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Abstract: Environmental agencies are interested in relating mortality to pollutants and possible
environmental contributors such as temperature. The Gaussianity assumption is often violated
when modeling this relationship due to asymmetry and then other regression models should be
considered. The class of Birnbaum–Saunders models, especially their regression formulations,
has received considerable attention in the statistical literature. These models have been applied
successfully in different areas with an emphasis on engineering, environment, and medicine. A
common simplification of these models is that statistical dependence is often not considered. In
this paper, we propose and derive a time-dependent model based on a reparameterized Birnbaum–
Saunders (RBS) asymmetric distribution that allows us to analyze data in terms of a time-varying
conditional mean. In particular, it is a dynamic class of autoregressive moving average (ARMA)
models with regressors and a conditional RBS distribution (RBSARMAX). By means of a Monte
Carlo simulation study, the statistical performance of the new methodology is assessed, showing
good results. The asymmetric RBSARMAX structure is applied to the modeling of mortality as a
function of pollution and temperature over time with sensor-related data. This modeling provides
strong evidence that the new ARMA formulation is a good alternative for dealing with temporal
data, particularly related to mortality with regressors of environmental temperature and pollution.

Keywords: ARMA models; Birnbaum–Saunders distribution; data dependent over time; maximum
likelihood methods; model selection; Monte Carlo simulation; R software; residuals; sensing and
data extraction

1. Introduction

Environmental agencies charged with establishing health-based air pollution stan-
dards are interested in determining significant relationships between pollution levels and
human mortality [1]. These agencies must choose the admissible levels of these standards
to protect the population including sensitive groups, such as children and the elderly,
against adverse effects on their health [2]. In general, a relevant question to answer is
related to the degree of association between pollutants and mortality considering possible
environmental contributors, such as climate, linked mainly to temperature [3,4].

Variables associated with mortality, pollutants and temperature are often statistically
related, but also their data are dependent over time. Then, a simple multiple regression
is not enough to model this relationship, since a time-series structure should be consid-
ered [5]. This type of modeling is frequently conducted under the Gaussianity/normality
assumption. However, such an assumption is often violated in environmental phenomena
due to asymmetry and then diverse practitioners employ logarithmic transformations to
reach Gaussianity. Nevertheless, data transformation brings difficulties of interpretation
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and power loss in statistical tests. Consequently, asymmetric models with suitable mathe-
matical arguments for describing mortality in terms of pollution and temperature can be
used. One distribution that holds with asymmetry and possesses such arguments is the
Birnbaum–Saunders (BS) distribution as demonstrated in [6].

The BS distribution is a lifetime model that, in recent decades, has been widely applied
in different fields of science. This distribution is continuous and unimodal, has positive
asymmetry, and is supported on the set of positive real numbers. It is indexed by two
parameters corresponding to its shape and scale. Proposed in [7], the BS distribution had
its origins in physical problems related to a specific type of fatigue in materials under
repeated stress and tension. It describes the total time until the cumulative damage caused
by the development and growth of a dominant crack reaches a threshold and failure occurs.
Subsequently, some assumptions made in [7] were relaxed in [8], reinforcing the physical
justification for the BS model by presenting a more general derivation. For more details on
the BS distribution with respect to its properties, see [9,10].

Since its first use and numerous applications in the areas of engineering and material
reliability, the BS distribution family has been considered in different fields of knowledge,
including environmental sciences [11–19]. The wide interest in this distribution is due to
its theoretical arguments, its good properties, and its close relationship with the normal
distribution. Several works have been performed focussing on aspects of estimation,
inference, generalizations, extensions, modeling, and diagnostics in BS models. A summary
of the main studies of the BS distribution can be found in [20].

In BS regressions, some forms of modeling were proposed by the authors of [21],
who were the pioneers in this type of modeling. They introduced a log-linear structure
for the BS distribution and developed methods for estimating parameters, hypothesis
testing, and calculating confidence intervals. Later, other investigations were carried out
on BS regression models such as shown and summarized in [22]. Additionally, statistical
diagnostic methods were presented in [23,24] for BS models. In the same vein, diagnostic
methods were formulated in [25] for BS regression models with censored observations.
BS quantile regression, boundary, and bimodality have been modeled in a number of
works [26–29]. A generalization of the BS distribution was derived based on elliptically
contoured distributions, called the generalized BS distribution, which has been applied
widely as well as its mixture [30,31]. In all of these models, the original response must
be first transformed onto a logarithmic scale. This leads to a problem of interpretation of
the results and to a reduction in the power of the study. In addition, although the mean
ς = log(λ) is being modeled on the logarithmic scale, λ = exp(ς) is being modeled on the
original scale, which, in the case of the BS distribution, corresponds to the median.

A way of dealing with the problem of logarithmic transformation usually applied in BS
regression models is through reparametrization. In this sense, several reparametrizations
of the BS distribution were introduced in [32], one of which, called the reparameterized
BS distribution (RBS), indexes the BS distribution by its mean and precision parameters.
Such a reparametrization allows the direct modeling of the mean without the need for a
transformation, in a similar way to generalized linear models (GLM). Considering this
mean-based RBS distribution, a GLM type regression model was introduced in [33]. In
this model, the mean response is related to a linear predictor by one of the several possible
link functions, and encompasses all the parameters to be estimated. Unlike all existing
BS regression models, the RBS regression approach proposed in [33] allows data to be
described at their original scale with ample flexibility.

Despite the growing interest in the BS distribution and the development of a consider-
able amount of investigation, little has been proposed for data involving a serial correlation
structure. In the context of BS models, initial efforts considering a dependence structure
are attributed to [34–39], and recently to [40]. As mentioned earlier, data on mortality,
pollutants and temperature are often statistically related, and temporal dependence may
be present. Hence, the main objective of our work is to derive a novel time-series model
based on the RBS distribution, which fills a gap in a little-studied area. We derive an RBS
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autoregressive moving average with regressors (RBSARMAX) time-series model, which is
specified in terms of a conditional mean varying over time and extends the RBS regression
proposed in [33], where temporal dependence was not considered. Our approach is similar
to that studied in [5,41,42]. The secondary objective is to apply the RBSARMAX structure
for modeling mortality as a function of pollution and temperature with data that are related
to sensors as detailed in the section on application.

The rest of this article is organized as follows. Section 2 presents the RBS distribution,
some of its properties, and the RBS regression model proposed in [33]. In Section 3, the
new RBSARMAX model is formulated, conditional maximum likelihood (CML) estimators
of the model parameters are derived, and residual analysis is considered for this model. In
Section 4, we conduct Monte Carlo simulations to evaluate the performance of the proposed
methodology. Section 5 applies the RBSARMAX modeling approach to sensor-related time-
series data to show its potential. The results are compared with an approach based on
a Gaussian ARMA model. Finally, Section 6 provides a summary and some concluding
observations, limitations, and ideas for the future of the present work.

2. An RBS Regression Model
2.1. The RBS Distribution

The RBS distribution [32], as one of the various forms of parameterization of the
BS distribution, was introduced using a new parametrization of the latter as a function
of its mean. The RBS distribution allows several characteristics of data modeling to be
considered [32,43].

To start, if a random variable T follows a BS distribution, usually denoted by T ∼
BS(α, λ), then its cumulative distribution function (CDF) is given by:

FT(t; α, λ) = Φ
[

1
α

(√
t/λ−

√
λ/t

)]
, t > 0, α > 0, λ > 0, (1)

where Φ is the standard normal CDF, α is a shape parameter, and λ is a scale parameter, as
well as the distribution median. Then, by considering the parameters of the BS distribution
with CDF defined in (1) as α =

√
2/δ and λ = µδ/(δ + 1), the new parameters of the form

reparametrized of the BS distribution are expressed as µ = λ(1 + α2/2) and δ = 2/α2,
where µ > 0 is the mean of the distribution and also a scale parameter, whereas δ > 0 is a
shape and precision parameter. In this case, we use the notation Y ∼ RBS(µ, δ).

The CDF of Y ∼ RBS(µ, δ) is stated as:

F(y; µ, δ) = Φ

{√
δ

2

[√
(δ + 1)y

µδ
−
√

µδ

(δ + 1)y

]}
, y > 0, (2)

whereas the probability density function (PDF) of Y is obtained by differentiating the
expression established in (2) with respect to y formulated as:

f (y; µ, δ) =
exp(δ/2)

√
δ + 1

4
√

πµ
y−3/2

[
y +

µδ

(δ + 1)

]
exp

{
− δ

4

[
(δ + 1)y

µδ
+

µδ

(δ + 1)y

]}
, y > 0. (3)

Figure 1 shows some shapes of the RBS PDF. From Figure 1a, note that δ, in addition
to being a precision parameter, is also a shape parameter. Observe that, as δ increases, the
PDF is more concentrated around the mean µ = 1 and therefore the variability decreases.
In Figure 1b, note that the distribution mean µ also behaves as a scale parameter. Hence, as
it increases, there is an increase in the variance and an increased flatness in the PDF.

Due to the relationship of the BS distribution in its original version to the normal dis-
tribution, the RBS distribution has the following relationship with the normal distribution:

Y =
µδ

δ + 1

 Z√
2δ

+

√(
Z√
2δ

)2
+ 1

2

, (4)
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wherein, from (4), we obtain

Z =

(
δ

2

) 1
2
{[

(δ + 1)Y
µδ

] 1
2
−
[

µδ

(δ + 1)Y

] 1
2
}
∼ N(0, 1). (5)

Consequently, from (4) and (5), the quantile function for the RBS distribution is
expressed as:

y(q; µ, δ) = F−1(q; µ, δ) =
µδ

δ + 1

 z(q)√
2δ

+

√[
z(q)√

2δ

]2

+ 1


2

, 0 < q < 1, (6)

where z(q) defined in (6) is the q-th quantile of the standard normal distribution and F−1
Y is

the inverse of the CDF of Y applied to q. The expressions for the mean and variance of the
RBS distribution are stated, respectively, as:

E(Y) = µ, Var(Y) = µ2[CV(Y)]2, (7)

where the notation CV defined in (7) is formulated as CV(Y) =
√

2δ + 5/(δ + 1) ∈ (0,
√

5)
and corresponds to the coefficient of variation of Y. As mentioned, δ can be interpreted as
a precision parameter, that is, for fixed values of µ, when δ→ ∞, the variance of Y tends
to zero. In addition, for fixed values of µ, if δ → 0, then Var(Y) = 5µ2. The median of Y
is δµ/(δ + 1) and hence is proportional to the mean. Note that, for µ fixed, we have that
δµ/(δ + 1)→ µ when δ→ ∞.
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Figure 1. RBS(µ, δ) PDFs for µ = 1 fixed (a) and for δ = 50 fixed (b).

2.2. Formulation

Based on the RBS distribution, a new approach to the regression modeling of the BS
distribution was proposed in [33]. In this approach, the construction of the regression
model is similar to the GLM, in which the mean is directly described without the need for
a transformation of the dependent variable to the logarithmic scale. Formally, consider
Y = (Y1, . . . , Yn)>, which is a sample of independent random variables, where each
Yt ∼ RBS(µt, δ), for t ∈ {1, . . . , n}, and their respective observations are y = (y1, . . . , yn)>.
Then, a regression model based on (3) is defined by a systematic component expressed as:

g(µt) = αt = x>t β, t ∈ {1, . . . , n}, (8)

where xt = (xt1, . . . , xtr)> is a vector of known values for r regressors, with t ∈ {1, . . . , n}
and r < n, β = (β1, . . . , βr)> is a vector of unknown regression coefficients to be estimated,
and αt is the linear predictor. Here, we have a link function g: R → R+ which is strictly
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monotonic, always positive, and at least twice differentiable. Hence, the mean of the
response variable is given by µt = g−1(x>t β), with g−1 being the inverse function of g.

2.3. Estimation

The logarithm of the likelihood function of the RBS regression model for the parameter
vector γ = (β>, δ)> has the form:

`(γ) =
n

∑
t=1

`t(yt; µt, δ), (9)

where `t(yt; µt, δ) defined in (9) is given by:

`t(yt; µt, δ) =
δ

2
− log(16π)

2
− 1

2
log
[

(δ + 1)y3
t µt

(δyt + yt + δµt)2

]
− (δ + 1)yt

4µt
− δ2µt

4(δ + 1)yt
.

The maximum likelihood estimate of γ is stated through solution of the system of
equations Uβ j(γ) = 0, for j ∈ {1, . . . , k}, and Uδ(γ) = 0, where Uβ j(γ) = ∂`(γ)/∂β j, and
Uδ(γ) = ∂`(γ)/∂δ. In this case, it is not possible to find an analytical solution so that
the maximum likelihood estimates must be obtained numerically using an appropriate
iterative method for nonlinear optimization problems, such as the Broyden–Fletcher–
Goldfarb–Shanno (BFGS) quasi-Newton method, which is implemented in the R soft-
ware (https://www.r-project.org, accessed on 22 September 2021) [44,45] by a command
named optim.

3. RBSARMAX Model
3.1. Formulation

Let {Yt}, for t ∈ {1, . . . , n}, be random variables such that the conditional distribution
of Yt, given the past, Ft−1 = {Yt−1, . . . , Y1, µt−1, . . . , µ1}, follows an RBS distribution,
denoted by Yt|Ft−1 ∼ RBS(µt, δ). Then, its PDF is given by:

f (yt; µt, δ|Ft−1) =
exp

(
δ
2

)√
δ + 1

4
√

πµt
y−3/2

t

[
yt +

δµt

(δ + 1)

]
exp

{
− δ

4

[
(δ + 1)yt

δµt
+

δµt

(δ + 1)yt

]}
, yt > 0, (10)

where δ > 0 and µt = E[Yt|Ft−1] are the precision parameter and the conditional
mean of Yt, respectively. Based on the RBS regression presented in (8), we postulate
the RBSARMAX(p, q, r) model accommodating an additional dynamic component with an
ARMA structure and regressors formulated as:

τt = η +
p

∑
i=1

φi[g(yt−i)− x>t−iβ] +
q

∑
j=1

θj[g(yt−j)− αt−j], (11)

such that now g defined in (11) is g(µt) = αt = x>t β + τt, for t ∈ {1, . . . , n}, wherein
g, xt, and β = (β1, . . . , βr)> ∈ Rr are defined as in (8), φ = (φ1, . . . , φp)> ∈ Rp,
θ = (θ1, . . . , θq)> ∈ Rq, and p, q, r ∈ N are the ARMAX parameters and their orders,
respectively; whereas η ∈ R is a constant.

Therefore, we have that

g(µt) = αt = η +
(

x>t β−
p

∑
i=1

φix>t−iβ
)
+

p

∑
i=1

φig(yt−i) +
q

∑
j=1

θj[g(yt−j)− αt−j]. (12)

The RBSARMAX model is stated by Yt|Ft−1 ∼ RBS(µt, δ), whose PDF is defined
in (10), and by the component given in (12). Note that the RBSARMAX model follows
the same structure as the GARMA models [41]. For the RBSARMAX structure, the link
function chosen is the identity.

https://www.r-project.org
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3.2. Estimation

Parameter estimation in the RBSARMAX model is performed with the CML method
or the first m observations, in which m = max{p, q} and n > m. From the expression stated
in (10), we have that the log-likelihood function for γ = (δ, η, β>, φ>, θ>)> conditional on
m observations is given by `(γ) = ` = ∑n

t=m+1 `t(δ, β, η, φ, θ), wherein `t(δ, β, η, φ, θ) =
`t = log[ f (yt; µt, δ|Ft−1)] is defined by

`t =
δ

2
+ log

[
log(16π)

2

]
− 1

2
log
{

(δ + 1)Y3
t µt

[(δ + 1)Yt + δµt]2

}
− Yt(δ + 1)

4µt
− δ2µt

4(δ + 1)Yt
. (13)

The CML estimate of γ can be obtained by maximizing the log-likelihood function de-
fined in (13), matching the score vector U(γ) = ∂`/∂γ to zero. Thus, the CML estimates are
obtained numerically using the BFGS method. The methodology proposed in this work can
be easily used by a practitioner through the R software. In particular, by employing the func-
tion garmaFit of a package named gamlss.util and some functions of the RBS package,
which can be downloaded from GitHub via remotes:: install github(“santosneto/RBS”).
Note that the computational cost and complexity are relatively low. In Appendix A, we
present mathematical results associated with the Fisher information matrix.

3.3. Residual Analysis

Residuals play a key role in the validation of any statistical model and permit us to
detect the existence of outliers. In particular, two types of residuals are proposed in this
study. The first is a generalized Cox–Snell (GCS) residual given by:

rGCS
t = − log[Ŝ(yt|Ft−1)], (14)

wherein Ŝ(yt|Ft−1) is the estimated survival function for the fitted model, defined as:

Ŝ(yt; µt, δ) = Φ

[
−
(

δ

2

) 1
2
{[

(δ + 1)yt

µtδ

] 1
2
−
[

µtδ

(δ + 1)yt

] 1
2
}]

, yt > 0. (15)

The GCS residuals follow a unit exponential distribution, EXP (1) in short, when the model
is specified correctly, and a plot of the theoretical quantiles versus empirical quantiles (QQ)
of rGCS

t , defined in (14), can be used to assess the fit of the model to the data.
The randomized quantile (RQ) residual is also proposed, which is expressed as:

rGS
t = Φ−1[Ŝ(yt|Ft−1)], (16)

where Φ−1 is the inverse function of the CDF of the standard normal distribution and
Ŝ(yt|Ft−1) is the estimated survival function, adjusted as in (15). The RQ residual follows
a standard normal distribution when the model is specified correctly. Hence, a QQ plot of
the residuals defined as in (16) may be utilized to assess the fit of the model to the data.
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4. Numerical Simulations
4.1. Definitions and Simulation Model

The simulations are performed using the RBSARMAX(1,1,1) model and are based
on samples of size n ∈ {100, 200, 500}, considering two cases. In Case 1, simulations are
performed with the values δ ∈ {8, 15, 25, 50}, β = 0.7, η = 1.0, φ = 0.7, and θ = 0.5. For
Case 2, the autoregressive (φ) and moving average (θ) parameters take the values of 0.3,
0.5, and 0.7, with δ = 8, β = 0.7, and η = 1.0. These simulations evaluate the performance
of the CML estimators of the RBSARMAX(1,1,1) model parameters. The simulation study
is based on 1000 Monte Carlo replicates for each n. The proposed sample sizes aim to
verify whether there are improvements in the parameter estimation as the sample size
increases. The criteria used to evaluate performance for CML estimators of φ, θ, and δ are
the empirical mean, bias, variance and mean square error (MSE) given, respectively, by:

ϕ̂ =
1

Nr

Nr

∑
r=1

ϕ̂r, Bias(ϕ̂) = ϕ̂− ϕ, V̂ar(ϕ̂) =
1

Nr

Nr

∑
r=1

(ϕ̂r − ϕ̂)2, M̂SE(ϕ̂) =
1

Nr

Nr

∑
r=1

(ϕ̂r − ϕ)2, (17)

where ϕ̂r is the estimate obtained from the r-th replicate of the corresponding parameter, ϕ
represents the true value of the parameter and Nr is the number of Monte Carlo replicates.
With the exception of the mean, for all other calculated statistics, as the value is smaller,
the estimator has a better statistical performance. Note that the bias has this characteristic
when analyzed in terms of its absolute value. All simulation and estimation routines were
developed employing the R software.

4.2. RBSARMAX(1,1,1) Model

Tables 1 and 2 report the empirical mean, bias, variance, and MSE calculated as in (17)
of the estimators for the shape and precision parameter (δ), autoregressive parameters
(φ), and moving average parameters (θ), respectively. Table 1 shows the estimates for the
parameter δ, fixed according to Case 1. Note that the performance of the estimator of δ
is related to the sample size. For example, when the sample size increases from n = 100
to n = 500, the empirical bias in absolute value of the estimator of δ = 8, on average,
decreases considerably, from 0.4705 to 0.0720. Consequently, the mean of the estimator
of δ tends to the true parameter value. In all considered scenarios, the parameter δ is,
on average, overestimated, that is, the estimate δ̂ provided by the CML estimator for δ
is greater than the true value of the parameter. The results of Table 1 are also shown in
Figure 2 to simplify the interpretation of the calculated statistics in relation to the sample
size and the true values of δ. Note in Figure 2a that, as n→ ∞, the bias of the estimator in
absolute value is smaller.

The results in Table 1 and Figure 2 allow us to conclude that, in general, the perfor-
mance of the estimator of δ is directly related to the sample size. That is, as n → ∞, the
values of the statistics are smaller and, consequently, the statistical performance of the
estimator is better. Such behavior is expected, because as the sample size is greater, more
information is available to estimate the parameters.

Table 2 presents summary statistics for the estimates of the parameters φ and θ, fixed
according to the settings described for Case 2. Note that the estimators of φ and θ are very
accurate for large sample sizes. This makes the results obtained for the MSE very close to
the variance. For example, for a sample size of n = 500, φ = 0.5, and θ = 0.3, the estimates
are very close to the true value of the parameters, that is, φ̂ = 0.4922 and θ̂ = 0.3034. On
average, absolute biases in estimated values of φ or θ are always less than 0.0336. The
maximum values of the MSE are observed for φ = 0.3 and θ = 0.3 with a sample size equal
to 100. Considering a fixed sample size, there is a slight reduction in the variance and
MSE of the estimators of φ and θ as both of these parameters increase. Observe that the
estimated values for φ and θ are, on average, underestimated. That is, the estimates φ̂ and
θ̂ are less than the true parameter, in most of the considered scenarios.
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Figure 2. Empirical bias (a), variance (b) and MSE (c) of δ̂ with simulated data from the RBSARMAX(1,1,1) model.

Table 1. CML estimates for indicated δ, based on Monte Carlo simulation of the RBSARMAX(1,1,1) model.

n δ
δ̂

Mean Bias Variance MSE

100
8 8.4705 0.4705 1.5462 0.2334

15 15.8429 0.8429 5.3862 0.7171
25 26.3139 1.3139 14.8842 1.7304
50 52.2676 2.2676 59.0348 5.1441

200
8 8.2414 0.2414 0.7216 0.0640

15 15.4353 0.4353 2.5264 0.1926
25 25.6816 0.6816 7.0042 0.4665
50 51.1722 1.1722 27.9215 1.3750

500
8 8.0720 0.0720 0.2464 0.0072

15 15.1332 0.1332 0.8625 0.0189
25 25.2044 0.2044 2.3963 0.0425
50 50.3276 0.3276 9.5864 0.1077

Table 2. CML estimates for indicated φ, θ based on Monte Carlo simulation of the RBSARMAX(1,1,1) model.

n φ θ
φ̂ θ̂

Mean Bias Variance MSE Mean Bias Variance MSE

100

0.3
0.3 0.2957 −0.0043 0.0258 0.0258 0.2953 −0.0047 0.0285 0.0286
0.5 0.3087 0.0087 0.0190 0.0191 0.4791 −0.0209 0.0207 0.0211
0.7 0.3098 0.0098 0.0139 0.0140 0.6681 −0.0319 0.0142 0.0152

0.5
0.3 0.4761 −0.0239 0.0149 0.0155 0.3114 0.0114 0.0188 0.0189
0.5 0.4863 −0.0137 0.0127 0.0129 0.4946 −0.0054 0.0151 0.0152
0.7 0.4855 −0.0145 0.0110 0.0112 0.6755 −0.0245 0.0122 0.0128

0.7
0.3 0.6664 −0.0336 0.0084 0.0096 0.3171 0.0171 0.0136 0.0139
0.5 0.6733 −0.0267 0.0080 0.0087 0.5005 0.0005 0.0119 0.0119
0.7 0.6725 −0.0275 0.0074 0.0081 0.6717 −0.0283 0.0109 0.0117

200

0.3
0.3 0.2954 −0.0046 0.0143 0.0143 0.2980 −0.0020 0.0151 0.0151
0.5 0.3004 0.0004 0.0083 0.0083 0.4913 −0.0087 0.0078 0.0079
0.7 0.3046 0.0046 0.0066 0.0066 0.6818 −0.0182 0.0052 0.0055

0.5
0.3 0.4853 −0.0147 0.0079 0.0082 0.3066 0.0066 0.0096 0.0096
0.5 0.4897 −0.0103 0.0054 0.0055 0.4983 −0.0017 0.0060 0.0060
0.7 0.4920 −0.0080 0.0048 0.0049 0.6852 −0.0148 0.0045 0.0048

0.7
0.3 0.6811 −0.0189 0.0041 0.0045 0.3093 0.0093 0.0067 0.0068
0.5 0.6841 −0.0159 0.0033 0.0036 0.5006 0.0006 0.0050 0.0050
0.7 0.6868 −0.0132 0.0033 0.0034 0.6817 −0.0183 0.0044 0.0047

500

0.3
0.3 0.2958 −0.0042 0.0058 0.0058 0.3002 0.0002 0.0063 0.0063
0.5 0.2978 −0.0022 0.0036 0.0036 0.4984 −0.0016 0.0032 0.0032
0.7 0.3018 0.0018 0.0025 0.0025 0.6922 −0.0078 0.0017 0.0018

0.5
0.3 0.4922 −0.0078 0.0030 0.0030 0.3034 0.0034 0.0040 0.0040
0.5 0.4936 −0.0064 0.0023 0.0024 0.5011 0.0011 0.0024 0.0024
0.7 0.4966 −0.0034 0.0018 0.0019 0.6936 −0.0064 0.0015 0.0016

0.7
0.3 0.6916 −0.0084 0.0014 0.0015 0.3037 0.0037 0.0029 0.0029
0.5 0.6927 −0.0073 0.0013 0.0014 0.5013 0.0013 0.0020 0.0020
0.7 0.6965 −0.0035 0.0013 0.0013 0.6905 −0.0095 0.0015 0.0015



Sensors 2021, 21, 6518 9 of 20

4.3. Performance Measures and Model Selection

Performance measures are used to assess the accuracy of forecasts and compare mod-
els. These measures are a function of the observed and predicted values of the time series.
Here, we consider two scenarios with respect to the data generating model: (Scenario 1)
the model is correctly specified, that is, simulated values from the RBSARMAX model are
generated and the RBSARMAX and Gaussian ARMA models are fitted; and (Scenario 2)
the model is incorrectly specified, that is, simulated values from an ARMA model based
on the Weibull distribution [46] are generated and the RBSARMAX and Gaussian ARMA
models are fitted. The Weibull model was chosen because it is an asymmetrical distribution
that often is considered as a competing model of the BS distribution. Then, the performance
and goodness of fit of the models are compared. To evaluate the predictive ability of the
models, the mean absolute percentage error (MAPE) is employed, which is given by:

MAPE =
1
n

n

∑
t=1

∣∣∣∣ (yt − ŷt)

yt

∣∣∣∣× 100, (18)

where n is the number of observations in the time series, yt is the observed value at time t,
and ŷt is the predicted value of yt. To select the best model, we use the Akaike information
criterion (AIC) and Bayesian information criterion (BIC), which are stated as:

AIC = −2log(L) + 2k, (19)

BIC = −2log(L) + 2k log(n),

where L is the maximized likelihood for the estimated model, n is the number of observa-
tions, and k is the number of parameters. The AIC relies on the likelihood penalized by the
number of model parameters, while the BIC in addition weights the number of parameters
using the sample size. Smaller AIC and/or BIC values indicate better models [47].

4.3.1. Scenario 1

Table 3 reports the results for sample sizes n ∈ {100, 200, 500} of the RBSARMAX(1,1,1)
model, with η = 1.0, β = 0.7, δ = 8 and φ, θ ∈ {0.3, 0.5, 0.7}. In the simulation, 1000
replicates are utilized for each combination of parameters. The Gaussian ARMA(1,1) model
is also considered. Comparing the RBSARMAX and Gaussian ARMA estructures based
on the statistics described in Table 3, note that the values of AIC and BIC highlight the
fact that the RBSARMAX model fits the data better than the Gaussian ARMA model, with
AIC and BIC being calculated as in (19). Considering the forecasting performance, the
RBSARMAX model also provides smaller MAPE values, indicating a better forecasting
capacity, with the MAPE being calculated as in (18). To measure the effects of the parameter
δ on the performance of the model, Table 4 shows the summary results of 1000 Monte
Carlo replicates with η = 1.0, β = 0.7, φ = 0.7, θ = 0.5 and δ ∈ {8, 15, 25, 50}. In this case,
the RBSARMAX model provides smaller values of AIC, BIC and MAPE, indicating better
goodness-of-fit and forecasting ability.

4.3.2. Scenario 2

Table 5 reports results for the RBSARMAX and Gaussian ARMA models. The sim-
ulated values are generated from a Weibull ARMA model with η = 1.0, β = 0.7 and
δ = 8 (shape parameter of the Weibull distribution) and φ, θ ∈ {0.3, 0.5, 0.7} in the case
of Table 5, and from a Weibull ARMA model with η = 1.0, β = 0.7, φ = 0.5, θ = 0.3 and
δ ∈ {2.5, 5, 8, 15, 25, 50} in the case of Table 6. In general, the results of both tables show that
the RBSARMAX model outperforms the ARMA model in terms of forecasting ability based
on the MAPE and root mean squared error (RMSE), with RMSE =

√
(1/n)∑n

t=1(yt − ŷt)2,
where n, yt and ŷt are as stated in (18). However, the selection criteria (AIC and BIC)
indicate an advantage of the latter model. Since usually in time series, one is interested in
forecasting, the RBSARMAX model is a better choice.
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Table 3. Forecasting comparison statistics for indicated φ, θ based on Monte Carlo simulations for
the RBSARMAX and, in parentheses, for the ARMA model.

n φ θ AIC BIC MAPE

100

0.3
0.3 365.1127 (424.5509) 378.1385 (437.5767) 47.5600 (50.5495)
0.5 358.6198 (434.0864) 371.6457 (447.1122) 47.4919 (53.2613)
0.7 353.1928 (450.4833) 366.2187 (463.5092) 47.9737 (59.0348)

0.5
0.3 346.8663 (426.9802) 359.8921 (440.0060) 47.5695 (53.5615)
0.5 337.8665 (441.0506) 350.8924 (454.0764) 47.5570 (58.4819)
0.7 329.9848 (461.8964) 343.0103 (474.9222) 48.2969 (67.8709)

0.7
0.3 304.6918 (427.5490) 317.7176 (440.5749) 47.6495 (62.3559)
0.5 290.1231 (448.0035) 303.1489 (461.0293) 47.7313 (74.1163)
0.7 276.5373 (474.0917) 289.5631 (487.1176) 48.8350 (94.6032)

200

0.3
0.3 730.0360 (850.0534) 746.5276 (866.5450) 48.0250 (50.4204)
0.5 717.5611 (873.3260) 734.0527 (889.8176) 48.0832 (53.3298
0.7 708.0656 (915.5029) 724.5571 (931.9945) 48.5205 (59.2581)

0.5
0.3 694.7785 (858.7896) 711.2701 (875.2812) 48.0156 (53.1801)
0.5 677.0623 (893.5079) 693.5539 (909.9995) 48.1152 (58.4859)
0.7 662.9814 (947.2945) 679.4730 (963.7861) 48.6620 (68.0547)

0.7
0.3 612.9718 (873.1339) 629.4634 (889.6255) 48.0465 (61.6831)
0.5 583.2384 (924.1664) 599.7300 (940.6580) 48.2035 (74.2198)
0.7 558.8758 (995.1106) 575.3674 (1011.6021) 48.9833 (95.2990)

500

0.3
0.3 1830.5340 (2144.955) 1851.6070 (2166.0280) 48.4820(50.6497)
0.5 1798.2570 (2204.2160) 1819.3300 (2225.2890) 48.5240(53.4874)
0.7 1768.6360 (2307.8030) 1789.7090 (2328.8760) 48.6783(59.2412)

0.5
0.3 1742.7360 (2176.732) 1763.8090 (2197.8050) 48.4793 (53.3932)
0.5 1697.1640 (2265.1910) 1718.2370 (2286.2640) 48.5363 (58.5531)
0.7 1654.8520 (2400.0260) 1675.9250 (2421.099) 48.7389 (67.9263)

0.7
0.3 1538.2870 (2238.3820) 1559.3600 (2259.4550) 48.4948 (62.0646)
0.5 1462.2430 (2374.6440) 1483.3160 (2395.7170) 48.5859 (74.5613)
0.7 1391.7030 (2559.9320) 1412.7760 (2581.00500) 48.9514 (96.0765)

Table 4. Forecasting comparison statistics for indicated δ based on Monte Carlo simulations for the
RBSARMAX and, in parentheses, for the ARMA model.

n δ AIC BIC MAPE

100

8 290.1231 (448.0035) 303.1489 (461.02934) 47.7313 (74.1163)
15 282.6548 (386.9450) 295.6806 (399.9709) 32.0136 (42.2746)
25 258.3715 (335.5085) 271.3974 (348.5343) 23.8601 (29.8148)
50 210.3474 (265.9603) 223.3732 (278.9862) 16.4679 (20.0521)

200

8 583.2384 (924.1664) 599.7300 (940.6580) 48.2035 (74.2198)
15 567.9856 (790.4170) 584.4772 (806.9086) 32.2836 (42.1439)
25 518.7238 (681.6172) 535.2154 (698.1088) 24.0106 (29.5744)
50 421.3633 (537.5253) 437.8549 (554.0169) 16.4974 (19.7077)

500

8 1462.2430 (2374.6440) 1483.3160 (2395.7170) 48.5859 (74.5613)
15 1425.7260 (2014.7160) 1446.7990 (2035.7890) 32.4906 (42.3578)
25 1302.9140 (1731.6710) 1323.9870 (1752.7440) 24.1287 (29.6706)
50 1058.8260 (1363.2620) 1079.8990 (1384.3350) 16.5303 (19.6674)
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Table 5. Forecasting comparison statistics for indicated φ, θ based on Monte Carlo simulations for the RBSARMAX and, in
parentheses, for the ARMA model.

n φ θ AIC BIC MAPE RMSE

100

0.3
0.3 −22.4756 (−29.8433) −9.4498 (−16.8175) 12.8005 (13.5334) 0.0410 (0.2342)
0.5 −18.2110 (−24.8238) −5.1851 (−11.7979) 13.1341 (13.9234) 0.0432 (0.2394)
0.7 −5.8601 (−16.3406) 7.1658 (−3.3148) 14.1277 (14.5934) 0.0490 (0.2466)

0.5
0.3 −20.0399 (−28.4447) −7.0140 (−15.4189) 13.0553 (13.6080) 0.0428 (0.2355)
0.5 −12.5863 (−22.6473) 0.4396 (−9.6214) 13.6356 (14.0540) 0.0465 (0.2416)
0.7 1.2421 (−2.2657) 3.2481 (−0.2597) 2.6458 (2.7110) 0.0177 (0.0380)

0.7
0.3 −6.4925 (−12.5952) −0.2010 (−6.3037) 6.6156 (6.6192) 0.0229 (0.1147)
0.5 0.1071 (−6.6168) 4.3014 (−2.4224) 4.9221 (4.6593) 0.0185 (0.0784)
0.7 0.0340 (0.0186) 0.0600 (0.0447) 0.0447 (0.0311) 0.0000 (0.0000)

200

0.3
0.3 −48.0034 (−64.8406) −31.5119 (−48.3490) 12.9081 (13.2018) 0.0416 (0.2191)
0.5 −40.4854 (−57.5609) −23.9938 (−41.0693) 13.2146 (13.4078) 0.0437 (0.2227)
0.7 −1.7115 (−4.0864) −0.1943 (−2.5692) 1.2999 (1.2767) 0.0045 (0.0211)

0.5
0.3 −43.1893 (−62.3776) −26.6977 (−45.8860) 13.1516 (13.2349) 0.0434 (0.2203)
0.5 −17.5406 (−33.0697) −7.4312 (−22.9603) 8.4065 (8.2611) 0.0289 (0.1378)
0.7 −0.0234 (−0.0264) −0.0069 (−0.0099) 0.0147 (0.0145) 0.0000 (0.0000)

0.7
0.3 −8.0637 (−16.7478) −3.2482 (−11.9323) 4.0371 (3.8855) 0.0140 (0.0652)
0.5 0.1230 (−0.407) 0.2550 (−0.2751) 0.1253 (0.1108) 0.0005 (0.0018)
0.7 −0.0036 (−0.0257) 0.0129 (−0.0092) 0.0159 (0.0148) 0.0000 (0.0000)

500

0.3
0.3 −119.9713 (−167.4259) −98.8983 (−146.3529) 12.9788 (12.9692) 0.0423 (0.2104)
0.5 −102.4109 (−156.7271) −81.3378 (−135.6541) 13.2702 (13.0616) 0.0443 (0.2122)
0.7 −667.5407 (−710.4881) −646.4676 (−689.4151) 7.2738 (7.1659) 0.0147 (0.1301)

0.5
0.3 −107.7683 (−162.3276) −162.3276 (−141.2546) 13.2239 (12.9785) 0.0441 (0.0448)
0.5 −682.3179 (−739.5599) −661.2449 (−718.4869) 7.1669 (6.9845) 0.0143 (0.1270)
0.7 −617.3638 (−704.0180) −596.2907 (−682.9450) 7.6447 (7.2001) 0.0161 (0.1308)

0.7
0.3 −680.0527 (−754.0620) −658.9796 (−732.9890) 7.1986 (6.8827) 0.0145 (0.1259)
0.5 −623.3151 (−733.1113) −602.2421 (−712.0383) 7.6099 (6.9997) 0.0161 (0.1276)
0.7 −514.9032 (−676.4386) −494.3992 (−655.9346) 8.1062 (7.0481) 0.0183 (0.1283)

Table 6. Forecasting comparison statistics for indicated δ based on Monte Carlo simulations for the RBSARMAX and, in
parentheses, for the ARMA model.

n δ AIC BIC MAPE RMSE

100

2.5 5.1509 (5.2493) 5,5156 (5,6140) 1.6829 (1.6532) 0.0123 (0.0172)
5 34.4187 (29.8729) 40.9968 (36.4509) 11.1338 (11.2125) 0.0530 (0.1691)
8 −20.0399 (−28.44447) −7.0140 (−15,4189) 13.0553 (13.6080) 0.0428 (0.2355)

15 −139.7903 (−146.6292) −126.7645 (−133,6034) 6.9384 (7.6037) 0.0135 (0.1662)
25 −235.5484 (−244.4121) −222.5225 (−231.3863) 4.3160 (4.9401) 0.0056 (0.1416)
50 −357.0783 (−379.0394) −344.0524 (−366.0135) 2.4303 (2.9598) 0.0021 (0.1292)

200

2.5 1.7186 (1.6450) 1.7845 (1.7110) 0.2812 (0.2697) 0.0021 (0.0027)
5 39.4501 (33.3857) 44.2656 (38.2013) 6.5062 (6.4046) 0.0311 (0.0956)
8 −43.1893 (−62.3776) −26.6977 (−45.8860) 13.1516 (13.2349) 0.0434 (0.2203)

15 −284.7475 (−299.8642) −268.2559 (−283.3726) 6.9327 (7.1730) 0.0134 (0.1418)
25 −477.7108 (−495,7330) −461.2192 (−479.2414) 4.2670 (4.4941) 0.0054 (0.1113)
50 −720.3836 (−765.6852) −703.8920 (−749.1936) 2.3692 (2.4927) 0.0018 (0.0946)

500

2.5 2.0445 (1.9371) 2.0866 (1.9793 0.1368 (0.1246) 0.0009 (0.0013)
5 0.7635 (0.5879) 0.8057 (0.6301) 0.0466 (0.0451) 0.0000 (0.0000)
8 −107.7683 (−162.3276) −86.6952 (−141.2546) 13.2239 (12.9785) 0.0441 (0.2114)

15 −714.5877 (−758.5032) −693.5146 (−737.4302) 6.9309 (6.8751) 0.0135 (0.1254)
25 −1200.435 (−1248.213) −1179.362 (−1227.139) 4.2313 (4.1990) 0.0053 (0.0886)
50 −1811.681 (−1922.298) −1790.608 (−1901.225) 2.3154 (2.2047) 0.0017 (0.0659)
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5. Application to Real-World Data Related to Sensors
5.1. Sensor-Related Data and Definition of the Variables

Next, we deal with an illustration and evaluation of the performance of the RBSAR-
MAX model applied to a real environmental process composed of three time series related
to mortality, pollutants, and temperature. Note that the pollutant data are often available
from monitoring stations which are associated with sensors [48] and similarly with the
temperature. On the one hand, the monitoring stations extract air from the environment
for time intervals and then measure the amount of transmitted light. The measurement
method is considered to be quite sensitive to particles small enough to penetrate deep into
the human lung. On the other hand, the temperature sensors are electrical and electronic
components that, as sensors, allow temperature to be measured using a specific electrical
signal. This signal can be sent directly or by changing the resistance. They are also called
heat sensors or thermosensors.

The analyzed data are available in the R software through the astsa package. These
data correspond to 508 observations of weekly averages of cardiovascular mortality in
Los Angeles County, CA, USA, from 1970 to 1979, associated with effects of temperature
variation and levels of particulate matter (PM), which are very fine particles of solids
or liquids suspended in the air [2]. The variables under analysis are mortality (Mt),
temperature (X1t) and PM (X2t). A study similar to this was carried out in [4], which used
the same dataset for regression models in the context of a time series.

5.2. Exploratory Data Analysis

The behavior of the variables Mt, X1t, and X2t over time are shown in Figure 3. Note
that all series have a notorious seasonality. In addition, Figure 3a shows a downward trend
in mortality over the period under study. Table 7 provides some descriptive measures for
each variable, which include: sample size (n), minimum and maximum values, median,
standard deviation (SD), CV, and coefficients of symmetry (CS) and kurtosis (CK). Figure 4
displays summaries of Mt, X1t, and X2t. Histograms are shown along the diagonal; below
the diagonal are scatterplots and above the diagonal are the Pearson correlation coefficients
(ρ). These graphical plots allow us to identify that mortality Mt and temperature X1t have a
clear relationship, with lower temperatures giving higher mortality, and that the mortality
is the highest at lower temperatures. Here, ρ̂ = −0.44 indicates a moderate negative
correlation which is statistically different from zero at 1% significance. Similarly, mortality
Mt and PM levels X2t have a linear relationship and a moderate positive correlation
(ρ̂ = 0.44, which is also statistically different from zero at 1% significance), indicating that
higher levels of PM are associated with higher levels of mortality. However, temperature
X1t and PM X2t have practically no correlation (ρ̂ = −0.02). The histograms confirm the
summaries in Table 7 show that mortality Mt and PM levels X2t have positive skewed
behavior, whereas temperature X1t is more symmetric. This behavior is confirmed by the
box-plots shown in Figure 5. Additionally, in this plot, the presence of outliers for mortality
Mt and PM levels X2t is evident.

Table 7. Descriptive statistics of mortality, temperature, and PM for data from Los Angeles, CA, USA.

n Variables Minimum Maximum Median Mean SD CV CS CK

508
Mortality, Mt 68.110 132.040 87.330 88.699 9.999 0.113 0.804 0.981

Temperature, X1t 50.910 99.880 74.055 74.260 9.014 0.121 0.095 −0.459
PM, X2t 20.250 97.940 44.250 47.413 15.138 0.319 0.570 −0.474
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Figure 3. Mortality (a), temperature (b), and PM (c) times series over 1970–1979 in Los Angeles, CA, USA.
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Figure 4. Histograms, scatterplots, and correlation coefficients of the variables: Mortality (Mt), temperature (X1t), and PM
levels (X2t) for data over 1970–1979 in Los Angeles, CA, USA. Note that “***” indicates that such a correlation is statistically
significant at 1%.
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Figure 5. Boxplots for the variables mortality Mt (a), temperature X1t (b), and PM levels X2t (c) for data over 1970–1979 in
Los Angeles, CA, USA.
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5.3. Time-Series Modeling

Based on the analysis of Figure 4, which shows the relationship between the variables
Mt, X1t, and X2t, in addition to considering Mt as the response variable, these relationships
can be modeled over time t using the corresponding observed values x1t and x2t as:

Mt = η + β1 t + β2(x1t − x1) + β3(x1t − x1)
2 + β4x2t + εt, (20)

where the first two terms define a linear trend in t, as seen in Figure 3a; the next two terms
describe a quadratic relationship with temperature and x1 being the average temperature
included to avoid collinearity; the next is a linear term in PM levels; and then εt is a random
error or a noise process. In [4], the error consists of independent and identically distributed
variables with zero mean and variance σ2

ε , whereas an alternative approach is taken here.
Figure 6 shows the plots of the autocorrelation function –ACF– (a) and the partial

autocorrelation function –PACF– (b) of the residuals fitted with the least squares method
for the model stated in (20). Consideration of the ACF and PACF plots suggests the
characteristic of a stationary AR(p) model of order p = 2 for the residuals. Thus, the
correlated error model defined in (20) is expressed as: εt = φ1εt−1 + φ2εt−2 + ut, where εt
is an AR(2) model and ut is a white noise. The results for this model are obtained using the
garmaFit function of a package named gamlss.util (http://www.gamlss.org, accessed
on 22 September 2021). Now, consider an analysis with the RBSARMAX model defined
by (10) and (12). Table 8 reports the CML estimates as well as the MAPE and AIC/BIC
values. From this table, note that the RBSARMAX(2,0,2) model provides a better fit than the
ARMA(2,0) model based on the AIC/BIC values. Moreover, the RBSARMAX(2,0,2) model
has less MAPE, indicating better forecasting capacity. We emphasize that, in addition to
the advantage of these results, the RBSARMAX(2,0,2) model is more appropriate due to
the skewed and kurtosis features in the data empirical distribution.

The QQ plots of the GCS and RQ residuals, with simulation envelopes, are presented
in Figure 7a,b, respectively, which indicate better agreement with the EXP(1) distribution
in the RBSARMA model. However, for the same analysis referring to the ARMA model
based on Figure 7, note that the plots of GCS and RQ residuals, with simulation envelopes,
produce points that are located far from the diagonal line and outside the envelope. In the
ACF and PACF charts, observe that both models produce non-autocorrelated errors; see
Figure 7c,d. The time-series forecasts using the fitted RBSARMAX and ARMA models are
presented together with the observed time-series data in Figure 8.
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Figure 6. Charts of the ACF (a) and PACF (b) for the regression residuals with time-series data over the 10-year period
(1970–1979) in Los Angeles County, CA, USA.
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Figure 7. Plots of envelopes of GCS (a) and RQ residuals (b); and charts of ACF (c) and PACF (d) for the RBSARMAX (left)
and ARMA (right) models.
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Figure 8. Cardiovascular mortality series for LA, USA (gray) with fitted RBSARMAX (green) and ARMA (red) models.

Table 8. Parameter estimates and model adequacy for data over 1970–1979 in Los Angeles, CA, USA.

Model Parameter Estimate AIC BIC MAPE

RBSARMAX

φ1 0.3646

3078.4330 3112.2770 4.8128

φ2 0.4393
η 2842.8252
β1 −1.3990
β2 −0.0161
β3 0.0154
β4 0.1503
δ 623.5548

ARMA

φ1 0.3881

3100.1290 3133.9730 4.8151

φ2 0.4321
η 2831.4911
β1 −1.3932
β2 −0.0169
β3 0.0154
β4 0.1554



Sensors 2021, 21, 6518 17 of 20

6. Conclusions, Limitations, and Future Research

In this work, a new mean-based autoregressive moving average model using the
Birnbaum–Saunders distribution, called RBSARMAX, was studied and formulated mathe-
matically. We have estimated the model parameters with the maximum likelihood method
and used information criteria for model selection to assess the adequacy of the new
Birnbaum–Saunders autoregressive moving average structure.

We have conducted Monte Carlo simulations to evaluate in practice the statistical
performance of the conditional maximum likelihood estimators for the parameters of
the new model, showing a good performance. Additionally, in this simulation, several
performance measures were used to assess the level of accuracy of forecasts and to compare
different models, obtaining similarly reasonable and good results.

In the application, when modeling mortality as a function of pollution and temperature
with data related to sensors, the RBSARMAX model presented a superior result to that
of the Gaussian ARMA model, providing strong evidence that the Birnbaum–Saunders
distribution is a good alternative for dealing with temporal data. Consequently, the results
have suggested that the RBSARMAX model can become a valuable tool for analyzing
positive and asymmetric time-series data in environmental sciences and other fields of
knowledge.

The new methodology is an addition to the tools of applied statisticians, data scientists,
and diverse users interested in the modeling of time-series data. From the application
presented in this study, we have generated helpful information that may be employed by
practitioners and users of statistics.

Some limitations of our proposal are described next. Since the BS distribution is
related to the normal distribution, parameter estimation in RBSARMAX models may be
affected by outliers and potentially influential cases. To obtain robust estimation, the BS-
Student-t distribution could be considered instead [30,49]. Besides fixed effects considered
by regression parameters in the RBSARMAX model, random effects may be formulated. A
multivariate version of the RBSARMAX model might also be of interest [12,50], and local
influence diagnostics could be derived, allowing the detection of potentially influential
cases [16]. Other aspects for future study using this new model are associated with quantile,
spatial, partial least squares, principal components, and sampling structures [51–56].

The authors are working on these and other aspects related to the study reported in
this paper, and their findings will be presented in future articles.

Author Contributions: Data curation, H.S., R.S.; investigation, H.S., R.S., V.L.; formal analysis and
methodology, H.S., R.S., R.V., V.L., R.G.A.; writing—original draft, H.S., R.S., R.V.; writing—review
and editing, V.L., H.S., R.G.A. All authors have read and agreed to this version of the manuscript.

Funding: The research of V.L. was partially supported by FONDECYT, project grant number 1200525,
from the National Agency for Research and Development (ANID) of the Chilean government under
the Ministry of Science, Technology, Knowledge and Innovation.

Institutional Review Board Statement: Not applicable.

Data Availability Statement: The data analyzed are available on request.

Acknowledgments: The authors would also like to thank the editor and reviewers for their construc-
tive comments which led to improving the presentation of the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.



Sensors 2021, 21, 6518 18 of 20

Appendix A. The Observed Fisher Information Matrix
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(A1)

Moreover, f (yt; µt, δ|Ft−1) = φ[a(yt; µt, δ)] ∂a(yt; µt, δ)/∂yt and

`t = `t(δ, β, η, φ, θ) = log f (yt; µt, δ|Ft−1) = log
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The first-order partial derivatives of `t with respect to parameters are given by:
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where γ ∈ {βk, η, φk, θl}, k ∈ {1, . . . , p}, and l ∈ {1, . . . , q}. The observed Fisher informa-
tion matrix is defined as: Ĵ (δ, β, η, φ, θ) = −∂2`t/∂u∂v, where second derivatives of `t
with respect to parameters are stated as:
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where γ ∈ {βk, η, φk, θl} and γ′ ∈ {βr, η, φr, θm}, for k, r ∈ {1, . . . , p} and l, m ∈ {1, . . . , q}.
Here, the partial derivatives of a(yt) are presented in (A1). By using (12), the partial
derivatives of µt with respect to parameters are expressed, for k ∈ {1, . . . , p} and l ∈
{1, . . . , q}, as:
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