θ2

1

]1/h0

(11)

In this formula, Ca is the confidence limit of the standard normal distribution, Ca is
the confidence level (generally 99%), and Qa is the control limit of the SPE. θ and h0 are
performed as Equations (12) and (13):

θi =
n

∑
j=k+1

λi
j (12)

h0 = 1− 2θ1θ3

3θ2
2

(13)

Under normal conditions, the projection of the original signals in RS should be very
small. When the damage occurs in the pipe, the observation sample will deviate from
the PCS and increase its projection in RS, the information size and deviation size will
change significantly, and the T2 and SPE value will exceed their limits. In order to avoid
the influence of instrument noise and to reduce the false alarm rate, we considered that
only when T2 > Ta and SPE > Qa can the occurrence conditions of defects be satisfied.
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2.3. Adaptive Principal Component Analysis

When PCA is used to construct the principal component matrix, the number of
principal components must be determined, which will directly affect the performance
of defect monitoring and diagnosis. If the number of principal components is too small,
the PCS contains too little information, which makes the Ta too small; moreover, the RS
will also contain redundant information, and this can easily lead to false detection. If the
number of principal components is too high, the large amount of useless information in
the PCS may submerge the defect information, which makes it difficult to detect small
defects [31,32]. The most widely used method of principal component selection is the
cumulative percentage variance (CPV) method [33]. When the first k principal components
are selected, the CPV is obtained by Equation (14):

CPV = ∑k
i λi/ ∑n

i λi (14)

Generally, CPV ∈ (0.85, 0.95) is used to balance principal component information and
dimension reduction points [34]. However, the CPV is selected by people subjectively,
and it is difficult to meet the diagnosis requirements of small defects. In order to link the
construction of feature subspace with diagnosis of defects, this paper proposes the APCA
method to adaptively select the number of principal components according to the statistical
index T2, SPE, and their control limits Ta, Qa.

To begin with, for the original signals without defects and test signals with defects, in
previous Section 2.2, we explained that T2 will exceed Ta when the defects are detected;
the damage index can be given by Equation (15):

DI1 =
T2

test

Ta
(15)

where the T2
test means the T2 index of a test signal. Therefore, we can consider that the

defects are detected when the damage index DI1 > 1; the larger the damage index is, the
easier it is to find defects. However, the establishment of the principal component model
depends on the original signals without defects, so we define a sensitivity index, which
can be expressed by Equation (16):

SI1 =
T2

original

Ta
(16)

where the T2
original means the T2 index of original signals. The larger sensitivity index

means that the threshold Ta of defects is easier to achieve and that the detection of defects
will become more sensitive. Next, we will rewrite the Equation (16) for experimental
signals.

The process of this method is demonstrated with our experimental signals. The
example used was a straight pipe with a defect at 1 m. The signals of this pipe include
100 sets of original signals without defects and 140 sets of test signals with different defects
(0%, 0.075%, 0.15%, 0.225%, 0.3%, 0.45%, and 0.6% SLR; see Table 1 for details). The dataset
of signals is also shown in Figure 2.

For the original signals, an original sensitivity index is established in PCS by
Equation (17):

OSI1 =
1

Noriginal

Noriginal

∑
i=1

T2
i

Ta
(17)

where the T2
i means the T2 index of original signals. Similar processing is also car-

ried out in the RS; the damage index and original sensitivity index are obtained by
Equations (18) and (19):

DI2 =
SPEtest

Qa
(18)
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OSI2 =
1

Noriginal

Noriginal

∑
i=1

SPEi
Qa

(19)

Table 1. Sample signal information for the straight pipe (produce hole at 1 m).

Signals Defects Distance (m) Number of Signals Temperature (◦C)

Original
signals Before producing hole (0% SLR) / 100 21.4–24.6

Test
signals

Before producing hole (0% SLR) 1 20 22.8–23.8
Hole Defect 1 (0.075% SLR) 1 20 21.2–22.2
Hole Defect 2 (0.15% SLR) 1 20 24.8–25.2

Hole Defect 3 (0.225% SLR) 1 20 23.3–24.5
Hole Defect 4 (0.3% SLR) 1 20 23.3–23.6
Hole Defect 5 (0.45% SLR) 1 20 22.9–23.9
Hole Defect 6 (0.6% SLR) 1 20 23.8–24.6
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Figure 2. The dataset of signals in straight pipe experiment.

A comprehensive original sensitive index considering PCS and RS is defined by
Equation (20):

OSI =
OSI1

2
+

OSI2

2
(20)

We can achieve a better sensitivity by referring to OSI when selecting the principal
components. The processing flow of this adaptive method can be seen intuitively in
Figure 3.

The selection results of principal components in this dataset are shown in Figure
4b; a comprehensive test damage index used to verify the selection effect is defined by
Equation (21):

TDI =
DI1

2
+

DI2

2
(21)

Obviously, a larger TDI means a better recognition effect of the APCA method. There-
fore, we studied the relationship between the number of principal components, TDI, OSI,
and CPV, as shown in Figure 4.

Figure 4a shows the influence of different principal components on CPV; it can be seen
that the CPV of the first five principal components has exceeded 95%. In Figure 4b, we can
find that with the increase in principal component number, both the OSI and TDI increase
first and then decrease. Obviously, the five principal components selected by CPV cannot
meet the needs of defect diagnosis. When the defect is small (0.075% SLR), the trend of the
OSI and TDI is relatively similar. This trend will change only when the defect becomes
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larger (0.15% SLR). We can find that when the first 27 principal components are selected
according to OSI, the first 27 principal components also have a good recognition effect for
the defects of 0.075% SLR.
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The feature extraction effect of signals was also compared with different numbers of
principal components in Figure 5 (5 principal components (95% CPV) selected subjectively
and 27 principal components selected adaptively by our method).
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As shown in Figure 5a,b, when the original signals are projected into PCS, the damage
trend becomes more clear and easier to identify. However, this trend is more obvious in
the 12th to 27th principal components; the first 12 principal components do not record
the change trend of defects well. The principal component information selected subjec-
tively through CPV is too little to cover the change of defects. It also proves that a more
appropriate number of principal components are selected by the APCA method.

As seen in Figure 5c,d, when the original signals are projected into RS, the damage
location becomes more clear and easier to identify. However, too few principal components
are selected by CPV, which leads to a redundancy of residual information. By observing
the side view of projection information in RS (Figure 5e,f), we can find that the defects are
separated better in the RS through our method.

At the same time, the damage indexes DI1 and DI2 were also calculated to reflect the
damage detection sensitivity. The results obtained by selecting the principal components
by different methods are compared in Figure 6.
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It can be seen from Figure 6 that the damage index of APCA is higher than that of
traditional PCA on different kinds of defects. At the same time, the above discussion also
proves that the APCA method, which selects the principal component by the sensitive
index adaptively, has the effect of greatly improving the PCA algorithm.

2.4. Post-Processing

During the sampling process of the instrument, a very small part of the signals may
be disturbed by electromagnetic noise, which are defined as outlier samples. The useless
residual information of outlier samples will cause the rise of Qa, and thus will lead to an
insensitive damage index. As can be seen from the previous Figure 6b, the red arrow points
to an outlier sample.

In this step, the Pauta Criterion [35] is used to screen the outlier samples in the RS,
which is expressed in Equations (22) and (23):

SPE(i) ∈ SPE± 3× σ(SPE) (22)

σ(SPE) =

√√√√∑
Noriginal
i=1

(
SPE(i)− SPE

)2

Noriginal
(23)

When the SPE(i) of original signal does not satisfy the Equation (22), we consider it
to be an outlier sample. The process of screening outlier samples can be shown in Figure 7.
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After this processing, the SPE become lower, and the damage index DI2 becomes more
sensitive to defects, as is shown in Figure 8.
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2.5. Damage Judgment

As shown in Figure 9, after the signal processing in Sections 2.1–2.4, the steps 1, 2, and
3 needed to build the APCA model have been satisfied. In order to judge the test signal
(step 4), we needed to establish a comprehensive damage index to diagnose the defects.
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In step 4, after the latest test signal is collected, consider it as a vector xs with n points,
and insert it into the original signals matrix Xn×m for operation. The selection of the
principal component was determined during the construction of the APCA model; the
operation can be performed as Equation (24):

Y′k×(m+1) =


y11 y12 · · ·
y21 y22 · · ·

y1my1s
y2my2s

...
...

. . .
yk1 yk2 · · ·

...
...

ykmyks

 = UT
k ·[x1 x2 . . . xm xs] (24)
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where Y′k×(m+1) represents the characteristic matrix and the low-dimensional principal

component matrix obtained by adding the test signal. The SPE and T2 values of xs can be
calculated by Equations (8) and (10).

In order to avoid the influence of a single index on the results, the comprehensive
damage index K is defined by Equation (25):

K =


DI1 (DI1 < 1)
DI2 (DI2 < 1)
TDI (DI1, DI2 > 1 or DI1, DI2 < 1)

(25)

where the K is the comprehensive damage index of the APCA method for monitoring
defects. When DI1 > 1 and DI2 > 1, the K indicator will exceed 1, and the defect is
considered to be detected, so the threshold of the APCA algorithm is 1. Meanwhile, when
the K index is used to evaluate a series of original signals and test signals, a damage
index curve recording the changing trend of signals can be generated in the following
experimental results.

3. Experiments and Results
3.1. Experimental Introduction

In this section, the guided wave signals of a straight pipe, bent pipe, and spiral pipe
are presented, along with comparisons of the APCA, OBS, and the AED algorithm. The
excitation parameters of the guided wave in several experiments are also reported.

In the first experiment, a straight pipe (aluminum) was used, and the semi-analytical
finite element method (SAFE) was used to solve the dispersion curve [36,37]; the guided
wave of T (0,1) mode with 128 kHz was selected for excitation because of its excellent
propagation characteristics [38]. For the spiral pipe experiment, the early research of Zhang
and Tang has proven that the comb magnetostrictive patch transducer (HCMPT) parallel to
spiral weld [39] can effectively excite the pure bending T-mode guided wave in the spiral
pipe (f = 64 kHz, diam = 0.72 m); under this condition, a superior echo waveform was
recorded in this experiment. For the bent pipe experiment, because the SAFE method is
only related to the cross-section shape and because Vinogradov’s Field testing on a carbon
steel pipe indicated that higher frequencies (128 kHz) provided better performance in
penetrating past U-bends [40], the same excitation conditions as those used for the straight
pipe experiment were therefore used.

In the experiment, the transducer was fixed permanently in the process of collecting
original signals and test signals, and the defect was judged by comparing test signals with
the original signals collected on the same pipe. The transducer worked in the pulse-echo
mode, which means it acted as both a guided wave transmitter and a guided wave receiver.

3.2. Straight Pipe Experiment

As shown in the straight pipe experiment conditions in Figure 10a, the transducer
based on magnetostrictive effect [41] was installed 0.2 m from the beginning. A hole defect
1 m away from the transducer was expanded from small to large. As is shown in Figure 10c,
the SLRs were 0.075%, 0.15%, 0.225%, 0.3%, 0.45%, and 0.6%.

The original signals of the first hole were collected in the pipe without any defects.
After the first hole was expanded to an SLR of 0.6%, a second hole defect 1.5 m away from
the transducer was produced in the same pipe. The original signals of the second hole were
collected on the pipe with a hole. The guided wave was reflected at the first hole, which
resulted in an energy reduction when the guided wave transmitted to the second hole.
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hole were collected on the pipe with a hole. The guided wave was reflected at the first 
hole, which resulted in an energy reduction when the guided wave transmitted to the 
second hole. 

The guided wave monitoring equipment (UGPM30A, Zheda Jingyi Tech, Ltd., 
Hangzhou, China) was used to acquire guided wave signals of the pipes. The excitation 
signal was a 128 kHz sinusoidal signal modulated by a Hanning window with a certain 
bandwidth, as shown in Figure10b. The connection of temperature probe and transducer 
and the experimental site are also shown in Figure 10b. In this experiment, the original 
signals were collected every 10 min, and 100 sets of original signals were reserved. Simi-
larly, 20 groups of test signals were collected for each kind of defect. We also collected 20 
sets of signals before producing the hole for testing. See Tables 1 and 2 for details. 

Figure 10. Straight pipe experiment conditions: (a) Pipe parameters; (b) Instrument and excitation signal (128 Khz); (c)
Parameter of hole defects.

The guided wave monitoring equipment (UGPM30A, Zheda Jingyi Tech, Ltd.,
Hangzhou, China) was used to acquire guided wave signals of the pipes. The excita-
tion signal was a 128 kHz sinusoidal signal modulated by a Hanning window with a
certain bandwidth, as shown in Figure 10b. The connection of temperature probe and
transducer and the experimental site are also shown in Figure 10b. In this experiment, the
original signals were collected every 10 min, and 100 sets of original signals were reserved.
Similarly, 20 groups of test signals were collected for each kind of defect. We also collected
20 sets of signals before producing the hole for testing. See Tables 1 and 2 for details.

Table 2. Sample signal information for the straight pipe (produce hole at 1.5 m).

Signals Defects Distance (m) Number of signals Temperature (◦C)

Original
signals Before producing hole (0% SLR) / 100 20.8–24.4

Test
signals

Before producing hole (0% SLR) 1.5 20 23.2–23.5
Hole defect 1 (0.075% SLR) 1.5 20 23.5–24.3
Hole Defect 2 (0.15% SLR) 1.5 20 23.5–24.1

Hole Defect 3 (0.225% SLR) 1.5 20 23.8–24.6
Hole Defect 4 (0.3% SLR) 1.5 20 22.2–22.8
Hole Defect 5 (0.45% SLR) 1.5 20 22.4–23.6
Hole Defect 6 (0.6% SLR) 1.5 20 22.4–23.0
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In order to show the experimental results clearly, we calculated the recognition accu-
racy of the OBS, AED, and APCA methods on the same original signals and test signals.
The accuracy is obtained by Equation (26):

accuracy =
Njudge

Nactual
× 100% (26)

where the Nactual means the number of actual defect samples, and the Njudge means
the number of defect samples judged by algorithm (when the threshold was exceeded).
Similarly, the misjudgment rate of 0% SLR defect is obtained by Equation (27):

error =
Njudge

Nactual
× 100% (27)

The other two methods are the following:

• OBS: First, we calculated the mean value of the original signals, then we subtracted it
from all the signals; the max value of the subtraction result was then taken to represent
a sample. The threshold was the max value of the subtraction result of original signals.
The damage index can be obtained by Equation (28):

damage index(OBS) =
max(xt − x)

max(max(xi − x))
(28)

where the xt means the original signals and test signals in the experiment, and the xi means
the original signals. After the above processing, we can also obtain a damage index curve
with a threshold of 1, as is shown in Figure 11b.
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• AED: First, we calculated the mean value of the original signal, then we took the
Euclidean distance between this and all signals. The damage index and threshold can
be obtained by Equation (29):

damage index(AED) =
(xt − x)(xt − x)T

max
(
(xi − x)(xi − x)T

) (29)

After the above processing, we can also obtain a damage index curve with a threshold
of 1, as is shown in Figure 11c. The experimental results are finally shown in Figure 11 and
Tables 3 and 4; each of them shows three methods.

Table 3. Comparison of algorithms in straight pipe (produce hole at 1 m).

Algorithm
0% SLR 0.075% SLR 0.15% SLR 0.225% SLR 0.3% SLR 0.45% SLR 0.6% SLR

Error Accuracy Accuracy Accuracy Accuracy Accuracy Accuracy

APCA 0% 100% 100% 100% 100% 100% 100%
OBS 0% 90% 100% 100% 100% 100% 100%
AED 0% 5% 30% 100% 100% 100% 100%

Table 4. Comparison of algorithms in straight pipe (produce hole at 1.5 m).

Algorithm
0% SLR 0.075% SLR 0.15% SLR 0.225% SLR 0.3% SLR 0.45% SLR 0.6% SLR

Error Accuracy Accuracy Accuracy Accuracy Accuracy Accuracy

APCA 0% 100% 100% 100% 100% 100% 100%
OBS 0% 0% 0% 5% 100% 100% 100%
AED 0% 0% 0% 5% 100% 100% 100%

As can be seen from the above Figure 11 and Tables 3 and 4, for defects at 1 m, on
the premise of 100% accurate identification, the minimum defect monitoring threshold of
the APCA method was 0.075% SLR, the OBS was 0.15% SLR, and the AED was 0.225%
SLR. For defects at 1.5 m, the minimum defect monitoring threshold of APCA was 0.075%
SLR, and the OBS and the AED were 0.3% SLR. At the same time, the damage index curve
obtained by APCA is smoother than that of OBS and AED.

From Figure 11, we can also see that the damage index of the defect at 1.5 m rises
slower than the defect at 1 m; the guided wave is reflected at the 1 m hole, which also
makes it more difficult to monitor the hole defect at 1.5 m.

It can be observed from Figure 11a that the instances and levels of the structural
changes are clearly shown as step changes in the damage index curve of APCA; the
threshold 1 obtained by the algorithm can also clearly distinguish the pipe without defect
and the pipe with a defect of 0.075% SLR. At the same time, the algorithm also did not
misjudge the signals without defect.

3.3. Spiral Pipe Experiment

Most of the experimental conditions have been mentioned above; however, a few
conditions were different for this experiment. The experimental conditions for the spiral
pipe (carbon steel) can be clearly seen in Figure 12. The transducer was installed at an
angle of 15 degrees, parallel to the weld, and after another four welds, a through hole (0.1%,
0.15%, 0.2%, 0.25%, 0.3% SLRs) was produced 3 m away from the transducer.
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hole defects.

The collection time and temperature of signals were basically the same as those in
Table 1 in our laboratory. Finally, we obtained 100 groups of original signals without defects
and 20 groups of five kinds of defects. We also collected 20 sets of signals before producing
a hole for testing. It can be seen from Figure 12c that the characteristics of the spiral weld
were well preserved. The difficulties of spiral pipe monitoring mainly lie in the following
two points:

1. Due to the introduction of the weld, the guided wave echo amplitude of a defect is
lower, and the signal-to-noise ratio will also be affected.

2. Compared with the straight pipe, the pure guided wave mode on the spiral pipe is
more difficult to excite in the spiral pipe.

Similar to the straight pipe experiment, the final experimental results are shown in
Figure 13 and Table 5.
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Figure 13. Damage index curve of different algorithms in spiral pipe experiment: (a) Adaptive principal component analysis
(APCA); (b) Optimal baseline subtraction (OBS); (c) Average Euclidean distance (AED).

Table 5. Comparison of algorithms in spiral pipe.

Algorithm
0% SLR 0.1% SLR 0.15% SLR 0.2% SLR 0.25% SLR 0.3% SLR

Error Accuracy Accuracy Accuracy Accuracy Accuracy

APCA 0% 95% 100% 100% 100% 100%
OBS 0% 5% 60% 100% 100% 100%
AED 0% 20% 90% 100% 100% 100%

As can be seen from the above Figure 13 and Table 5, on the premise of 100% accurate
identification, the minimum defect monitoring threshold of the APCA method was 0.15%
SLR, and the AED and OBS were 0.2% SLR. We can also find that the smoothness of damage
index K in the spiral pipe was lower than that of the straight pipe, which shows that the
performance of the APCA algorithm in spiral pipe is not as good as that in straight pipe.

3.4. Bent Pipe Experiment

Again, most of the experimental conditions of the bent pipe have been mentioned
above; however, there were just a few different conditions used. As shown in Figure 14a,
the pipe (carbon steel) had two welds in the elbow area. The first hole was on the outside,
and the second was on the inside. The two holes went from small to large, and the SLRs
were 0.09%, 0.18%, 0.30%, 0.45%, and 0.6%.
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Figure 14. Bent pipe experiment conditions: (a) Pipe parameters; (b) Pipe shape; (c) Instrument signal; (d) Parameter of
hole defects.

The acquisition time and temperature of signals were basically the same as those in
Table 1; we obtained 100 groups of original signals without defects and 20 groups of five
kinds of defect. We also collected 20 sets of signals before producing hole for testing. The
difficulties of bent pipe monitoring mainly lie in the following two points:

1. Multiple reflections occur between two welds when the guided wave propagates;
moreover, the propagation of guided waves in the bend region is often accompanied
by the mode conversion and dispersion.

2. The guided wave will focus on the outer surface of the elbow region, making it more
difficult to monitor the inner surface [42].

The pipe and defect information is shown in Figure 14d. As we can see in Figure 14c,
the guided wave signal contains many overlapping arrivals [43] and ringing in bend region,
the SNR after the bend region is also lower. This makes it difficult to find defects intuitively
from the waveform.

The final experimental results are shown in Figure 15 and Tables 6 and 7.

Table 6. Comparison of algorithms in bent pipe with outside hole defect.

Algorithm
0% SLR 0.09% SLR 0.18% SLR 0.3% SLR 0.45% SLR 0.6% SLR

Error Accuracy Accuracy Accuracy Accuracy Accuracy

APCA 0% 5% 100% 100% 100% 100%
OBS 0% 0% 75% 100% 100% 100%
AED 0% 5% 100% 100% 100% 100%
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Figure 15. Damage index curve of different algorithms in bent pipe experiment: (a) Adaptive principal component analysis
(APCA); (b) Optimal baseline subtraction (OBS); (c) Average Euclidean distance (AED).

Table 7. Comparison of algorithms in bent pipe with inside hole defect.

Algorithm
0% SLR 0.09% SLR 0.18% SLR 0.3% SLR 0.45% SLR 0.6% SLR

Error Accuracy Accuracy Accuracy Accuracy Accuracy

APCA 0% 0% 100% 100% 100% 100%
OBS 0% 0% 0% 0% 40% 100%
AED 0% 0% 0% 0% 5% 100%

As can be seen from the above Figure 15 and Tables 6 and 7, for defects on the outside
of the bent pipe and on the premise of 100% accurate identification, the minimum defect
monitoring threshold of APCA method was 0.18% SLR, the AED was 0.18% SLR, and
the OBS was 0.3% SLR. For defects on the inside of the bent pipe, the minimum defect
monitoring threshold of APCA was 0.18%, the OBS and the AED was 0.6% SLR. The results
show that the inside defect was more difficult to monitor. At the same time, even at the
same defect degree highlighted in the square box in Figure 15a, the damage index of outside
defect was larger and smoother than that of inside defect.

3.5. Defect Localization

In order to identify the location of defects, the defect information was determined by
calculating the contribution rate of each sample point to T2 and the SPE. The contribution
rate of each sample (CRj) was calculated as the following Equation (30):

CRj =
xjUkj Sk

−1 UT
kj xj

2 ∗ T2(x)
+

∣∣∣∣∣∣UT
n−k j·xj

∣∣∣∣∣∣ 2

2 ∗ SPE(x)
(30)
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where CRj is the contribution of a point in a sample to the result. The final contribution
diagram is shown in Figure 16a; the straight pipe defect can be identified clearly in the
range of 1000–1100 sampling points. The actual location distance of defect is calculated by
the following Equation (31):

L =
1
fs
× N × vg/2 (31)

where the fs means the sampling rate of the instrument, N means the sampling points, and
vg means the speed of guided wave. The vg of T-mode guided wave in our experiment was
about 3250 m/s according to the dispersion curve produced by Zhang [39], the time should
be divided by 2 in a pulse echo experiment, and the fs was 1.625 Mhz in our experiment,
so the instrument sampled 1000 points per meter—thus the 1000–1100 sampling points,
corresponding to the actual distance of 1.0 m to 1.1 m.
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Figure 16. The contribution rate of sampling points in three experiments. (a) Hole defect of 0.3% cross section loss ratio
(SLR) in straight pipe; (b) Hole defect of 0.3% SLR in spiral pipe; (c) Hole defect of 0.3% SLR in bent pipe; (d) Hole defect of
0.45% SLR in bent pipe.

Compared with the result of the spiral pipe, the SNR of the straight pipe was obviously
higher, and Figure 16b shows that this was mainly due to the influence of the weld. Multiple
reflections of guided waves occur between multiple welds and then lead to the overlapping
arrivals of signal. At the same time, for the bent pipe, for signals of different defects in
Figure 16c,d, the defect information of an SLR of 0.3% is not obvious, but when the SLR
reached 0.45%, the defect’s contribution grew greatly, and we can deduce that the defect
was located at 1500–1700 feature points.

4. Conclusions

This paper discusses an APCA method for the monitoring of pipe defects. We es-
tablished an effective damage index by selecting the number of principal components
adaptively and decomposing the characteristics of the original signals. Moreover, the
contribution diagram given by the algorithm enriched the defect location information. The
results of the above experiments demonstrate that the recognition sensitivity of the APCA
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method is higher than that of the OBS and AED methods. At the same time, the APCA
method also did not misjudge the undamaged test signals in three experiments. In future
research, our group will conduct on-site long-term experiments when conditions permit,
so that the APCA-based method can be used more effectively for monitoring the health of
pipes in service.
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