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Abstract: Some 175 years ago Michael Faraday discovered magnetic circular birefringence, now
commonly known as the Faraday effect. Sensing the magnetic field through the influence that the field
has on light within the fiber optic sensor offers several advantages, one of them fundamental. These
advantages find application in the measurement of electric current at high voltages by measuring
the induced magnetic field, thus warranting application for this kind of fiber optic sensor (FOS) in
future smart grids. Difficulties in designing and manufacturing high-performance FOSs were greatly
alleviated by developments in optical telecommunication technology, thus giving new impetus
to magnetometry based on the Faraday effect. Some of the major problems in the processing of
optical signals and temperature dependence have been resolved, yet much effort is still needed to
implement all solutions into a single commercial device. Artificial structures with giant Faraday
rotation, reported in the literature in the 21st century, will further improve the performance of FOSs
based on the Faraday effect. This paper will consider obstacles and limits imposed by the available
technology and review solutions proposed so far for fiber optic sensors based on the Faraday effect.

Keywords: Faraday effect; magnetometry; fiber optic current sensor; temperature compensation

1. Introduction

Humanity’s ever-increasing demand for energy, especially electric energy that has
high quality and acceptable distribution losses, is pushing electrical power systems towards
higher complexity, voltage levels and transmission capacities. To ensure power quality
and decrease losses, smart power grids need a vast number of current sensors, causing
increased data flow. Incorporation of renewable energy sources further increases the need
for monitoring and control [1]. Fiber optic current sensors (FOCSs), also called optical
current transducers (OCTs), have inherent advantages over current transformers, including
the following:

- Wider frequency bandwidth;
- Immunity to electromagnetic interferences;
- Absence of saturation effects;
- Possibility of dielectric measuring head with no power supply on high-voltage side;
- Possibility of wavelength division multiplexing (WDM);
- Isolation of sensor electronics from the measuring head by optical fiber (OF);
- Smaller size and weight.

These advantages are becoming more significant.
The Faraday effect (FE) is one of the principles OCT operation can be based on. Fiber

Bragg gratings are also proposed [2], utilizing the benefit from high-voltage cables with
integrated OF (OPGW/OPPC) that are on the market today [3].

The scope of this paper is limited to FOSs based on the FE. These include applications
outside power grids, from the protection of generators to tokamaks [4–6], as well as
magnetometers. Due to the large scope of design issues researchers have no choice but to
place emphasis on one aspect of sensor design in a review paper. For example, the problem
of linear birefringence is considered in detail by Wang et al. [7], and a comparison of OF
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magnetometer performance parameters is presented by Peng et al. [8]. In the approach we
have chosen, the FE is thoroughly presented at the second Section which provides a basis
for considering problems and solutions of the sensor design. The emphasis of our review is
on the temperature compensation methods presented in Section 5. Linearity, measurement
range and normalization are discussed in Sections 3 and 4. Faraday materials (FMs) are
discussed in Section 6 and three promising FMs are compared.

The aim of the paper is to inform young researchers about problems and measurement
techniques that can solve them when designing FOSs based on the FE. Three main directions
of research are presented, but do not cover all possible applications of FOSs based on the
FE; we hope, therefore, that this paper will help and motivate researchers to create better
FMs and new measurement methods.

2. The Faraday Effect

The Faraday effect represents a rotation of the plane of polarization of linearly po-
larized light while passing through a medium in the presence of a magnetic field. The
Faraday angle (FA), θ, is proportional to the component of magnetic flux density parallel to
the light beam, B‖, the length of the optical path through the Faraday material, l, and the
material-dependent Verdet constant, V:

θ =
∫ l

0
V
→
B
→
dl. (1)

In a homogenous field and medium the FA is θ = VB‖l. Faraday discovered the
effect in 1845 while working with heavy glass [9,10], but later the presence of the effect
was confirmed in crystals, liquids [11], gases [12,13] and plasma [14]. Artificial structures
possessing Faraday rotation (FR), such as optical fibers [15–19], magneto-optic photonic
crystals [20,21], magneto-optic ferrofluids [22] and nano-composite polymers [23] have
also been made.

Linearly polarized light is a superposition of equal amounts of right and left circularly

polarized modes. Two circularly polarized light waves,
→
E R and

→
E L, propagating along z

axes with different propagation constants, kR, kL, are written out as:

→
E R =

E0

2

[→
e x cos(kRz−ωt) +

→
e y sin(kRz−ωt)

]
, (2)

→
E L =

E0

2

[→
e x cos(kLz−ωt)−→e y sin(kLz−ωt)

]
. (3)

Their superposition is again linearly polarized, (if we assume no absorption):

→
E =

→
E R +

→
E L = E0

[
cos
(
(kR + kL)z

2
−ωt

)][
→
e x cos

(kR − kL)z
2

+
→
e y sin

(kR − kL)z
2

]
, (4)

with the plane of polarization rotated by the half of circular retardation:

θ =
(kR − kL)z

2
=

k0(nR − nL)z
2

=
π · z
λ0

(nR − nL). (5)

Some materials are optically active, and circular birefringence is inherent to them.
The Faraday effect is magnetically induced optical activity (OA), or magnetic circular
birefringence. Some crystals possess both OA and FR. By definition, the FA is positive for
counterclockwise rotation when the magnetic flux density vector has the same direction
as the wave vector, and for clockwise rotation when these vectors are of the opposite
direction. Therefore, the FE is truly a nonreciprocal effect, and the FA will double after the
light is reflected and goes back along the same path. OA, independent of the magnetic
field direction, is a reciprocal effect and will cancel out after the light is reflected. The
Faraday material (FM) can also be described by the Verdet constant, defined in respect to
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the magnetic field, VH = B
H V. Since data for the relative magnetic permeability of FMs

are often unavailable, for their comparison the relation VH = µ0V is used, where µ0 is
vacuum permeability.

Since the real and imaginary parts of the index of refraction must obey Kramers–
Kronig relations, the magnetic circular birefringence of the FM means that there is also a
magnetic circular dichroism present, and the light at the exit of the FM is actually elliptically
polarized with the major axes rotated for the FA. The ratio of the major and minor axis of
polarization ellipse is [24,25]:

b
a
=

e−αR − e−αL

e−αR + e−αL
, (6)

and since magnetic circular dichroism is weak (absorption coefficients of circular modes
are almost equal, αL ≈ αR), eccentricity is close to one and polarization is almost linear.

If we assume that, at optical frequencies, the relative magnetic permeability is close
to one [26,27], OA and the FE can be phenomenologically described through the tensor
of dielectric permittivity, ε, or the tensor of conductivity, σ. The derivation of the linear
state of the polarization rotation angle for an isotropic material is presented in Appendix A.
According to Equation (A26) the total rotation is, approximately, the superposition of OA
and FR:

θtot =
1
2

√
µ0ω2

εd

(
ε
(0)
xy + ε

(1)
xy B

)
l = θ0 + VBL. (7)

Verdet constant is therefore proportional to ε
(1)
xy term:

V =
1
2

√
µ0ω2

εd
ε
(1)
xy (8)

Propagation through materials possessing both FR and birefringence was analyzed
by Ramachandran and Ramaseshan [28] and Tabor and Chen [29], but their results are
actually more general and can be applied to materials that have uniform linear and circular
birefringence, regardless of the cause [30]. A distributed parameter model and simulation of
light polarization states have been done by YanSong et al. [31] If the medium is birefringent,
εxx 6= εyy, two orthogonal elliptical modes exist:(

E1
x

E1
y

)
= E01

(
1

jΠ

)
exp[j(ωt− k+z)], (9)

(
E2

x
E2

y

)
= E02

(
1
−j
Π

)
exp[j(ωt− k−z)], (10)

where

Π =
2εxy

εxx − εyy −
√(

εxx − εyy
)2

+ 4εxy2
. (11)

The resulting light wave is elliptically polarized. A medium possessing birefringence
cannot rotate the plane of polarization 90◦, and the FR cannot be described by the Verdet
constant. As Forman and Jahoda showed [32], the modulation depth for FR measurement is
decreased, and new nonlinearity is introduced. For weak optical rotation and birefringence,
the phase difference can be approximated as [29]:

∆k =
√

4ρ2 + η2, (12)

where ρ is the rotation per unit length in the absence of birefringence and η is birefringence
per unit length in the absence of rotation. Birefringence also complicates temperature
dependence [33]. The general conclusion is that birefringent materials should be avoided
if possible for sensing purposes, or that birefringence should be compensated for [34–40].
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Unfortunately, birefringence is inevitable in the coiled optical fiber (OF), and stress or
the Pockels effect can induce birefringence in crystals. The Pockels effect will induce
birefringence in crystals that do not possess central symmetry [41], and this will create
measurement error in the presence of an electric field. On the other hand, a polarization
state is determined by both circular and linear birefringence, and there are propositions
for the measurement of both simultaneously [42–44]. After the linear birefringence is
calculated, it can be used for temperature compensation if temperature shift is the cause, or
for electric field calculation if an electric field is the cause, but not both. In some crystals,
such as Bi12GeO20, optical rotatory power can be very strong [45,46], and the approximation
given by Equation (12) is not valid. OA can be canceled out in the reflexive configuration
or it can be used for temperature compensation [24].

Calculation of the Verdet constant comes down to calculation of the term ε
(1)
xy or, equiv-

alently, σ
(1)
xy . For example, in the single-particle model of plasma, ε

(1)
xy B = −ε0

ω2
pωB

ω(ω2−ω2
B)

,

where ωp =
√

nee2

meε0
is plasma frequency and ωB = e

me
B is cyclotron frequency, the FA

is θ = 1
2

√
µ0ω2

ε0
ε
(1)
xy Bl = − 1

2c
ω2

pωB

ω2−ω2
B

l = − 1
2c

nee3

m2
e ε0

1
ω2−ω2

B
Bl, and for small fields when light

frequency is much higher than cyclotron frequency (ω � ωB), the FA follows the lambda-
squared law often used in astronomy [47,48]:

θ ≈ e3

8π2m2
e ε0c3 λ2

0neBl. (13)

Modeling of the Verdet constant in the solid state was first conducted by Becquerel [49],
using the classical theory of the Zeeman effect. He showed the rotation to be linearly
dependent on the optical dispersion:

V =
|e|λ0

2mec2 ·
∂n
∂λ

. (14)

Born and Jordan [50], using the quantum approach to the dispersion relation in the
presence of a magnetic field, showed that the Becquerel relation is valid for the diamag-
netic part of the Verdet constant. The diamagnetic FE exists in all solids and originates
from Zeeman splitting. They also comment that there is no paramagnetic contribution
to Faradays rotation in diamagnetic materials. The diamagnetic part is temperature in-
dependent for moderate fields but not to low temperatures (µBB� kBT, where µB is the
Bohr magneton), and the paramagnetic part is approximately inversely proportional with
temperature. In the quantum treatment of the problem, the result depends critically on
the nature of the medium. All of the electrons in a solid contribute to FR, but on optical
frequencies the influence of the conduction electrons is dominant [51]. A magnetic field
can induce FR mainly through two mechanisms [27,52]: Zeeman splitting of the energy
levels—diamagnetic FR, and changing the density matrix elements—paramagnetic FR. For
solids with cubic symmetry, Bennet and Stern showed [51] that the diamagnetic part is
proportional to

ωβα(
ω2

βα−ω2
)2 and the paramagnetic part to 1

ω2
βα−ω2 . Despite there being several

other approaches of modeling for different materials [27,51–57], the main conclusions that
were important from a sensing point of view, and experimentally verified, can be deduced
from Bennet and Stern’s paper:

1. The Verdet constant is highest in the vicinity of the absorption line (ω → ωβα).
Therefore, magneto-optical quality is introduced as a ratio of the Verdet constant and
absorption, χ = V

α [58,59]. This parameter expresses material usability as a sensor
for the Faraday effect. Since it is wavelength-dependent, for sensing purposes a light
source should be chosen with a wavelength where the magneto-optical quality has its
maximal value [60–62];
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2. Far from the absorption line, the paramagnetic FE will dominate and can be, for exam-
ple, 20 times stronger than diamagnetic FE, as shown for rare-earth oxide glasses [61],
or can even be three orders of magnitude stronger [27];

3. Since two parts have different temperature dependences and different spectral de-
pendences, temperature dependence is wavelength-dependent. The Verdet constant
decreases with temperature and for most of the FMs can be modeled as V = C1 +C2
T−C3 , C3 ∈ (0, 1), where C1, C2, C3 are wavelength-dependent [24,63,64];

4. Diamagnetic FR is symmetrical around a resonant frequency and the paramagnetic
FR is antisymmetric.

Paramagnetic FR can experience saturation for strong fields [65], but in a magnetom-
etry field is usually far below this limit. The inverse FE represents magnetization of the
material when exposed to intense, circularly polarized light [66].

3. Faraday Effect Magnetometry and Electrical Current Sensing

The FE provides the possibility to measure the magnetic field or electrical current that
induces the field. FOSs can be divided into intrinsic and extrinsic types. In the intrinsic
type, light stays inside the OF, which is a sensor and communication channel. In the
extrinsic type, light exits the OF to be modulated outside of it and again coupled to another
OF that carries light to the detector. A magnetic field sensor has to be an extrinsic FOS,

since it is sensitive to
∫ →

B
→
dl and the OF would have to trace magnetic field lines, unknown

at the beginning of measurement. OCTs can be constructed as extrinsic or intrinsic FOSs.
The fundamental advantage of FE magnetometry is that only FMs and photons

are indispensable inside the field. Since FMs can be dielectric, this is the only kind of
magnetometry without metals or semiconductors in the field, and the perturbation of the
measured field is minimal. Submillimeter spatial resolution is possible with new FMs.

Advantages of OCTs in the monitoring of power systems are also significant [5,67].
Since the FE response time is in the range of ns or less, the frequency range is practically
limited by the optoelectronic conversion block. Owing to its wide frequency bandwidth, an
OCT is able to detect transient electrical faults in power systems [68–70]. Light is the carrier
of information so, in contrast to metallic wires, electromagnetic induction is not a problem,
which is also important in power systems [71]. Sensors can be designed small, portable,
safe and easy to operate and maintain. With an extrinsic OCT output, an OF carries the
information on the current in the form of intensity-modulated light, and WDM can be
used to carry this information through the same OF used for other FOSs in the system (for
example, FBG used for temperature monitoring). Unlike current transformers, extrinsic
OCTs can be applied without interruption of the power supply. High electric insulation is
mentioned in almost every paper introduction, and instead of referencing these we will
display, in Figure 1, the measurement head, mounted on an insulating rod certified to
operate up to a 100 kV voltage level.
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up to 100 kV.

There are several obstacles as well. From the engineering point of view normalization,
nonlinear transfer function, limited measurement range and cross sensitivity to temper-
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ature, electrical field and vibrations are the main problems to be solved.. Solutions are
presented later in the text. The economic obstacle is yet to be resolved.

Current sensing differs from magnetometry because it is necessary to suppress all the
magnetic field sources but one, a conductor, the current of which we wish to measure. This
can be achieved in two ways: by a closed optical loop around the conductor [72–74], (a) and
(b) in Figure 2, or by a magnetic ring concentrator encircling the conductor [35,75–77], (c) in
Figure 2. FR and current are connected through Ampere’s law. In Figure 2, the integration
path, L, is depicted in blue color and the optical path in red.
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For homogeneous crystals the FA is (a) θ =
∮

V
→
B
→
dl = µ0V

∮ →
H
→
dl = VH I, and for

N curls around the conductor the FA is (b) θ =
∮

V
→
B
→
dl = µ0V

∮ →
H
→
dl = NVH I. For the con-

centrator, (c), I =
∮ →

H
→
dl =

∫
l

→
H
→
dl +

∮
L−l

→
H
→
dl = 1

µ0µc
r

∫
l

→
B
→
dl + 1

µ0µr

∫
L−l

→
B
→
dl = θ

µ0µc
rV + 1

µ0µr∫
L−l

→
B
→
dl ⇒ θ = µc

rV
(

µ0 I − µc
r

µr

∫
L−l

→
B
→
dl
)

. If the relative permeability of an FM is much

smaller than the relative permeability of a concentrator (µc
r � µr), the FA reduces to

θ ≈ µcVI = VH I.
Bulk crystal solutions with multiple closed optical paths around the conductor have

been proposed [78,79]. Sensitivity is increased by the increased number of the closed
optical paths, N. FM inhomogeneity and reflection-induced retardances break the symme-
try of Ampere’s law and cancel perfect EMI immunity [80,81]. FMs with openings have
been proposed with the intention to design portable measuring heads [82,83]. A large,
homogeneous FM is necessary for this solution, making it expensive. More effective is
the intrinsic solution where an OF exhibiting the FE is coiled around a current conduc-
tor [7,84,85]. The number of windings, N, determines sensitivity. One drawback of this
method is an inevitable birefringence in the bent OF [86,87], which is temperature depen-
dent [88]. The measurement head of the intrinsic type cannot open to envelop the conductor,
preventing the design of a portable sensor. Low-birefringence OFs as twisted [40,89,90],
annealed [91–93] or both [94] have been developed for OCTs. Birefringence disturbances
can also be suppressed by more complex setup and signal processing. For example, Ren
and Robert suggested alternating coupling of linearly and circularly polarized light to
obtain two results, and to calculate FR and birefringence this way [95].

With an openable magnetic ring concentrator, a current clamp for high voltage levels
can be designed due to optical isolation. Drawbacks to this method are nonlinearities in the
transfer function, introduced by ferromagnetic material and a sizeable measurement head.
Soft ferromagnetic materials are recommended to decrease hysteresis nonlinearities. With
this extrinsic solution, an OF transmits information in the form of intensity-modulated
light; therefore, no special OFs are necessary. A sensing crystal is embedded into the
magnetic ring gap, while OFs go through the ferromagnet. Beside suppression of the
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external magnetic field sources, the magnetic ring serves as a concentrator of magnetic
field lines, and increases modulation depth with a factor greater than 3µc

r , where µc
r is the

relative permeability of the FM [96]. Special care has to be taken with the design of openable
concentrators, since the point of opening can cause vibrations in AC current measurements,
creating additional frequency-dependent air gaps. This will spoil the frequency response
of the sensor in the vicinity of concentrator mechanical resonance if vibrations are not
removed. This can be done by the mechanical construction of concentrator openable
sideways. Increase in the magnetic concentrator cross-section area increases the modulation
depth, but note that the concentrator decreases the effective safety distance between
three-phase conductors in the transformer stations. Although the concentrator is very
effective in suppressing outer sources of field, there is a slight dependence (up to 4%) of
modulation depth on the conductor position inside the magnetic concentrator [75,76]. A
plastic conductor holder inside the concentrator can ensure that conductor position during
measurement is the same as the position during calibration [76]. Holder can also secure that
conductor is perpendicular to the plane of concentrator keeping the B‖l product maximal.
The longer crystal increases the FA, but more light is absorbed and a longer gap in the
magnetic circuit is required. It is possible to optimize FC length for maximal modulation
depth in the function of magneto-optical quality and the concentrator cross-section area.
Instead of using longer crystals, the optical path can be lengthened by multiple reflections
without increasing the gap [35,75,97]. If a portable sensor for a power system is designed,
a solution with a magnetic ring concentrator imposes itself due to the simplicity and
low price.

Power is the only property of light that can be directly measured; therefore, modula-
tion of light polarization has to be converted into light intensity modulation, and that can
be done in a polarimetric or interferometric way.

The polarimetric setup uses an analyzer with transmission axes at the angle ϕ (CCW)
in respect to transmission axes of the polarizer for this conversion. Using Malus’ law, we
obtain irradiance after the analyzer:

G(B) = G0 cos2(ϕ−VBl) (15)

where G0 is irradiance in front of the FM. Voltage after a photodiode is connected into the
transimpedance stage is:

U(B) = βP0 cos2(ϕ−VBl) =
βP0

2
(1 + cos(2ϕ− 2VBl)), (16)

where β is a constant that includes all optical losses, as well as the optoelectronic conversion
efficiency, and P0 is the power of the light source. The optimal angle, ϕ, for a small signal,
which places an optical quiescent point for maximal sensitivity can be found as:

∂

∂ϕ

(
∂U(B)

∂B

)
= 2βP0Vl cos(2ϕ− 2VBl) = 0, VBl → 0, ϕ =

π

4
. (17)

The transfer function is then:

U(B) =
βP0

2
(1 + sin(2VBl)) = U0 + ∆U(B). (18)

If an FM possesses OA, keeping in mind the superposition of OA and FR, the condition
for the optimal angle changes to ϕ = π

4 + θ0.
Interferometric configurations measure the phase difference of two circularly polarized

modes by changing them into linear polarizations and letting them interfere at the polarizer.
Interrogation can be done with any type of interferometer, but a Sagnac interferometer is
the natural idea, where the FE phase shift replaces the Sagnac phase shift, which is also truly
nonreciprocal. An analogy with a fiber optic gyroscope (FOG) is full for setup with counter-
propagating waves [90,98,99], and solutions developed for a FOG can be applied, providing
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sensing of the µrad phase difference [58,100]. Phase shifts of non-reciprocal effects, such
as Sagnac, are indistinguishable from the FE phase shift [101] but the rotation of OF coils
is highly unlikely. Shupe effect errors are common to FOGs and OCTs. A co-propagating
setup is favored because of lower sensitivity to asymmetric, time-varying disturbances from
the mechanical and thermal domains [102]. Frosio and Dandliker demonstrated an intrinsic
reciprocal reflection interferometer, which suppresses reciprocal disturbing effects [103]
and doubles the optical path and FA. Co-propagating circular modes are reflected at the
OF end and their states of polarization are swapped. Maximum sensitivity can be achieved
by imputing a quarter-wave plate, which is a homodyne technique [104]. The temperature
dependence of quarter-wave plates has to be solved, and polarization cross-coupling
as a consequence of nonideal optical components appears [105]. The polarization cross-
coupling can be reduced by the usage of a low-coherence source. Sagnac interferometer
configuration with a 3 × 3 directional coupler was also proposed [106,107], but equal
amounts of orthogonal circular states have to be coupled to sensing arms, which diminishes
the desired simplicity. Recently, polymeric integrated waveguide components were used
to perform homodyne detection at 1550 nm [108,109]. Heterodyne detection can also be
incorporated in the same manner as with a FOG by introducing a phase modulator and a
phase-locked loop amplifier. Heterodyne detection solves the problem of normalization
but limits the frequency range. Derivation of the sensor transfer function for this case is
presented in Appendix B. If the feedback electronics that control the phase modulator keep
the sensor in the point of maximum sensitivity, the response is linear and the measurement
range is limited by modulator properties rather than transfer function. A high-frequency
carrier signal can be generated in several ways [100,110–115]. Temkina et al. [116,117]
recognized the problem of economic competitiveness and proposed a solution for the
temperature dependence of quarter wave plates based on signal processing. Additionally,
the piezoelectric phase modulator was replaced by an electro-optical modulator, shifting
the carrier frequency to gigahertz range and decreasing the required length of expensive
polarization-maintaining OF. Garcia et al. demonstrated a cost-effective solution that
also included a novel FM [118]. With sensitivity determined by the number of OF coils
and temperature dependence solved, vibrations are the only problem for a reciprocal
interferometer with heterodyne detection, and this is probably the best solution for static
OCTs in power systems.

Alternative methods for state of polarization detection have been developed that use
a radial grating polarizer [119], Newton’s ring grating [120] or a wedge crystal [121] to
convert the state of polarization into a spatially dependent irradiance recorded by a digital
camera. The state of polarization can be obtained by image processing. A rotating analyzer
was also proposed [122] for educational purposes.

In the majority of experiments with the FE, monochromatic light sources are used, but
polychromatic lights have also been proposed [97,123].

4. Normalization

The FA is typically small, below 1◦ for most FMs in the mT range of fields. Light
source intensity fluctuations as well as variable absorption in the medium can mask the
useful signal entirely. Normalization is the elimination of the influence of light source
variation. It can be done by measuring the light source power locally and dividing the
sensor output with the result. Another proposed method, called AC/DC, is typically used
for slowly varying fields. The ratio ∆U(B)

U0
= sin(2VBL) does not depend on light source

intensity. In order to separate ∆U(B) from U0, however, which is field independent but
time varying, one has to know the frequency range of the measured field. Furthermore,
frequency components of U0 that overlap with the measured field spectrum cannot be
filtered out.

Superior to the mentioned methods is ∆
Σ normalization, which does not limit the

frequency range and additionally compensates variable losses on the optical path up to
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the point of splitting of linear polarization modes [124]. The easiest way to explain ∆
Σ

normalization is by analyzing the free-space setup shown in Figure 3.
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Σ normalization method.

The plane of polarization of light after FMs in the absence of the field is set to ±45◦

in respect to the fast and slow axes of birefringent crystal. Orthogonal polarizations are
spatially separated by birefringent crystals, and both depend on light source power in the
same way. After transimpedance stages the voltages of the two channels are:

U1 =
β1P0

2
(1 + sin(2VBL)) (19)

U2 =
β2P0

2
(1− sin(2VBL)). (20)

Using a quadrant photodiode, β1 and β2 can be almost perfectly matched, β1 = β2,
and the calculated FA and magnetic induction are independent of P0:

θ =
1
2

sin−1
(

U1 −U2

U1 + U2

)
=

1
2

sin−1
(

∆
Σ

)
, B =

1
2Vl

sin−1
(

∆
Σ

)
. (21)

The transfer function is nonlinear and sensitivity decreases with an increase in the
magnetic field. The measurement range is limited by the lowest acceptable sensitivity rather
than by the B = π

4Vl condition. A narrow measurement range is an inherent feature of an
FE-based FOS due to the nature of the transfer function. A negative feedback technique,
used for other types of magnetometers [125], can solve problems of dynamic range and
linearity. Applying a feedback magnetic field that exactly opposes the measured field
keeps the optical quiescent point fixed. One hesitates to use this technique since it cancels
out other FOS advantages. Another possibility is interferometric heterodyne detection,
which can also be implemented with bulk FMs [84,111] with increased complexity and cost.
Willsch demonstrated an extension in the measuring range using two wavelengths [126].

Polarization fluctuations can be converted into intensity fluctuations by the polarizer
placed just in front of the FM. So, the ∆

Σ method also suppresses polarization fluctuations
at the input optical path, regardless of their origin.

Note that there are two more potential problems: different losses after splitting cannot
be compensated, and the background light can spoil normalization since it cancels out
in the numerator but not in the denominator of Equation (21). Background light will not
exist in the FOS but stray light reflected at the sides of the crystal has the same effect. It
loses information carried by its polarization but still contributes to the denominator in ∆

Σ
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normalization. Without additional optics for fiber coupling, maximal crystal length, lMAX ,
is limited by the condition that sideways reflected light cannot couple with output fiber:

lMAX = (D− 2r)

√(nFM
NA

)2
− 1, (22)

where D is the smallest transversal dimension of FC, r is the OF core radius, nFM is the
FM index of refraction and NA is numerical aperture of OF. If duplex OF in one jacket is
used for FOS output channels, losses on output optical paths are also matched as much as
possible. Polarizing beam splitters are large and impractical for incorporation in FOSs but
can be avoided with a slight deviation from the exact solution by placing two analyzers
with orthogonal transmission axes behind the FM [127]. Bohnert et al. used an integrated
optic polarization splitter to implement ∆

Σ normalization with intrinsic OCTs [128]. It is
also possible to use polarization-maintaining OF and to convert to intensity modulation in
front of the detector [33], but this is not recommendable since the state of polarization is
more sensitive to external influence than irradiance.

Mechanical stress and vibrations will also influence light power at the end of output OF
through the connectors and macrobending of OF. Niewczas and McDonald proposed two
counter-propagating beams through the FM and subtraction of results for two FAs [129].
Modulations caused by the FE are of the opposite sign due to its nonreciprocity, but
modulations caused by vibrations are of the same sign and will cancel out by subtraction if
counter-propagating beams are equal in power.

An interferometric solution with heterodyne detection uses the fact that the amplitudes
of all harmonics are proportional to the power of light incident on the detector and the
ratio of harmonics amplitudes is independent of light source intensity and all losses. One
drawback is the limitation of frequency bandwidth to range is inferior to the modulation
frequency of the carrier.

5. Temperature Compensation

Temperature can influence sensor response through:

1. Change of the Verdet constant of an FM with temperature, ∂V
∂T ;

2. Change of optical path length through an FM, ∂l
∂T ;

3. Change of wavelength of optical source with temperature, ∂V
∂λ

dλ
dT ;

4. Change of optical quiescent point with temperature, ∂ϕ
∂T , if an FM possess OA;

5. Change of properties of optical components with temperature (for example, quarter-
wave plate);

6. Temperature gradients in OFs.

A ferromagnetic concentrator did not affect temperature dependence in our experi-
ments.

Items 5 and 6 are significant for an intrinsic interferometric solution, where more
care should be paid to temperature dependences of other optical components than to
temperature dependence of sensing OFs.

If the FM used possesses OA (item 4) its temperature change will influence a response
through the shift of the optical quiescent point, since ∂ϕ

∂T = ∂θ0
∂T [71]. FR is much smaller

than optical rotatory power even for strong fields. For example, a B12GeO20 crystal with
optical rotatory power ρ ≈ 100π rad

m and a Verdet constant V ≈ 70 rad
Tm [45,46] has the

ratio of FR to OA θ
θ0

= 0.22 1
T B. Even moderate OA temperature dependence will have a

decisive influence on overall temperature dependence. Therefore, OA has to be removed
by design [130] or incorporated into temperature compensation, as explained later.
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If the FM used does not possess OA, the relative change of sensor response with
temperature for the ∆

Σ method is:

1
∆
Σ

∂
(

∆
Σ

)
∂T

=
2θ cos(2θ)

sin(2θ)

1
θ

∂θ

∂T
, (23)

and for small FA comes down to:

1
∆
Σ

∂
(

∆
Σ

)
∂T

≈ 1
θ

∂θ

∂T
=

1
V

(
∂V
∂λ

dλ

dT
+

∂V
∂T

)
+

1
l

∂l
∂T

, (24)

If wavelength for maximal magneto-optical quality is chosen it is close to the absorp-
tion line and the Verdet constant is strongly wavelength dependent, thus making the dλ

dT
term a problem (item 3). In order to minimize the effect of the ∂V

∂λ term, a temperature-
stabilized light source is mandatory, and in that case temperature dependence reduces to
the Verdet constant temperature dependence. Alternatively, source wavelength changes
can be compensated [131], allowing the usage of low-cost light sources without temperature
control.

For FMs with a high Verdet constant, the temperature-induced relative change of
FM length (item 2), 1

l
∂l
∂T , is two orders of magnitude lower than the temperature-induced

relative change of the Verdet constant, 1
V

∂V
∂T , and can be neglected in Equation (24). For

example, the Bi12GeO20 crystal thermal expansion coefficient is 16.8 × 10−6K−1 [132] and
the relative thermal change of the Verdet constant at 273 K is 3.8 × 10−4K−1 [133], making
the 1

l
∂l
∂T insignificant.
The diamagnetic part of the Verdet constant is approximately temperature indepen-

dent, but also much lower than the paramagnetic part, making the diamagnetic material
a poor choice for sensing purposes. A thermal camera is too expensive for OCTs and the
only contact temperature measurement that keeps OCT advantages has to be FOS based,
as Willsch et al. proposed in [134]. Therefore, many temperature compensation methods
have been proposed in the literature, and we will mention ten. Methods numbered 6, 7, 8
and 9 are able to compensate for the temperature along the optical path at which the FR
accumulates, enabling compensation even in the presence of temperature gradients in the
sensor itself:

1. Introduction of controllable DC magnetic field in part of the optical path and using
this field for setting the optical quiescent point [135]. Temperature change will shift
the optical quiescent point and that will be detected through the DC part of the signal.
Feedback will then set up a new appropriate quiescent point, the one that cancels
out the Verdet constant temperature change. This method cannot be used for DC
magnetic field measurement, and the DC magnetic field actually represents a source
of error in this method, as in all AC/DC methods.

2. Temperature-sensitive rotation of measurement head by a bimetal coil is used to
compensate for the increase in the Verdet constant by a decrease in the component of
the optical path parallel to the field [136]. The field direction has to be known. The
introduction of bimetal coil cancels out the best part of FOS advantages.

3. Introduction of temperature-dependent linear retarder into the optical path. The
temperature of the sensor head is obtained through the measurement of the retardance
of the birefringent plate [137]. With the temperature dependence of the Verdet constant
known, an exact value can be used for measured temperature. Similar solutions place
temperature-dependent bulk [138,139] or OF [140] retarder into the optical path
and compensates by changing the input polarization of light without calculating
the temperature.
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4. Using two FMs with different temperature dependence on the Verdet constant gives
the possibility of monitoring the temperature-dependent ratio of Verdet constants
and to measure temperature on that basis [141,142].

5. Growth of crystals with high FR independent of T. Appropriate dopants during the
crystal growth of iron garnets can match the temperature dependencies of the Verdet
constant and the material saturation magnetization, thereby providing an almost flat
temperature response [143]. The composition of temperature-independent FR iron
garnet differs from the composition for maximal Verdet constant. Compounding two
kinds of rare-earth ions with opposite temperature coefficients is another proposed
method [144]. For every manganese content, x, in Cd1−xMnxTe (CMT), a crystal light
wavelength can be found at which FR is temperature independent [145].

6. Modified AC/DC normalization is proposed for intrinsic FOSs [146], but there are no
obstacles for implementation of this method with birefringent bulk FM as well. It is
shown that the DC part of the signal is only sensitive to birefringence of the coiled
OF and the AC part is beside birefringence, current-sensitive. After splitting the
signal in frequency domain, the DC part, which is temperature-dependent through
birefringence, is used to compensate the temperature dependence of the AC part by
modified normalization: Output = PAC

1+kPDC
.

7. Interferometric method that simultaneously measures temperature and FR based
on a two-beam interferometric configuration in which the temperature is recovered
from the phase change of the interferometric fringes and FR from changes in visibility
of the interferometric fringes [147]. This method can be applied with any FM but
demands high-quality optical components. Great for laboratory work but not very
suitable for practical implementation on the field.

8. Using two wavelengths with the same FM, where the Verdet constant has different
temperature dependences [148,149]. From the pair of data, both temperature and
magnetic field can be calculated. The reported result is quite impressive. In the
temperature range from −20 to 100 ◦C the change in sensor output has been reduced
from 18%, uncompensated, to 0.7%, with compensation [148]. This method does not
impose restrictions on the frequency bandwidth or type of FM. There is no funda-
mental obstacle for utilizing it with intrinsic FOS but with intrinsic interferometric
solution more care should be paid to the temperature dependence of quarter-wave
plate [44].

9. Using OA temperature dependence to measure the temperature and calibrated tem-
perature dependence of the Verdet constant to obtain a temperature-independent
result [24]. FR is measured by two optical channels in a reflective configuration,
applying ∆

Σ normalization with OA canceled out. In this way, a position for the third,
transmissive channel is opened, and can be used for OA measurement as depicted in
Figure 4.

This method, similarly to 1 and 6, can be applied for AC current measurements
only since OA is obtained by integration of the transmissive channel signal. Since the
DC magnetic field is a source of error in this method, the magnetic shield around the
measurement head can be used to determine the temperature before field measurement.
Another solution proposed by Mitsui et al. [71] also uses OA temperature dependence,
but shifts the optical quiescent point and reduces the sensitivity opposing the increase in
sensitivity due to the Verdet constant increase with temperature decrease. We tried this
method with 1 cm long Bi12GeO20 crystal, but OA temperature dependence dominated the
response and we could not compensate in the significant temperature range. This solution
can be improved using the idea of Katsukawa et al. [150], who coupled two differently
cut Bi12SiO20 crystals, one with positive and other with negative rotatory power. FR is
independent of direction in the FM and the same at both crystals. OA can be controlled by
the crystals lengths and OA can be annulled or reduced to the level suitable for temperature
compensation by the optical quiescent point shift.
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10. Integral approaches are able to solve overall temperature dependence by combining
the various contributions to the temperature dependence [151] or by neural network
training [152].
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(blue) for temperature compensation by OA measurement. (a) Longitudinal cross-section, (b) transversal cross-sections and
(c) schematic diagram.

6. Choice of the Faraday Material

Choice of the FM is crucial for magnetic field FOSs but less important for OCTs, since
magnetic ring concentrators or an increased number of windings increase sensitivity and
weak currents are measured by other means. A magnetic field FOS has to be extrinsic,
with bulk FM placed in a mechanically stable dielectric housing if we want to keep all
the benefits. Bulk solid-state FMs can be divided into glasses and crystals. Crystals have
higher FR [16] but their application is constrained to extrinsic FOS. Another division can
be made according to the magnetic nature of the FM [132]. Glasses are isotropic, cheaper
and easier to produce in different shapes and lengths and can be utilized to produce OFs
for intrinsic FOSs. Spun OFs possessing the FE [151,153–155] with a reported sensitivity
of 100 µA rms/

√
Hz [156] are commercially available. A decision about the best FM is

beyond our reach, and comparative study of FMs for sensing is welcomed. Ideal bulk FM
for sensing purposes should exhibit no Pockels effect and no birefringence. OA can be
canceled out in absence of the Pockels effect and birefringence. FR should be as high as
possible, but wavelength should be chosen for the maximum of magneto-optical quality
rather than for Verdet constant maximum. Example of a convenient form of displaying
FM properties is presented in Table 1. Knowledge of the dispersion relations for the Verdet
constant, magneto-optical quality, χ, (as measured by Kruk and Mrozek [157]) and optical
rotatory power, ρ, would be even better.

Table 1. Properties of several Faraday materials.

Faraday Material Glass/Crystal |V|(rad/Tm)/λ
(nm)

χ (rad/T)/λ
(nm)

ρ (rad/mm)/λ
(nm)

Linear
Birefringence

Pockels
Effect

Bi12GeO20 [46,158] Crystal 72/633 2.1/633 0.6065/633
(T = 293 K) No Yes

Cd0.57Mn0.43Te [60] Crystal 3140/633 7.85 No No Yes

BK-7 glass [159] Glass 4.3/633 >8.6 No Yes Yes

Tb3+-dopedGeO2-B2O3-
Al2O3Ga2O3 [160]

Glass 119/633 >2.4 No data No No data

Much more data about the Verdet constant can be found in the literature (or calculated
from presented data) [43,125,159,161–181], but the value is usually given for a single
wavelength and other figures of merit are often missing. Differences in reported data are
understandable because of the high sensitivity of the parameters-to-dopants concentration.
In glasses, V increases with an increase in rare-earth dopant concentration [61,182], but
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absorption also increases. Note that FR can be even twice smaller in OF compared to bulk
material [17].

Among bulk crystals, Cd1−xMnxTe has the highest Verdet constant. In CMT at room
temperature the FE is linear and has no saturation up to large fields, H = 24×106 A/m [60].
Additionally, for manganese concentration x > 0.45, the FE does not depend on the magnetic
field frequency up to l GHz. The Verdet constant increases with the increase in manganese
share, x [169]. But with the increase in x, absorption also increases, and the lattice of
CMT is more strained, making it hard to manufacture crystals without defects. Crystals
also become more and more fragile. CMT possesses the Pockels effect [43], and that
complicates its usage for magnetometry, but with the concentrator solution the crystal is
partially shielded by the ferromagnet. The lowest measurable field reported for 1.3 mm
long Cd0.57Mn0.43Te is 73.2 A/m, which corresponds to 58.3 µT in vacuum [60].

Non-reciprocity of the FE has been used to increase total FR in resonant structures since
1964 [183–186] (note the couple of resonances for the couple of refraction indexes). Besides
sensing, FR is used for Faraday isolators and a lot of work has been done on increasing
total FR. Gigantic FR has been reported for thin films [187–190], magneto-optical photonic
crystals [20,191–193] and ferrofluids [22,194–197]. A few exotic structures possessing or
mimicing FR have been reported [198–209]. A Verdet constant three orders of magnitude
higher than one of CMT has been achieved [189]. Yet most of these structures can be
made only as thin films and appropriate figures of merit for sensing purposes are total
rotation per field, which is Vl product, and transmittance. Specific rotation, important for
Faraday isolators and expressed in ◦/µm, is given at the point of saturation magnetization
of the material. Although FR is approximately linear, in ferrimagnetic materials the FA
can exhibit hysteresis [187,210] and data for small fields would be better information for
sensing applications. Additionally, it is often not clear what the maximum optical length
available is. We will compare three promising FMs all at a HeNe laser wavelength in
Table 2. Two of them, Cd0.57Mn0.43Te and (TmBi)3(FeGa)5O12 on Gd3Ga5O12, we used and
measured similar data as reported in literature. Martinez et al. reported interesting results
for ferrofluid [22], the third FM we will compare. Besides high FR, no existence of linear
birefringence in ferrofluids has been reported yet, and ferrofluid does not exhibit Pockels
effect, or it is negligible.

Table 2. Comparison of three Faraday structures for sensing applications.

Faraday Material OPL |V| (rad/Tm) α (cm−1) Vl (rad/T) αl

Cd0.57Mn0.43Te [60] 1.3 mm 3140 4 4 0.52

(TmBi)3(FeGa)5O12 on GGG [189] 60 µm 1.25× 106 700 75 4.2

Ferrofluid [22] 2.8 mm 122.43×103 2.9 311 0.74

Assuming the same measurement conditions as with CMT measurements, the minimal
detectable field for (TmBi)3(FeGa)5O12 would be 5 µT and 1.2 µT for ferrofluid.

Spatial resolution in the longitudinal dimension is defined by FM thickness and
in the transversal direction by light beam diameter. With thin films with gigantic FR,
submillimeter resolution can be achieved in all three dimensions.

7. Discussion

FOSs based on the FE can be designed either as a magnetic field sensor or as an electric
current sensor. Entanglement of measurement techniques and limitations they impose are
a design problem but are solvable for a lot of specific applications. If, for example, a short
pulse current ought to be measured, heterodyne detection is excluded because of frequency
range limitations but ∆/Σ normalization can be applied with two wavelengths of light
used for measurement range expansion. For a short pulse current this is good enough
since perturbations from thermal and mechanical domains are too slow. The magnetic
concentrator is redundant since the pulse current is the dominant source of the field.
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Currently, three configurations are mostly researched:

1. FMs with additional optics and OFs, usable for both magnetometry (blue background
in Table 3) and current sensing (green background in Table 3);

2. Magnetic ring concentrator with measurement head for magnetic field measurement
placed into the air gap;

3. Reciprocal reflection Sagnac interferometer with closed-loop heterodyne detection.

Properties of these configurations are summarized in Table 3.

Table 3. Comparison of three FOS configurations.

Magnetometry
Current Sensing

Current Sensing Current Sensing

Configuration 1 2 3

FOS type Extrinsic Extrinsic Intrinsic

Portability Yes Yes No

The best normalization
method available

∆
Σ

∆
Σ By heterodyne detection

Linear response No No Yes

Measurement range Limited by B = π
4Vl Limited by B = π

4Vl
Wide, limited by
phase modulator

Temperature compensation
methods available (as listed in

Section 4)

4, 5, 6 (for birefringent FM), 8,
9 (for FM that possesses OA)

and 10

4, 5, 6 (for birefringent FM), 8,
9 (for FM that possesses OA)

and 10
3, 6, 8 and 10

Sensitivity
Determined by

magneto-optical quality of FM
and detector noise

Determined by
magneto-optical quality of

FM, detector noise and
concentrator properties

Determined by the Verdet
constant of OF, number of OF

coils and detector noise

Limiting factor for
frequency range FM and optoelectronic block Concentrator properties

Phase modulator frequency
or time of flight

(for long-sensing OF)

Full dielectric
measurement head Yes No Yes

Low modulation depth
Main problem
to be solved Sensitivity to other magnetic

field sources
Concentrator hysteresis

Temperature- and
vibration-dependent

birefringence of sensing OF

Totally dielectric
measuring headMain advantages

No EMI
Portability and simplicity Linear response and wide

measurement range

High-speed magnetic field
measurement with good

spatial resolutionPossible application

Pulse current measurement

Portable OCT for power
system monitoring

Static OCT for smart grids

Cost Low Moderate High

Fully dielectric, mechanically stable measurement head together with ∆⁄Σ normaliza-
tion ensure that frequency bandwidth depends only on optoelectronic block and FM for
extrinsic type. A GHz frequency range have been reported for TGG and CMT [211], and
700 MHz for YIG [212] crystals. Bandwidth depends on FM thickness and dopant concen-
tration. FOSs cannot equal FM bandwidth [213], but device bandwidths of 10 MHz [212]
or more [60] have been reported, enabling FE-based sensors to compete for exotic applica-
tions [211,214]. The magnetic concentrator spoils bandwidth of extrinsic OCTs, but 10 kHz
is easily achievable. Intrinsic OCT beside carrier frequency has an additional limit imposed
by the time of flight through the sensing OF [215] in the range of hundreds of MHz.
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∆
Σ normalization suppresses light source polarization and intensity fluctuations for

extrinsic FOS. Temperature compensation methods numbered 8 and 10 are applicable
for every type of FM and method 9 can be applied if the FM possesses OA. The only
crosstalk left to be concerned about are from mechanical domain and electrical domain if
the FM used possesses the Pockels effect. With thin films with gigantic FR, submillimeter
resolution in all three dimensions is possible.

The nonlinear transfer function is such that sensitivity decreases with field increase
and the upper limit of the measurement range depends on desired performance. Widening
of the measurement range can be done by using two wavelengths. A more expensive inter-
ferometric setup combined with heterodyne detection enables a linear response and wide
measurement range, but limits frequency bandwidth to frequencies below the modulation
frequency of the carrier.

The lowest measurable field is hard to estimate since it also depends on photodiode
noise, frequency range and the rest of electronics besides FM. CMT is experimentally
proven to operate in the µT range. Further improvements rely on new and better FMs.
The possibility of constructing a fully dielectric and passive measurement head with a
good spatial resolution and a wide frequency range is the fundamental advantage of FE
magnetometry.

An extrinsic OCT is a magnetic field measurement head placed into the air gap of
a magnetic ring concentrator. An openable concentrator can be made in the form of
a current clamp. All solutions of magnetic field FOSs are applicable here as well. A
ferromagnetic concentrator introduces hysteresis and additional nonlinearity but does not
affect temperature dependence. Simplicity, easy maintenance, safety and portability are
the main advantages of this solution.

An intrinsic solution is the best for static OCTs in power systems with proven reliabil-
ity [216]. Sensitivity can be controlled by the number of OF coils around the conductor. A
wide measurement range, linear response and normalization can be achieved by hetero-
dyne detection. Cost-effective temperature compensation for AC currents can be done by
modified AC/DC normalization (method number 6). Vibrations are again the main source
of error.

8. Conclusions

Replacing sensor energy flow from the electrical domain to the optical domain (pho-
tons instead of electrons) bears many advantages when the sensor is measuring physical
quantities from the magnetic and electrical domain. It also bears problems related to cross-
sensitivity to physical quantities from the thermal and mechanical domains. Measurement
methods developed for FOSs based on the FE that diminish these cross-sensitivities are
presented together with methods for the normalization of optical signals, widening of the
measurement range and obtaining linear responses.

From the point of view of a specific FOS application, methods for achieving the
desired performance as discussed in Sections 3–5 can be mutually exclusive and inter-
dependent, preventing any particular design from becoming the universal measuring
solution. However, for any given practical FOS application effective solutions exist.

Three main directions of research are described. A reciprocal reflection Sagnac inter-
ferometer is currently the most prosperous configuration with an important application in
electric power grid monitoring.

Price and availability of FMs and optical components will determine the commercial
success of FE-based FOSs. Sensing is just one of many FE applications, and regardless of
FOS market status, Michael Faraday left us a most interesting legacy.
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Appendix A. Linear State of Polarization Rotation Angle for Isotropic,
Dielectric Material

Any medium that rotates the plane of polarization of light has the tensor of dielectric
permittivity in the form [27,30]:

ε =

 εxx jεxy 0
−jεxy εyy 0

0 0 εzz

, (A1)

where all terms are real if we neglect absorption. Expanding off-diagonal terms in the ε
tensor to the first order in B gives [51]:

εxy = ε
(0)
xy + ε

(1)
xy B, (A2)

where ε
(0)
xy 6= 0 means that media exhibit OA and ε

(1)
xy 6= 0 that media exhibit FR. Both terms

are antisymmetric,
ε
(0)
yx = −ε

(0)
xy , ε

(1)
yx = −ε

(1)
xy (A3)

but for mediums that possess OA

εxy(−B) 6= −εxy(B). (A4)

Solving the Maxwell equations for dielectric,

rot
→
E = −∂

→
B

∂t
(A5)

rot
→
H =

∂
→
D

∂t
(A6)

div
→
D = 0 (A7)

div
→
B = 0, (A8)

with the assumed connections between the electric displacement field
→
D, electric field

→
E ,

magnetic flux density
→
B and magnetic field

→
H in the form:

→
D = ε

→
E (A9)

→
B = µ0

→
H, (A10)

for the lightwave traveling in the z direction,
Ex
Ey
Bx
By

 =


E0x
E0y

µ0H0x
µ0H0y

exp[j(ωt− kz)], Ez = const., (A11)



Sensors 2021, 21, 6564 18 of 27

with:  Dx
Dy
Dz

 =

 εxxEx + jεxyEy
εyyEy − jεxyEx

εzzEz

 (A12)

rot
→
E =


∂Ez
∂y −

∂Ey
∂z

∂Ex
∂z −

∂Ez
∂x

∂Ey
∂x −

∂Ex
∂y

 =

 jkE0y
−jkE0x

0

exp[j(ωt− kz)] (A13)

− ∂
→
B

∂t
=

 −µ0 jωH0x
−µ0 jωH0y

0

exp[j(ωt− kz)] (A14)

rot
→
H =


∂Hz
∂y −

∂Hy
∂z

∂Hx
∂z −

∂Hz
∂x

∂Hy
∂x −

∂Hx
∂y

 =

 jkH0y
−jkH0x

0

exp[j(ωt− kz)] (A15)

∂
→
D

∂t
=

 jωεxxE0x + jεxy(jω)E0y
jωεyyE0y − jεxy(jω)E0x

0

exp[j(ωt− kz)], (A16)

gives: 
0 k µ0ω 0
k 0 0 −µ0ω
−ωεx −jεxyω 0 k
jεxyω −ωεyy k 0




E0x
E0y
H0x
H0y

 =


0
0
0
0

 (A17)

and by eliminating the magnetic field we obtain: εxx − k2

µ0ω2 jεxy

−jεxy εyy − k2

µ0ω2

( E0x
E0y

)
=

(
0
0

)
. (A18)

Condition for nontrivial solutions:

det

 εxx − k2

µ0ω2 jεxy

−jεxy εyy − k2

µ0ω2

 = 0, (A19)

reduces to: (
k2
)2
− µ0ω2(εxx + εyy

)
k2 +

(
µ0ω2

)2(
εxxεyy − εxy

2
)
= 0, (A20)

and gives two possibilities for wavenumber:

(k±)
2 =

1
2

µ0ω2
[(

εxx + εyy
)
±
√(

εxx − εyy
)2

+ 4εxy2
]

. (A21)

For isotropic material,
εxx = εyy = εzz = εd, (A22)

two orthogonal circular modes exist:(
E1

x
E1

y

)
= E0

(
1
−j

)
exp[j(ωt− k+z)] Right circularly polarized mode, (A23)

(
E2

x
E2

y

)
= E0

(
1
−j

)
exp[j(ωt− k−z)] Left circularly polarized mode, (A24)
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with circular retardation

∆k =
√

µ0ω2εd

(√
1 +

εxy

εd
−
√

1−
εxy

εd

)
≈

√
µ0ω2

εd
εxy =

√
µ0ω2

εd

(
ε
(0)
xy + ε

(1)
xy B

)
. (A25)

and the rotation of the plane of polarization of light is:

θ =
(k+ − k−)z

2
=

(kR − kL)z
2

=
∆kz

2
=

1
2

√
µ0ω2

εd

(
ε
(0)
xy + ε

(1)
xy B

)
z = θ0 + VBz, (A26)

where θ0 is optical activity.

Appendix B. Transfer Function for Reciprocal Reflection Interferometer with
Heterodyne Detection

Interferometer output is:

U =
βP0

2
(1 + cos(2θ + ϕ0 cos(ωmt))) (A27)

where β is a constant that includes all optical losses, as well as the optoelectronic conversion
efficiency, P0 is the light source power, θ is FA, ϕ0 is the amplitude of phase modulation
and ωm is the phase modulator circular frequency.

U =
βP0

2
(1 + cos 2θ cos(ϕ0 cos(ωmt))− sin 2θ sin(ϕ0 cos(ωmt))) (A28)

The output can be expanded as:

U = βP0
2 (1 + cos 2θ

(
J0(ϕ0) + 2 ∑∞

k=1(−1)k J2k(ϕ0) cos(2kωmt)
)
− 2 sin 2θ ∑∞

k=1 J2k−1(ϕ0)

sin((2k− 1)ωmt))
(A29)

where Jk(ϕ0) are Bessel functions of the first kind and k-th order. By filtering around the
ωm signal

U1 = −βP0 sin 2θ J1(ϕ0) sin(ωmt) (A30)

is obtained and by filtering around the 2ωm signal

U2 = βP0 cos 2θ J2(ϕ0) cos(2ωmt) (A31)

is obtained.
Ratio of signal amplitudes is

U1max
U2max

= tan 2θ
J1(ϕ0)

J2(ϕ0)
(A32)

and calculated FA:

θ =
1
2

arctg
(

J2(ϕ0)U1max
J1(ϕ0)U2max

)
(A33)

is independent of light source power and losses.
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