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Abstract: In recent years, there has been an immense amount of research into fall event detection.
Generally, a fall event is defined as a situation in which a person unintentionally drops down onto
a lower surface. It is crucial to detect the occurrence of fall events as early as possible so that
any severe fall consequences can be minimized. Nonetheless, a fall event is a sporadic incidence
that occurs seldomly that is falsely detected due to a wide range of fall conditions and situations.
Therefore, an automated fall frame detection system, which is referred to as the SmartConvFall
is proposed to detect the exact fall frame in a video sequence. It is crucial to know the exact fall
frame as it dictates the response time of the system to administer an early treatment to reduce the
fall’s negative consequences and related injuries. Henceforth, searching for the optimal training
configurations is imperative to ensure the main goal of the SmartConvFall is achieved. The proposed
SmartConvFall consists of two parts, which are object tracking and instantaneous fall frame detection
modules that rely on deep learning representations. The first stage will track the object of interest
using a fully convolutional neural network (CNN) tracker. Various training configurations such
as optimizer, learning rate, mini-batch size, number of training samples, and region of interest
are individually evaluated to determine the best configuration to produce the best tracker model.
Meanwhile, the second module goal is to determine the exact instantaneous fall frame by modeling
the continuous object trajectories using the Long Short-Term Memory (LSTM) network. Similarly,
the LSTM model will undergo various training configurations that cover different types of features
selection and the number of stacked layers. The exact instantaneous fall frame is determined using
an assumption that a large movement difference with respect to the ground level along the vertical
axis can be observed if a fall incident happened. The proposed SmartConvFall is a novel technique
as most of the existing methods still relying on detection rather than the tracking module. The
SmartConvFall outperforms the state-of-the-art trackers, namely TCNN and MDNET-N trackers,
with the highest expected average overlap, robustness, and reliability metrics of 0.1619, 0.6323, and
0.7958, respectively. The SmartConvFall also managed to produce the lowest number of tracking
failures with only 43 occasions. Moreover, a three-stack LSTM delivers the lowest mean error with
approximately one second delay time in locating the exact instantaneous fall frame. Therefore, the
proposed SmartConvFall has demonstrated its potential and suitability to be implemented for a
real-time application that could help to avoid any crucial fall consequences such as death and internal
bleeding if the early treatment can be administered.

Keywords: fall frame detection; deep learning; single object tracking; video surveillance

1. Introduction

Activity recognition technology is a crucial component of many higher-level auto-
mated systems. This is especially true for systems that require recognition and analysis
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modules for daily life-monitoring applications. Moreover, intelligent activity recognition
systems have been at the forefront of many research topics over the past few years. These
systems have been propelled by the advancement of machine learning and parallel compu-
tational technologies. Furthermore, the rapid development of micro electro-mechanical
systems (MEMS) has led to a renewed interest in sensor technologies for efficient and
low-cost embedded sensors. These factors have significantly contributed to the bounti-
ful development of intelligent activity recognition systems particularly in the academic
and industrial sectors. Majority of these activity recognition systems were developed to
distinguish between typical and atypical human activities [1,2]. Typical human activity
is defined as a sequence of typical events within a certain period of time such as walking,
standing, or sitting. On the other hand, activities such as falling, slipping, or crouching are
usually classified as atypical activities. Activities in the latter group have a similar main
trait, and that is the sudden occurrence or drastic change in body movement.

Fall event detection systems are one of the subtopics of activity recognition
systems [3,4]. This subtopic has recently gained the attention of many researchers. A
systematic review article by the World Health Organization (WHO) [5] in 2014 defined a
fall incident as an inadvertent movement that comes to rest on the ground, floor, or other
lower level, and does not include an intentional change in position. Likewise, the works
in [6,7] have defined a fall incident as a sudden change in body position from either a
standing or sitting posture to a lower position as a result of sudden slip or unstable body
movements. Moreover, the WHO [8] has also reported that fall incidents are the second
cause of death in the unintentional injury category, with an estimation of 646,000 cases
each year. Similarly, an article by Reporting of Injuries, Diseases and Dangerous Occur-
rences Regulations (RIDDOR) in 2019/2020 [9,10] reported that fall incidents constitute the
main cause of non-fatal injuries in the workplace, whereby 29% and 8% of fall incidents
happened at the same level and from higher places, respectively, as depicted in Figure 1.
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Figure 1. Percentage of non-fatal injuries at the workplace [9,10].

In general, a fall incident is recognized as a sporadic event that occurs rarely in
comparison to the occurrence of typical human activities. However, unmonitored fall
events can pose a serious health risk. These risks may be accompanied by irreversible
implications, leading to morbidity and a decrease in the quality of life. Moreover, a fall
event can lead to negative consequences for the patient’s financial and psychological states.
Ren et al. [11] have further categorized that financial burden can be classified into direct and
indirect costs. The direct cost includes the cost of medication, insurance, and rehabilitation.
The indirect cost relates to the loss of jobs and/or a decrement in overall working activity.
On the other hand, some of the psychological burden examples are traumatic anxiety, fear
of falling, and depression, all of which must be taken care of at an early stage. Therefore, an
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early fall event detection system is crucial to reduce and remove the possibility of negative
fall injury-related implications.

Recent research trends have grouped fall event detection techniques based on the
type of sensor. The three categories are as follows: wearable devices [12–16], ambient-
based devices [17–19], and vision-based sensors [20–23]. Both wearable and ambient-based
devices require the sensors to be in close proximity to the targeted users. Commercial
wearable devices such as smart watches and smart pendants contain a set of typical
sensors of accelerometers, gyroscopes, and barometric pressure. These sensors can be
used to detect the fall event. Despite its simplicity, the system requires the users to wear
the sensor for a prolonged time. This may cause discomfort to the users, especially to
the elderly. Moreover, there are cases in which the elderly may forget to wear these
wearable devices that can hinder continuous monitoring [24]. This is a crucial design
aspect in elderly monitoring systems as quite a large number of them are suffering from
Alzheimer’s disease. Furthermore, one major drawback of this approach is the constant
battery supply [25]. Most wearable devices depend solely on the battery supply to operate,
which may hamper its operation once the battery is depleted. For example, the Apple Watch
SE smartwatch that provides fall detection settings can only run for 18 h after fully charging.
Moreover, the adoption of wearable devices is still considerably low for the least-developed
countries such as Bangladesh, Cambodia, and Timor-Leste. For instance, Debnath et al. [26]
in their article mentioned that the high cost of wearable devices has become the main
factor in the low adoption of wearable devices in Bangladesh. Therefore, fall detection
through the implementation of wearable devices is hard to be successfully implemented
in less-developed countries as many citizens are worried about the maintenance cost.
Meanwhile, an ambient-based device uses a set of sensors that include acoustic, infrared,
and piezoelectric sensors. However, this approach requires a considerable number of
sensors to be installed in order to cover a certain area, resulting in a considerably high
initial installation cost. Most of these ambient-based systems can only monitor one person
at a time. Moreover, the most noticeable issue in both wearable and ambient-based devices
is background noise that profoundly affects the quality of fall detection.

Due to these limitations, many researchers have proposed an intelligent vision-based
approach. This method can detect the occurrence of fall events without the use of wearable
sensors or sensor meshes. A vision-based system relies on surveillance cameras, such as
closed-circuit television (CCTV) or Internet Protocol (IP) cameras, to provide continuous
images for activity monitoring. In vision-based systems, artificial intelligence techniques are
incorporated through image pre-processing modules to extract the relevant and meaningful
features that enable more accurate fall detection. It is worth mentioning that vision-based
systems also suffer from background noise. However, the evolution of artificial intelligence
technologies has positively influenced these systems, making them more robust to the
presence of background noise. Moreover, with the arrival of the 5G era, a faster data transfer
rate can be achieved between the cameras and central processors. This improvement in
technology leads to better detection accuracy. Henceforth, a vision-based system is more
practical in providing a non-intrusive solution with robust detection capability that does
not require any wearable devices and complementary ambient sensors [27]. Nowadays,
many developing countries have equipped their medical facilities and residential areas
with CCTV systems. Therefore, it is a tremendous advantage to utilize these CCTV systems
in fall detection applications, mainly to monitor the elderly or people who live alone. Once
installed, the vision-based system will become part of their home, and the users do not
worry much about the hardware. Furthermore, the camera will monitor the users in a
passive mode to detect any fall occurrence. Henceforth, these advantages may complement
the drawbacks of wearable devices. Despite its advantages, vision-based systems still
suffer from a privacy point of view, which is closely related to the ethical issues that arise
from users’ privacy infringement in their living space, such as bedrooms or kitchens [28].
The users need to be fully aware of the situation; as such, the recorded video must not
be made available to any third party. The vision-based systems may also trigger a false
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alarm if the camera is mounted too far from the surveillance area. This situation usually
manifests when the system encounters difficulty in detecting the fall event due to weakness
in pre-processing modules such as the foreground segmentation process [29].

Nowadays, the deep learning approach has gained a lot of attention in various fields.
This is due to the higher level of performance in comparison to standard machine learning
techniques [30]. The deep learning method attempts to mimic the human brain mechanism
with its multiple layers of artificial intelligence nodes [31]. These nodes subsequently
generate automated predictions. The most popular method in the deep learning field is
CNN [32]. Due to its capability to extract optimal low-level and high-level features from a
set of data [33,34], CNN has been vastly explored in the context of numerous computer
vision applications. These applications include object detection, event recognition, semantic
segmentation, and human behavioral analysis. However, the usage of CNN for visual
object tracking applications has drawn relatively little attention due to the difficulties in
fitting the model using limited training data. This is due to the fact that ground-truth
information, such as the position and size of the tracked object, can only be extracted
from the first frame for a model-free tracker setting. Moreover, a CNN method requires
a longer training time, which makes it less practical for online learning-based model
updates [35]. These circumstances and challenges have reduced the effectiveness of CNN
in object tracking applications. However, the works in [36,37] have designed a compact
CNN architecture for their object trackers, namely TCNN and MDNET-N, which train
and update the model appearance by using information from the first frame. In contrast
to traditional methods [38], where the spatial relationship is the core in generating the
object trajectory, the CNN approach emphasizes visual similarity more. These trackers
even managed to achieve top performance in the Visual Object Tracking (VOT) Challenge
in 2016. The introduction of these compact trackers has become the driving factor for the
usage of CNN in fall event detection. On the other hand, LSTM is another deep learning
architecture that is used to model the temporal information for the time-series data. LSTM
is an improved version of the Recurrent Neural Network (RNN), which is capable of
learning the temporal patterns in long-term dependencies. This will alleviate the vanishing
gradient problem by incorporating the memory or cell state that is continuously updated
using non-linear gating functions. The forget gate deletes the irrelevant information from
the previous time step, while the input gate allows only the significant information to be
used for the update of the memory cell. Lastly, the output gate will decide which of the
information is relevant enough to be a part of the output. The superior capabilities of
LSTM have been recognized and implemented in several applications, such as machine
translation [39–41], natural language processing [42–44], and time series analysis [45–48].
In this manuscript, the capabilities of both CNN and LSTM are motivating factors in our
choice to employ both architectures for fall detection.

In addition, most of the vision-based fall detection systems [49–53] that adopt CNN are
mainly developed to classify a fall event from typical human activities without identifying
the exact instantaneous fall frame. The exact instantaneous fall frame is regarded as the
frame at which the fall event starts to happen. Most recent systems only detect a fall event
after the patient has fallen and remained on the floor for a considerable time, which is
around 10 s for most of the systems. It is crucial to know the exact instantaneous fall
frame as it dictates the system’s response time. For example, if a patient has fallen in
the restroom, the possibility of a drowning case is high, where a faster lead time of 10 s
might be able to save their life. The technical note by Kakiuchi et al. [54] mentioned that
bath-related drowning is the top death contributor in Yokohama city for the elderly aged
65 and above. In addition, McCall and Sternard [55] stated that usually, it takes around
less than 2 min for an adult to lose consciousness in drowning cases. Therefore, a faster
response time might save the patient’s life once the caretaker has been notified to confirm
the occurrence of a fall event before requesting medical assistance. This is in line with
another noticeable drawback of the current vision-based systems. The detection rate is slow,
as most patients remain lying down in the lower position for a particular time before they
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are noticed. Coherently, any crucial fall consequences such as death and internal bleeding
can be better mitigated if the fall occurrence can be discovered earlier. Therefore, this
paper covers two important goals: (1) to utilize the CNN as a regressor (tracker) instead
of classifier in fall event detection, and (2) to detect the presence of fall events based on
the exact instantaneous fall frame. Hence, this paper intends to investigate the optimal
training configurations of our tracker, namely SmartConvFall, for instantaneous fall frame
detection. The proposed tracker’s architecture involves two-stage modules: object tracking
and instantaneous fall frame detection. The first module utilizes a fully CNN-based tracker
as the backbone to obtain the objects’ trajectories for all of the video sequences. Next, the
second module determines the exact instantaneous fall frame by modeling the contiguous
objects’ trajectories through the LSTM architecture. Therefore, the key contributions of this
paper can be summarized as below:

1. Modification of state-of-the-art CNN architecture, namely VGG-M architecture, to pro-
duce a more compact architecture that is suitable for single object tracking
applications;

2. The strategy in maintaining the multiple-model object appearance of SmartConvFall
that is used to handle model drift and noisy updates;

3. Extensive comparison of training configurations that cover the selection of the op-
timizer, learning rate, mini-batch size, number of training samples, and region of
interest schemes to obtain the best object appearance model for SmartConvFall;

4. Designing a fall detection based on the exact instantaneous fall frame by integration
of stacked layers of LSTM architecture to model the objects’ trajectories.

The latter part of this paper is organized as follows: Section 2 discusses the recent
works on CNN-based and LSTM-based fall events detection, Section 3 explains in depth the
workflow of the proposed SmartConvFall architecture, Section 4 presents the detailed simu-
lation results and discussion on the SmartConvFall performance, and Section 5 summarizes
the research contributions and research directions on the future work.

2. Related Works

Generally, a vision-based fall detection system can be broadly categorized into either
a standard machine learning approach or a deep learning approach. A basic processing
pipeline for most of the vision-based systems is comprised of background subtraction,
feature extraction, and fall detection. Each step in the pipeline requires hand-crafted
features that were designed by researchers as the input to the machine learning models. On
the other hand, a deep learning approach allows the network to be trained in an end-to-end
framework with minimal pre-processing steps to obtain the optimal features [56]. In recent
years, there has been an increasing amount of published research on the development of
deep learning models for fall event classification.

One of the earliest fall event classification systems that adopted the CNN methodology
was introduced by Yu et al. [57], in which a CNN classifier was used to classify four different
classes of human poses (i.e., bending, standing, lying, and sitting). A fall event is then
flagged if the proposed CNN model managed to detect a lying posture event in the ground
region. Another work by Adhikari et al. [58] has designed a similar approach but with the
addition of crawling poses. Moreover, they analyzed different sets of image combinations
that include RGB, Depth, RGB-D, and subtracted background of RGB-D for input to a CNN
classifier. The best results were obtained using the subtracted background of RGB-D for fall
event classification. However, neither of the previous methods were designed to be end-to-
end frameworks, in which manually optimized pre-processing modules were employed to
extract human silhouette information before they were fed as input to the CNN models.
Meanwhile, a great deal of attention was placed on Li et al.’s [59] work, which proposed a
fully CNN-based fall classification system. This system used AlexNet configurations with
a compact five convolutional layers network. A compact network allows the models to
be updated using much less training data [60]. The researchers made some modifications
to the original architecture, particularly with the number of hidden nodes used for the
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last two fully connected layers. They also removed all response normalization layers to
ensure the fall events could be classified from the ADL activities. Recently, a conceptual
approach by [51] suggested a combined approach of head segmentation and CNN classifier
to detect the presence of fall events. The main assumption was that a large sudden change
in the head’s amplitude can be observed during a fall event. Additionally, a shallow
CNN architecture was proposed with only one convolutional layer to ensure fast training
convergence for a real-time application.

Several studies have been conducted using motion information as opposed to color
information as the input data to CNN classifiers to detect the presence of fall events.
Min et al. [61] devised a motion-based method to detect a fall event that happened on
furniture, rather than on typical general surfaces. They employed Faster R-CNN to extract
the information on humans and furniture bounding boxes. A fall event is detected by
measuring the changes in motion activity characteristics, such as human shape aspect ratio,
centroid, and velocity of the subject. Similarly, a systematic approach by Feng et al. [62]
has also incorporated Faster R-CNN to extract human bounding boxes in a video sequence.
Motion history image (MHI) and histogram of oriented gradient (HOG) were also extracted.
These were subsequently fed to the support vector machine (SVM) to detect the occurrence
of fall events. Additionally, Marcos et al. [63] incorporated a stack of optical flow images
as input to the CNN network for fall event detection. The work in [64] introduced a two-
stream fall classification network using VGG-16 architecture as the backbone model. The
first stream was dedicated by motion characteristics used to determine the falling behavior,
while the second stream finalized the occurrence of fall events using the VGG-16 model.
Interestingly, they replaced the traditional convolutional layers of VGG-16 architecture
with a depthwise separable convolution operation to produce a lightweight version aimed
for mobile applications.

Previous studies have revealed that an RNN has been implemented in the devel-
opment of fall classification systems. The work by Lin et al. [21] employed the RNN
architecture using LSTM as the underlying model to capture temporal relationships of the
body joints, which were pre-extracted using OpenPose. LSTM classifies the fall features
from the non-fall features based on the change trajectory of the extracted body joint points.
Aside from that, the researchers in [22] modeled the temporal information of the successive
frames using LSTM to provide a time-based fall classification. The proposed architec-
ture was comprised of a two-stage module. The goal of the first stage was to produce
foreground masks using Mask R-CNN. The segmented masks were then fed into a CNN
model to extract meaningful features before a fall event was classified. The classification
categories include four human poses: forward fall, lateral fall, jumping, and picking up
an object. Likewise, a conceptual fall classification through LSTM architecture was also
suggested by [23]. However, their fall system was developed using multiple-camera input
for multiple-person surveillance applications. Moreover, they introduced a combined
network of temporal and spatial information as the input data for their LSTM model.
The temporal information includes the angle between the axis of the upper body and
the vertical axis, while the spatial information includes the aspect ratio of the bounding
box that encapsulated the person of interest. Additionally, a study in [65] employed the
transfer learning approach in training their LSTM architecture to compensate for the lack of
a large dataset. The training process began by training the multi-class LSTM model using
numerous samples of atypical human activities. Then, the pre-trained parameters were
frozen and transferred for a two-class LSTM classifier to detect a fall event occurrence.

3. Methods

The proposed fall frame detection methodology consists of two stage modules, which
are object tracking and instantaneous fall frame detection. Figure 2 depicts the full workflow
of the proposed SmartConvFall architecture, starting with the training setup of the tracker
model until the identification method of the exact instantaneous fall frame. The first stage’s
goal is to track the object of interest throughout the whole video sequences using a fully
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CNN-based tracker. Extensive comparisons of the training configurations covering the
selection of optimizer, learning rate, mini-batch size, number of training samples, and
region of interests are evaluated to obtain the best-trained model. Meanwhile, the second
stage goal is to determine the exact instantaneous fall frame by modeling the temporal
information between the contiguous spatial object trajectories using the LSTM architecture.

Figure 2. The workflow of the proposed fall frame detection methodology.

3.1. Dataset

In this paper, the Fall Detection Dataset (FDD) [66] that was developed by the Labora-
tory of Electronics, Information, and Image (Le2i) is used to conduct the experiments. The
FDD contains 129 annotated video simulations with 43 videos of Activities of Daily Living
(ADL) and 86 videos of fall simulations captured in realistic video surveillance settings.
All simulations were recorded using a single camera of frontal view with a fixed frame
size of 320 × 240 pixels and a frame rate of 30 frames/s (fps). Moreover, the fall and ADL
simulations were simulated by eight different actors in two separate situations, denoted as
“Coffee Room” and “Home”. However, this experiment does not utilize the ADL video sim-
ulations since our main objective is to determine the fall events only. For fall simulations,
each actor is required to perform the ADL simulations, such as standing, sitting, or walking,
before performing falling simulations, with an average of 14 fall frames. In addition, the
FDD dataset contains various fall angles comprised of forward, backward, and lateral falls
due to loss of balance and inappropriate sitting-down situations. All simulated activities
are also captured in various directions without considering the camera’s point of view.
Moreover, the simulated video also demonstrates the main difficulties of realistic video
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sequences found in the elderly home environment such as illumination changes, shadows,
reflections, occlusions, and cluttered environments. Figure 3 displays some samples for
various fall angles captured by different simulation situations.
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Figure 3. Some image samples for various fall angles in FDD dataset.

3.2. Stage 1: Object Tracking

In this module, a fully CNN-based tracker is implemented to track the objects’ tra-
jectories for each video sequence using a network with three convolutional layers and
three fully connected (FC) layers as demonstrated in Figure 4. The CNN networks utilize a
similar basic configuration of the first three CNN layers from the VGG-M architecture [67].
However, the configurations of the FC layers are modified to produce a compact tracker
model suitable for object tracking applications as devised in [68]. Table 1 displays the full
configurations of SmartConvFall tracker architecture. The images from the FDD dataset
will be down-sampled to 75× 75 pixels by linear interpolation before they can be fed to the
first CNN layer due to the image setting requirement of the modified VGG-M architecture.
The number of convolution filters for the first, second, and third layers are fixed to 96, 256,
and 512, respectively. In the meantime, the kernel size of the filters for each CNN layer is
set to 7× 7, 5× 5, and 3× 3 pixels, respectively. The number of hidden nodes for both first
and second FC layers is set to 512. The last layer consists of a single node to represent two
output classes that aim to distinguish the tracked objects and their background. Moreover,
all convolutional and FC layers are trained coupled with Rectified Linear Unit (ReLU)
activation function; the exception to this lies in the last FC layer, which is coupled with a
softmax activation function. Aside from that, the SmartConvFall tracker maintains a set
of object appearance models that is useful in resolving the occlusion noise and facilitates
re-detection of the tracked object. The illustration of multiple-model object appearance is
portrayed as in Figure 4, with n referring to the total number of object appearance models.

Table 1. The full configurations of the proposed tracker architecture.

Layer Filter Size Stride Padding Output Activation Function

Conv1 7× 7 2 0 96× 35× 35 ReLU
Pool1 3× 3 2 0 96× 17× 17 -
Conv2 5× 5 2 0 256× 7× 7 ReLU
Pool2 3× 3 2 0 256× 3× 3 -
Conv3 3× 3 1 0 512× 1× 1 ReLU

FC1 - - - 512 ReLU
FC2 - - - 512 ReLU
FC3 - - - 2 Softmax
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Figure 4. The proposed tracker architecture.

3.2.1. Sampling Generation

Specifically, the SmartConvFall is designed to be a model-free tracker, in which the
object appearance model only received the ground truth annotations during the first
frame. Hence, a model-free tracker requires careful model update procedures using a weak
supervision approach to distinguish the tracked objects from the background throughout
the contiguous video frames with limited prior knowledge. Moreover, the proposed
tracker is constructed as a binary classifier, with the tracked object being represented by
the positive class, while the background class is set to be the negative class. Therefore, a
set of sampling data, Btrain, is extracted to represent both the foreground, Btrain,+ve, and
background regions, Btrain,−ve, as follows:

Btrain = Btrain,+ve
⋃

Btrain,−ve (1)

The previous bounding box Bt−1 = [xt−1, yt−1, wt−1, ht−1] will be used to generate a
set of image patches for Bt

train,+ve and Bt
train,−ve as laid out in Equations (2) and (3), with

t representing the current frame and s+ve and s−ve denoting the total number of positive
and negative patches, respectively.

Bt
train,+ve =

{
b0
+ve, . . . , bs+ve

+ve

}
(2)

Bt
train,−ve =

{
b0
−ve, . . . , bs−ve

−ve

}
(3)

Primarily, the image patches for Bt
train,+ve are generated by sampling the foreground

regions that are similar to Bt by shifting them with a translation stride, a = 10 pixels. The
value of a is set to a maximum of 10 pixels to ensure each b+ve still contains about 40% of
the Bt information, which is important in handling the small-scale region of interest. This
is due to the smallest width of the bounding box being 18 pixels; hence, if the translation
stride is larger than 10 pixels, the b+ve will lose the crucial information of the Bt. Contrarily,
the image patches for Bt

train,−ve are acquired by sampling background regions that are close
to Bt by restricting them to eight neighborhood regions as illustrated in Figure 5. Firstly,
each of the eight neighborhood regions is discarded if the regions are outside the frame
size. Then, all successful regions will be shifted according to the translation strategy similar
to Bt

train,+ve. Figure 6 displays some sampling candidates for both Bt
train,+ve and Bt

train,−ve.
The number of sampling candidates for Btrain will be tested for different values that are set
to 400, 600, and 800. This is enforced to ensure that the SmartConvFall is trained using a
sufficient number of sampling candidates since the SmartConvFall is a model-free tracker
that is highly dependent on the training configurations of the first frame.
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Figure 5. The eight-neighbourhood regions for Bt
train,−ve.
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Figure 6. The sampling candidates of Bt
train,+ve and Bt

train,−ve for two different region of interest.

3.2.2. Tracker Model Training

The training process of the first frame is indispensable for a model-free tracker, as it can
influence the tracker performance in the subsequent frames. Moreover, the CNN networks
of the SmartConvFall implement pre-trained VGG-M weights and biases to overcome
the issue of insufficient training data. Searching for the best training configurations is a
crucial step to obtain the best-trained object appearance model to be used in the entire
tracking process. Hence, several hyperparameter settings are optimized, including the
optimizer, learning rate, size of mini-batch, and the number of training samples Btrain.
These hyperparameters are regarded as the key parameters that need to be emphasized
during the training process of the CNN networks. Table 2 summarizes the details of each
of the hyperparameters with their respective functions. The first experiment tests five
types of optimizers: Adam [69], AdaGrad [70], Stochastic Gradient Descent (SGD) [71],
AdaDelta [72], and RMSProp [73]. These optimizers play an important role in updating
the model parameters in order to reduce the losses during the training process. As such
the training process of the CNN model is based on the backpropagation update. This
update aims to minimize the loss function to zero in each iteration. Next, the second
experiment investigates the optimal learning rate value used to train the CNN model in
the first frame. This is achieved by controlling the step size to update model weights with
respect to the loss gradient. Choosing an appropriate learning rate can be difficult, and
this is a grave matter of concern. A small learning rate may lead to slow convergence
in reducing the loss function, while a large learning rate may hinder convergence and
cause the loss function to fluctuate. Therefore, the learning rate values to be tested in
this experiment are fixed to 0.0001, 0.001, 0.01, and 0.1. The third experiment inspects
the optimal mini-batch size that can be used to train the CNN model. The mini-batch
will control the size of training samples for each training iteration. This hyperparameter
setting is crucial due to the nature of the CNN model that is based on the backpropagation
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algorithm. This algorithm estimates the loss function error based on the mini-batch scheme
at one time, not the entire training sample. Moreover, the selection of mini-batch size is
also constrained by the available computer and graphics processing unit memories. Thus,
the size of the mini-batch is only set to 64, 128, and 256. The next experiment evaluates the
number of training samples that will be fed into the CNN networks. This experiment is
conducted according to the transfer learning approach employed in the SmartConvFall
architecture. Finding the optimal number of training samples is indispensable to ensure
that the SmartConvFall is able to learn better objectness information of the tracked objects.
A number of training samples of 400, 600, and 800 sampling candidates are tested in this
experiment. Additionally, the selections of the region of interest between the head and
body regions are also carried out to determine the best features to use in the entire tracking
process. The comparison between both regions is depicted as in Figure 6. Moreover, each
training cycle is set to a maximum of 50 epochs with an equal number of Btrain,+ve and
Btrain,−ve. Additionally, both CNN and FC layers are trained using the softmax cross-
entropy loss function as ruled in Equation (4), with ti being the truth label and pi being the
softmax probability for the ith class that is set to only c = 2 classes. Meanwhile, the weights
and biases of the n FC layers are initialized randomly according to the normal distribution.

L = −
c

∑
i=1

tilog(pi) (4)

Table 2. List of hyperparameters with their respective functions.

Hyperparameter Type/Value Function

Optimizer

Adam
AdaGrad
SGD
AdaDelta
RMSProp

Method to update parameters to reduce
losses during training process

Learning rate

0.0001
0.001
0.01
0.1

Step size to update weights with respect to
the gradient loss

Mini-batch size
64
128
256

The number of training samples for each
training iteration

Number of training samples
400
600
800

Total candidate samples of Btrain,+ve and
Btrain,−ve

3.2.3. Tracker Model Update

The tracker needs to be updated periodically to circumvent model drift issues as the
object appearance perceived from the camera will change when the tracked object moves
from one frame to another. Figure 7 presents the full update process for our tracker with
n FC models. A set of image patches, Btrain,+ve and Btrain,−ve, are obtained by normal
samplingaround Bt with an intersection over the union limiting factor F = { f+ve, f−ve} set
to 0.7 and 0.3, respectively. The implementation of F is performed to ensure both Btrain,+ve
and Btrain,−ve are still sampled around the last updated location as it is a model-free tracker
with no ground truth location given once the tracker has been initialized in the first frame.
Moreover, the limiting factor is also imposed to consider size variations during the tracking
process. Moreover, sampling background regions that are closer to the foreground have
a consequential relationship compared to the far-away background. Both Btrain,+ve and
Btrain,−ve are collected for a period of m recent frames. The model update process involves
the selection of the FC model among the n FC models with the highest scores, which will
be retrained using the accumulated Btrain,+ve and Btrain,−ve. Then, the FC models with the
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lowest scores are replaced with the newly trained FC models. In addition, the FC models
will be trained with a set of parameters as summarized in Table 3 for 50 epochs using Adam
optimizer and a learning rate of 0.01.

Btrain,+ve ∼ N ((Bt
x, Bt

y), σ+ve)

s.t.
bi,+ve

⋂
Bt

bi,+ve
⋃

Bt > f+ve, i = {0, . . . , N+ve}
(5)

Btrain,−ve ∼ N ((Bt
x, Bt

y), σ−ve)

s.t.
bi,−ve

⋂
Bt

bi,−ve
⋃

Bt < f−ve, i = {0, . . . , N−ve}
(6)

Figure 7. The full update process with n FC models.

Table 3. List of parameters used during tracker model update.

Parameter Value

N+ve 50
N−ve 200
σ+ve 0.1
σ−ve 2

Basically, the handling of the FC layers of our tracker shares the same fundamentals
similar to the TCNN and MDNET-N trackers. However, some remarkable improvements
have been made. One of these improvements lies in the implementation of multiple models,
denoted by n models for the FC layers. The implementation of n FC models is proposed
to handle the changes in the object appearance model and the occlusion issue during the
tracking process. The consideration of maintaining a set of n FC models allows the tracker
to perform well both during and after occlusion. The appearance model has a higher
possibility of being updated with noisy information during occlusion, which can cause
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model drifting in the event that only a single model is maintained. It is difficult for a single
model tracker to find the best match if it has been continuously updated with the occluded
appearance information. As such, maintaining a set of n FC models reduces the noisy
updates and coherently improves the tracking performances.

The TCNN tracker implements a tree structure to manage the FC models by maintain-
ing the parent node and deleting the oldest node once a new child node is produced. The
tree structure also involves the periodically updated process by accumulating the Btrain
for a fixed frame interval. This technique allows the FC models to be updated using the
best-matched appearance model rather than the most recent one. Similarly, our proposed
tracker also implements the tree structure as imposed in the TCNN architecture. How-
ever, the parent node is not retained and will be replaced by the new child node. This
modification is proposed to avoid skew in weight distribution towards particular branch
modes, given that the selection of FC models is dependent on the highest scores. Moreover,
this modification is imposed to evade the newly trained FC models from using the noisy
information if the parent node is retained in the tree structure. On the other hand, the
MDNET-N tracker manages the FC models by training with a large bias towards the last
FC model, which is divided into several domains which correspond to the most recent
training samples. Each domain will be trained separately and will be classified either as the
tracked object or background. However, the noticeable weakness of the MDNET-N can be
seen through the utilization of the recent training data, which can affect the future update
of the appearance model if the training data are contaminated by the noisy or occluded
information.

3.3. Stage 2: Instantaneous Fall Frame Detection

In this subsection, the implementation of the instantaneous fall frame detection using
the LSTM architecture is described. In recent studies, most of the existing fall detection
systems are developed to classify the presence of fall events from typical events that occur
in a video sequence. Contrarily, our goal is to detect the exact instantaneous fall frame.
This specifically refers to the beginning of the ‘critical phase’ in which the fall event occurs,
as illustrated in Figure 8. The detection of the instantaneous fall frame is crucial due to
its close relationship with the response time that has become a critical issue in fall event
detection. Moreover, the work in [74] pointed out that fall events occur instantaneously
and rapidly within four seconds. Therefore, reducing the time between the occurrence
of fall events and response time will allow a faster alert mechanism that will reduce the
possibility of prolonged negative consequences such as injuries, fear of falling, and death.
To the best of our knowledge, no existing fall detection system has been developed to
specifically detect the instantaneous fall frame through the LSTM architecture. Henceforth,
the LSTM model is employed to model the temporal information of the tracked object’s
trajectories in discerning between the fall and no-fall features. The research conducted
by [75] has corroborated that LSTM is an appropriate method to use in analyzing time
sequence data.

Figure 8. The main phases of a fall event.
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3.3.1. Training Module

The proposed LSTM model is designed as a regression model which combines several
LSTM layers on top of each other, as illustrated in Figure 9, with L representing the total
number of layers with h = 32 number of hidden states, St denoting the input vector, and
YT representing the output score for every timestep, T = 10. In addition, the stacked
LSTM model is proposed due to its capability to extract more complex features over a
single LSTM layer. Let l represent the current layer; the LSTM is used to relate each St by
mapping to its respective current hl

t and previous hl
t−1 to produce the YT . Hence, at l = 1,

h(1)t is obtained by mapping each St to h(1)t−1 as ruled in Equation (7). From here on, the

information of both h(l−1)
t and h(l)t−1 is used for the next subsequent layers. Finally, the YT is

produced by applying softmax cross-entropy loss function to the last hL
T , which contains

the probabilities distribution of two classes, c ={fall, no-fall}. Each h(l)T will be forwarded
to the next T + 1 to estimate the new output score, YT+1.

h(1)t = (St, h(1)t−1) (7)

h(l)t = (h(l−1)
t , h(l)t−1) (8)

YT = fL(h
(L)
t ) (9)

Figure 9. The proposed stacked LSTM model.

Four different training configurations are used to train the stacked LSTM model, as
summarized in Table 4. These different training configurations are imposed to find the
optimal training configuration to be used in detecting the instantaneous fall frame. The
Train-1 configuration refers to the utilization of top-5 spatial object trajectories (xt, yt) for
each St that is obtained from the first module. Similarly, the Train-2 configuration adopts
similar object trajectories, but with the additional dropout layers with a 0.5 dropout rate
on the last stacked LSTM layer. These dropout layers are included with the intention to
reduce the overfitting issue during the training process. Next, Train-3 configuration uses
the combination of xt and normalized y-coordinate, |yt| for each St in the training process.
The |yt| refers to the differentiation values that relate each yt to the y0 at the pixel coordinate
(0, 0) as ruled in Equation (10), with V denoting the total number of frames. Figure 10
displays the comparison between |yt| and yt, in which the positions for |yt| are near the
(0, 0) coordinate, and vice versa for yt. Moreover, the normalization technique is proposed
to investigate the meaningful features, as |yt| indicates a large change during the critical
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phase in between t = 97 and t = 120, as in Figure 10. Meanwhile, the Train-4 configuration
also employs a similar (xt, |yt|), but the implementation of dropout layers as in the Train-2
configuration. Furthermore, five-fold cross-validation is executed to test the performance
of the stacked LSTM model, whereby each fold is tested independently with the training to
testing data ratio being set to 4:1. The training procedures will be run for 1000 epochs with
a learning rate of 0.000001 and a mini-batch size of 32, which is updated using an Adam
optimizer. It is noteworthy to mention that these are optimal hyperparameters that have
been selected using various hyperparameters testings.

|yt,i| = yi − y0, i = {1, . . . , V} (10)

Table 4. Description of different training configurations.

Training Configuration Description

Train-1 (xt, yt)
Train-2 (xt, yt) + dropout
Train-3 (xt, |yt|)
Train-4 (xt, |yt|) + dropout

Figure 10. Comparison of pixel location for |yt| and yt.

3.3.2. Decision-Making Module

In this subsection, the decision-making module task is to locate the exact instantaneous
fall frame using the stacked LSTM model that has been trained in the previous module.
Letting texact represent the exact instantaneous fall frame, texact is determined based on
the score differences of YT at the current frame from the previous frame as defined in
Equation (11), with ∆Yi

T denoting the score differences, i being the current frame, i − 1
representing the previous frame, V being the total number of frames, and T being the
timestep. Then, the texact is located by finding the index frame of the highest ∆Yi

T . Finding
the highest ∆Yi

T is imposed due to the large changes in ∆YT , as illustrated in Figure 11,
which coherently indicates the presence of the fall frame. Moreover, the figure also displays
the comparison of ∆YT for three phases of a fall event, where ∆YT has the biggest changes
from the pre-fall period to the critical phase, which supports the occurrence of the fall
frame. Please note that no recovery phase is presented in the FDD dataset since all the
actors remain lying on the floor after the fall event simulations.

∆Yi
T = |Yi

T −Yi−1
T |, i = {1, · · · , V − T} (11)

∆Yi
highest = max(

∣∣∣∆Yi
T

∣∣∣) (12)

texact = argmax(∆Yi
highest) + T (13)



Sensors 2021, 21, 6485 16 of 34

Figure 11. Comparison of ∆YT for three main phases of a fall event.

3.4. Performance Evaluation

The performance evaluation of the object tracking module will be measured using
four Visual Object Tracking (VOT) Challenge [76] protocols, comprising of accuracy (Ac),
robustness (Ro), reliability (Re), and expected area overlap (EAO). These performance
metrics are de facto metrics used as the benchmark to measure the performance of the
proposed tracker. Note that the EAO is the primary measure used to rank the tracker
performances, as used in the VOT Challenge. Yet, the performance observations on Ac,
Ro, and Re are necessary; as such, the tracker model training and model update are
dependent on the implementation of hyperparameters that are closely related to each
other. Ac measures the average intersection over union (IoU) areas between the tracker
output bounding box, Boutput, and the ground truth bounding box, Bgt, in a video sequence
of V length, as defined in Equation (14), with S representing the total number of video
simulations. However, Ro measures the average of tracking failures, Ff ail , and as such Ff ail
is triggered when there is no IoU between Boutput and Bgt. Re captures the likelihood of
successful tracking after Q frames that have been fixed to 100 frames. EAO measures the
average IoU over a range of frames between [limlow, limup]. EAO is imposed to rank the
tracker by considering the trade-off performance between Ac and Ro without adopting
any re-initialization protocol. EAO is measured along the frame of V length before the first
Ff ail is triggered; as such, Ac values on each frame thereafter will be ignored. Moreover,
each tracking process is repeated 15 times as set by the VOT protocol to obtain a good
stochastic measurement. Meanwhile, the mean error is used to evaluate the performance
of the instantaneous fall frame module, in which it measures the average error between the
texact and the provided ground truth, tgt.

Ac =
1
S

V

∑
i=1

Bi
output

⋂
Bi

gt

Bi
outout

⋃
Bi

gt
(14)

Ro =
1
S

V

∑
i=1

Fi
f ail , Fi

f ail =

{
1, if IoUi ≤ 0
0, if IoUi > 0

(15)

Re =
e−Q Ro

V

S
(16)

EAO =
1
S
[

1
limatas − limbawah

limup

∑
i=limlow

IoUi] (17)

Mean error =
∣∣texact − tgt

∣∣ (18)
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4. Results

This section firstly describes the individual results for each training configuration
of the object tracking module for the optimal setup of the SmartConvFall tracker. In
addition, the proposed SmartConvFall will be benchmarked with state-of-the-art deep
learning-based trackers, namely TCNN and MDNET-N, that share similar tracking funda-
mentals. This section also discusses the final results of the exact instantaneous fall frame
detection performance.

4.1. Results: Stage 1—Object Tracking Module

The tracker training phase in the first frame is crucial to produce a good model-free
tracker, whereby a slight error can affect the model performance of the entire tracking
process. Therefore, this section discusses the results of the optimal training configurations
for our proposed SmartConvFall tracker. Figure 12 presents the full training configuration
results that have been tested individually in the first frame to obtain the best-trained tracker
model. The discussion of each test is provided separately in the next subsections.

Figure 12. The full training configuration results for each tested hyperparameter.

4.1.1. Optimizer

The first test examines the impact of the different optimizers, namely Adam, AdaGrad,
SGD, AdaDelta, and RMSProp, with a fixed learning rate, mini batch size, and the number
of training samples set to 0.001, 128, and 400, respectively. Table 5 compares the evaluation
metrics for each optimizer of both regions of interest. The experimental results show
that the Adam optimizer achieves the highest EAO with 0.1668, followed by RMSProp,
AdaGrad, SGD, and AdaDelta for the head region. Meanwhile, RMSProp achieves the
highest EAO, with 0.1708 for the body region. The highest EAO reveals the tracker’s
capability to perform the tracking process by emphasizing the performance of both Ac and
Ro. As seen from Table 5, the Adam optimizer tested with the head region produces the
top results for Ro, Re, and Ff ail with 0.4493, 0.8557, and 31, respectively. Despite having the
second-best Ac with 0.4415, the Adam optimizer still manages to produce the lowest Ff ail
when compared to the RMSProp. A low Ff ail indicates that the tracker experiences few
tracking failures, whereas a high Ff ail reveals that the tracker needs to undergo a repeated
re-initialization protocol. In this process, the Bgt will be re-supplied, directly causing the
increasing values of Ac in the early stage after the re-initialization process. Similarly, the
Adam optimizer produces the top results for the Ro, Re, and Ff ail when tested with the
body region of interest.
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Table 5. Performance evaluations of the optimizer configurations.

Learning Rate = 0.001
Mini-Batch Size = 128

No. of Training Samples = 400

Head Body

Type EAO Ac Ro Re Ffail EAO Ac Ro Re Ffail

Adam 0.1668 0.4415 0.4493 0.8557 31 0.1653 0.4554 0.4493 0.8384 31

AdaGrad 0.1288 0.4377 0.9855 0.7091 68 0.1457 0.4306 0.6232 0.7799 43

SGD 0.1092 0.3964 1.0290 0.6784 71 0.1583 0.4314 0.5072 0.8132 35

AdaDelta 0.0404 0.3014 3.8382 0.2599 261 0.0637 0.2878 1.7059 0.5470 116

RMSProp 0.1543 0.4680 0.8695 0.5074 60 0.1708 0.4716 0.4928 0.8221 34

The good performance results of the Adam optimizer explain its capability to update
the network parameters while reducing the loss function to zero. Moreover, the Adam
optimizer employs an adaptive learning rate protocol for each involved parameter during
the model updating process. In fact, the algorithm behind the Adam optimizer combines the
uniqueness of the RMSProp and AdaGrad to produce a better optimization technique that
can rapidly converge to the optimal settings. Similarly, the RMSProp optimizer also utilizes
an adaptive learning rate protocol, yet the learning rate decay is based on the average
gradient, which is slightly different from the Adam optimizer that uses previous average
gradient information. The adaptive learning rate is also implemented in the algorithm of
the AdaGrad optimizer; however, the weight update process causes the learning rate value
to continually decrease, which affects the model performance. Meanwhile, the AdaDelta
optimizer is an improved version of the AdaGrad, still using a rapid decayed learning
rate, which hinders the model from learning the features efficiently. On the other hand, the
SGD optimizer requires a longer convergence time, which explains its low performance as
compared to the Adam optimizer. Therefore, the Adam optimizer is chosen to be the best
optimizer for the SmartConvFall tracker based on the top results of EAO, Ro, and Ff ail for
both regions of interest.

4.1.2. Learning Rate

Table 6 lists the overall results for the learning rate configurations set to 0.0001, 0.001,
0.01, and 0.1. For a fair comparison, each testing is evaluated individually with fixed
hyperparameters using the Adam optimizer, a mini-batch size of 128, and 400 training
samples. It can be seen from Table 6 that a learning rate of 0.01 yields the highest EAO
with 0.1693 for the tracking performance using the head region of interest. Contrarily, the
highest EAO is produced by a learning rate of 0.0001 with 0.1898 for the body-based region
of interest. The highest EAO is yielded by the learning rate of 0.0001 coming from the
body-based region of interest, and this is also supported by the best results produced by
Ac, Ro, Re, and Ff ail . Nevertheless, the learning rate of 0.0001 for the head-based region of
interest only manages to produce the second-best EAO. This is due to the protocol of EAO
that is dependent on both Ac and Ff ail . The tracking failure at the beginning of tracking
will affect the overall performance, as compared to the tracking failure that occurs towards
the end of the video sequence. Figure 13 depicts some samples Bout showing a Ff ai incident
that occurs at the beginning of the tracking process.
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Table 6. Performance evaluations of the learning rate configurations.

Optimizer = Adam
Mini-Batch Size = 128

No. of Training Samples = 400

Head Body

Value EAO Ac Ro Re Ffail EAO Ac Ro Re Ffail

0.0001 0.1669 0.4869 0.5652 0.8248 39 0.1898 0.4883 0.3623 0.8645 25

0.001 0.1651 0.4415 0.4493 0.8557 31 0.1653 0.4554 0.4492 0.8384 31

0.01 0.1693 0.4757 0.4783 0.8339 33 0.1785 0.4756 0.3913 0.8504 27

0.1 0.0788 0.4060 2.3478 0.4229 162 0.1089 0.4030 1.2319 0.6370 85

These results explain that an optimal learning rate value plays an indispensable role
in producing the best tracker because it controls the step size used in updating the model
weights. Moreover, the obtained results also demonstrate that finding the best learning
rate is difficult to achieve due to the learning rate decay process that also depends on the
optimization technique. Nevertheless, it can be observed that using a high learning rate
such as 0.1 produces low-performance results since the tracker is more likely to learn more
on the background information. Contrarily, a small learning rate indicates that a small step
size is used to update the model weights that cause the tracker to learn more on the tracked
object information. Therefore, the learning rate of 0.0001 is selected as the best learning
rate to be employed in the tracker model training.

Frame #16 Frame #36 Frame #57

Frame #15 Frame #30 Frame #48

Frame #31 Frame #59 Frame #64

Figure 13. Some image samples of Boutput for all learning rates, showing Ff ail in the beginning of
tracking.

4.1.3. Mini-Batch Size

This test is performed to scrutinize the impact of different mini-batch sizes on the
tracker model training. Table 7 presents the performance evaluations of the mini-batch
size configurations. The best set of optimal hyperparameters that were obtained from the
previous tests are the Adam optimizer and the learning rate of 0.0001, which are also used
as the basic configurations for this test. From Table 8, it is apparent that the highest EAO
is produced by a mini-batch size of 64 for both regions of interest, with 0.1679 and 0.1683,
respectively. Specifically, a mini-batch size of 64 for the head region manages to obtain a
higher Re even though it has higher Ff ail compared to the body-based region of interest.
Interestingly, a mini-batch size of 128 for both regions of interest has similar Ff ail values.
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However, the tracker’s ability to track the object is better when using the configuration of
the head-based region of interest that produces Re of 0.8557 compared to the body-based
region of interest. Similarly, a mini-batch size of 128 and 256 have similar Ff ail and Ro
values for the body-based region of interest. Despite this fact, the tracker’s ability through
Re for a mini-batch size of 256 is lower than the mini-batch of size 128, despite similar Ff ail
results, with a total of 31 failure cases.

Table 7. Performance evaluations of the mini-batch size configurations.

Optimizer = Adam
No. of Training Sample = 400

Learning Rate = 0.0001

Head Body

Value EAO Ac Ro Re Ffail EAO Ac Ro Re Ffail

64 0.1679 0.4719 0.5072 0.8304 35 0.1683 0.4563 0.4782 0.8268 33

128 0.1669 0.4415 0.4493 0.8557 31 0.1653 0.4554 0.4493 0.8384 31

256 0.1594 0.4633 0.4928 0.8327 34 0.1665 0.4596 0.4493 0.8349 31

This experiment corroborates the findings for the optimal selection of mini-batch size,
which can eventually affect the tracker model performance. Mini-batch size is introduced
during the training process to control the size or the number of training samples for each
backpropagation update, whereby the deep learning model can be optimally trained by
using a subset of the training data. If the full dataset is used for each parameter update,
the weight will not learn much as the model will be globally generalized, whilst, if a small
batch size is used, the parameter update will experience extreme fluctuation in the case
of noisy data. Furthermore, the selection of mini-batch size is also constrained by the
available computer and graphics processing unit memories; as such, a mini-batch size of
256 is the upper limit for this experiment. Additionally, the results for this experiment
are also greatly dependent on the distribution of positive and negative training samples
for each batch, which will be randomly queued. Note that EAO is the most important
evaluation metric used to rank the tracker performances, yet the performance observations
of Ro, Re, and Ff ail should also carry some weight to avoid some extreme cases. Moreover,
the training of the deep learning tracker requires the implementation of hyperparameters
that are closely related to each other, such as optimization method and learning rate values.
Henceforth, the mini-batch size of 128 is selected as the best training configuration for the
proposed SmartConvFall tracker. Although it only manages to produce the second-best
and third-best EAO for the head and body-based regions of interest, respectively, these
values are still acceptable without much fluctuation in other performance metrics. The
selection of a mini-batch size of 128 is also supported by the significant results of Ro, Re,
and Ff ail for both head-based and body-based region of interests.

4.1.4. No. of Training Samples

This subsection investigates the best combination of training sample densities to be
used in training the tracker. A dense sampling will result in many repeated samples which
will increase the computational burden, while a low sampling number will increase the
likelihood of missed detection due to the uneven bounding boxes generation. Each test is
conducted using similar settings with an Adam optimizer-based update, a fixed learning
rate of 0.0001, and a mini-batch size of 128 for a fair comparison. Table 8 provides the
full evaluation results for all three configurations of the training samples. Letting Btrain
represent the number of training samples, Btrain = 400 produces the highest EAO of 0.1669,
followed by Btrain = 600 and Btrain = 800 for the head-based region of interest. Meanwhile,
Btrain = 600 yields the highest EAO when tested using the body-based region of interest.
Moreover, it can be observed that Btrain = 400 for the head-based region of interest manages



Sensors 2021, 21, 6485 21 of 34

to achieve the highest Re of 0.8557. In addition, Btrain = 400 also produces the smallest
Ff ail and Ro. Despite having the highest Ac for Btrain = 600 for both regions of interest,
this training sample density also produced an increased number of Ff ail cases with 36 and
32 for the head- and body-based regions of interest, respectively. Interestingly, Btrain = 600
and Btrain = 800 for the head-based region of interest produces similar results for Ro and
Ff ail . Nonetheless, Btrain = 600 captures the best tracking likelihood of every 100 frames.

Table 8. Performance evaluations of the number of training samples.

Optimizer = Adam
Mini-Batch Size = 128
Learning Rate = 0.0001

Head Body

Value EAO Ac Ro Re Ffail EAO Ac Ro Re Ffail

400 0.1669 0.4415 0.4493 0.8557 31 0.1653 0.4554 0.4493 0.8384 31

600 0.1606 0.4462 0.5217 0.8349 36 0.1664 0.4618 0.4638 0.8277 32

800 0.1538 0.4407 0.6232 0.7930 43 0.1644 0.4581 0.4638 0.8329 32

The training process for a deep learning-based technique requires a large number of
training samples due to the usage of complex network architecture as compared to the
standard machine learning techniques. However, the main constraint of deploying a deep
learning model for tracking applications is limited variations in the training data, whereby
only first-frame information is used to train a model-free tracker. Therefore, the transfer
learning method is adopted to overcome the limited number of training samples in this
work. Through a transfer learning method, pre-trained weights and biases of the VGG-M
model are used during the initialization phase. The VGG-M model has been trained using
the ImageNet database [77] which consists of more than one million images with 1000
classes. Additionally, the VGG-M model is built as a general classification model without
specification towards any application. Yet, these pre-trained weights and biases can be used
in object tracking applications, specifically for the fall detection domain, by training the
proposed CNN networks with the specific training samples that are not too large. Moreover,
there are cases in the FDD dataset in which the person to track is far from the camera’s
point of view, and as such the bounding boxes that encapsulate the region of interest are
of a smaller size, especially for the experiment that uses a head-based region of interest
where the lowest width of the bounding box is just 18 pixels. Coherently, only a small
number of sampling candidates can be obtained due to the small region of interest. One
way to handle the limited training samples is by the utilization of the translation strategy
that is imposed in this work that fixed the translation stride for a maximum of 10 pixels to
ensure that the sampling candidates still manages to extract about 40% of the ground truth
information. This is set so that the tracker still manages to learn the objectness information
of the tracked object even though the region of interest is very small. Henceforth, finding
the appropriate number of training samples is crucial so that the tracker can properly learn
the features of the tracked object. Thus, Btrain = 400 is selected as the best number of
training samples to train the tracker model in the first frame. Moreover, Btrain = 600 is
chosen based on the significance results of Ro, Re, and Ff ail for both regions of interest.
Through this experiment, a large number of training samples, such as Btrain = 800, will
raise the possibility of overfitting issues to the SmartConvFall tracker due to the frequent
repeated similar samples, whereby a lot of background information is also introduced as
depicted in Figure 14. It contains bounding box samples from Videos (38), (40), (46), and
(84) where the object appearance (hair color) is almost similar to the background (clothes
color). Meanwhile, Video (93) and (101) depict situations where hair color is relatively
similar to the furniture color that is located behind the actor. Hence, these situations make
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it harder for the tracker to distinguish the tracked object from the background, which
consequently influences the tracker’s performance.

Video (38) Video (40) Video (46)

Video (84) Video (93) Video (101)

Figure 14. Image samples that showing tracked objects having similar information with the background information.

4.1.5. Region of Interest Selection

In this subsection, the selection of the best region of interest to be tracked by the
SmartConvFall tracker is analyzed for optimal appearance representation. The previously
determined optimal hyperparameters are the Adam optimizer backpropagation method, a
learning rate of 0.0001, a mini-batch size of 128, and 400 training samples being employed
to select between head- or body-based regions of interest. The full performance results
for all tests are shown in Table 9. It is apparent from the results that tracking only the
head region produces better performance results compared to tracking the upper body
region, with EAO, Ac, Ro, Re, and Ff ail of 0.1718, 0.4871, 0.4706, 0.8274, and 32, respectively.
Moreover, these results also indicate that the proposed CNN networks can learn and extract
significant features from the head region, even though the size is smaller. Henceforth, the
head region is selected to be the tracked region of interest for the entire tracking process.
Figure 15 displays some output samples Boutput of the tracker using both regions of interest.

Table 9. Comparison of performance evaluations for both regions of interests.

Head Body

EAO 0.1718 0.1619
Ac 0.4871 0.4659
Ro 0.4706 0.6324
Re 0.8274 0.7958

Ff ail 32 42

4.2. Results: Stage 2—Instantaneous Fall Frame Detection Module

This subsection discusses the simulation results for the exact fall frame (texact) de-
tection using the proposed stacked LSTM network that takes input from the optimized
SmartConvFall tracker. The existing related works on fall detection systems utilizing
the LSTM architecture are based on the following classification approach: fall features
are classified from non-fall features with no concern in regard to when the fall event oc-
curred. However, our works propose a different technique, in which we aim to determine
the fall frame, denoted as texact immediately for each input sequence that is supplied to
the stacked LSTM architecture. The proposed stacked LSTM architecture is treated as
a regressor instead of a classifier to determine the texact. The aim of this approach is to
reduce the negative consequences of delayed treatment. For example, if a segment of a
15 s video is used to detect the fall event, the notification is only triggered after the 15 s.
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This is because the whole sequence of the video is needed to make the decision when the
classification approach is used. However, due to the non-availability of the related works
that work on a similar approach, we could not execute a performance comparison with
our proposed approach. Henceforth, the proposed stacked LSTM network is compared
to the RNN model; both models belong to the similar deep learning class that compre-
hends information of the time-series data. The basic strategy used to identify texact is
analyzing the highest score differences, ∆Yhighest, for each subsequent frame. The average
mean error metric is used to evaluate the procedure, which is obtained by finding the
average difference between texact and its ground truth, tgt. Moreover, the performance
of the stacked LSTM layer is benchmarked with RNN, as no RNN-based technique has
been designed based on the tracker output to detect the exact fall frame. The mean error
results are shown in Table 10 for both stacked LSTM and RNN models. Based on the
table, the average mean error using both F1 and F2 configurations for RNN are 40 and
43 frames. Meanwhile, the average mean error for F3 and F4 configurations are 40 and
43 frames, respectively. It is worth noting that LSTM with a single layer, L = 1, produces
the lowest mean error of 32 frames using the F1 configuration, followed by F4 configuration
with a mean error of 33 frames. There is only a slight performance difference with just
one frame error between the mean error of F2 and F3 configurations. In conclusion, a
single-layer LSTM achieves better detection results and proves the effectiveness of the
LSTM network over the RNN in modeling the tracker’s temporal relationship.

Frame #55 Frame #90 Frame #145

Frame #30 Frame #52 Frame #80

Frame #44 Frame #103 Frame #133

Frame #35 Frame #127 Frame #142

Figure 15. Comparison of Boutput for both head and body regions of interest.
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Table 10. The average mean error of texact for both stacked LSTM and RNN.

Configuration RNN
Stacked LSTM

L = 1 L = 2 L = 3 L = 4 L = 5 L = 6 L = 7

F1 36 32 29 33 32 35 30 44
F2 36 35 33 28 28 31 41 43
F3 43 36 26 29 30 32 36 37
F4 40 33 26 22 27 32 37 39

Apart from comparing the performance of a single layer of LSTM and RNN, this
subsection experiments on various layer configurations of a stacked LSTM network in
finding the texact. The basis of F1, F2, F3, and F4 configurations still remains the same,
where a basic F1 configuration delivers good detection performance of texact with a mean
error of 29 frames. Nevertheless, a further increment in the LSTM stacking using the F1
configuration does increase the mean error, whereby the highest mean error is produced by
L = 7 with 44 frames. However, by using the F2 configuration, stacked LSTM achieves the
lowest mean error of 27 frames for both L = 3 and L = 4. Similarly, the F2 configuration
shows an increasing mean error trend once the stacked layers exceed L = 4. A similar
situation is observed for the F3 configuration with an increasing mean error starting
from L = 3 until L = 7. Surprisingly, the F4 configuration produces the lowest mean
error of 22 frames when L = 3 is used. However, a similar pattern is observed when
further experiments were performed using L > 3. Overall, a three-stacked LSTM using F4
configuration produces the best performances and it will be used in this work to detect texact.
Moreover, further evaluations in terms of training accuracy and loss were also evaluated
to corroborate the selection of F4 configuration, as shown in Table 11. It is apparent
from Table 11 that L = 3 produces the top results with 93.1% training accuracy and
0.2112 loss as illustrated in Figure 16. On the other hand, RNN produces the lowest
detection performance with just 59.17% training accuracy and the corresponding high
training loss of 3.1578. Moreover, the results also reveal that an increasing trend of training
accuracy for stacked LSTM can be observed, starting from L = 1 until L = 3, and then, it
begins to decrease from L = 4 until L = 7. This observation is in line with the findings
from the mean error results, as shown in Table 10. Furthermore, a stacked LSTM with big L
requires a longer training duration due to the increased model complexity in learning the
provided temporal information.

Table 11. Training performances using F4 configuration.

Method Training Accuracy (%) Training Loss Training Duration

RNN 59.17 3.1578 1 h 4 min
Stacked LSTM:

L = 1 76.56 0.7146 2 h 44 min
L = 2 91.32 0.2413 3 h 17 min
L = 3 93.01 0.2112 4 h 10 min
L = 4 92.05 0.2261 5 h 6 min
L = 5 91.27 0.2445 5 h 36 min
L = 6 90.95 0.2470 6 h 29 min
L = 7 89.88 0.2666 7 h 23 min
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Figure 16. Graph of training accuracy and loss for stacked LSTM with L = 3.

Therefore, it can be concluded that the F4 configuration, which utilized the information
of |yt| by relating each y-coordinate, yt, to the y0 at the pixel location (0, 0), produces
the most accurate detection scheme in locating the texact, contrarily to the F1 and F2
configurations that only relate the information of yt without further normalizing them, with
the observation of |yt| limiting the detection network in learning their temporal relationship,
which manifests through poor performances in locating the texact. Additionally, the F4
configuration also utilizes a dropout layer, which reduces the overfitting possibility by
randomly dropping some of the node’s connections. Henceforth, it can be concluded that a
stacked LSTM of three layers using the F4 configuration is the optimal setting for locating
the texact. Moreover, this configuration manages to produce the lowest mean error of just
22 frames, which translates to a less than 1 s response time if the input video is streamed
with a 30 fps format. Additionally, the proposed stacked LSTM model produces better
performances compared to the RNN due to its better hierarchical arrangements of the
hidden state, which enables the network to capture more complex temporal representations
at different scales. Lastly, the obtained results fulfil the main objective of this paper in
designing an exact fall frame detection system, which is critical for immediate response
time to reduce the negative consequences of a fall incident.

4.3. Benchmark Comparison

This section discusses the SmartConvFall tracker performances compared to the
state-of-the-art CNN trackers, namely TCNN and MDNET-N trackers. Both TCNN and
MDNET-N incorporated a fully CNN-based network as the core tracking mechanism.
This mechanism relates the same object between consecutive images. These trackers
essentially share similar tracking fundamentals, particularly in regard to the design of
convolutional layers. However, they differ in the way of handling and updating the FC
layers to differentiate the tracked objects from the background information. For a fair
comparison, the optimal settings for the TCNN and MDNET-N trackers have been chosen
and selected based on the suggested optimal setup in the original papers. We have also
confirmed that both of the models have been trained to convergence. These trackers are
initially evaluated using a set of videos from the FDD dataset; the set contains minimal
visual noise attributes. Each tracker is subsequently tested by considering two challenging
noise attributes, which are occlusion and a cluttered background to mimic real-life usage
scenarios. Table 12 presents the performance results of each tracker for the noise-free test
videos. The SmartConvFall tracker performs the best with the highest EAO of 0.1619,
followed by MDNET-N and TCNN with 0.1525 and 0.1436, respectively. Despite having the
lowest Ac, SmartConvFall is relatively more reliable, with the best Re of 0.7958. Moreover,
SmartConvFall is able to track the object with the lowest number of Ff ail cases; only 43
tracking failures were found throughout the entire set of video sequences. Even though
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MDNET-N and TCNN produce better Ac, this improvement can be attributed to the
frequent re-initialization process; both TCNN and MDNET-N reported almost twice the
number of Ff ail cases compared to the SmartConvFall tracker. This frequent re-initialization
impact can be seen through a lower EAO, whereby the Ac is not considered after the first
Ff ail case. It must be noted that an Ff ail case happens when there are no overlapping areas
between the Bouput and Bgt. Hence, Bgt information is re-supplied for a model-free tracker
initialization, which then leads to better Bouput right after the re-initialization process.
Figure 17 depicts some Boutput for SmartConvFall and its benchmarked trackers.

Table 12. Performance comparison of each tracker for no attribute-based videos.

Tracker EAO Ac Ro Re Ffail

SmartConvFall 0.1619 0.4659 0.6323 0.7958 43
TCNN 0.1436 0.4717 0.9529 0.7062 81

MDNET-N 0.1525 0.4803 0.8941 0.7259 76

Frame #3 Frame #29 Frame #54

Frame #97 Frame #116 Frame #138

Frame #66 Frame #107 Frame #117

Frame #97 Frame #173 Frame #183

Figure 17. Comparison of Boutput of all tested trackers for no-attribute videos.

Table 13 lists the tracking results for all three trackers tested on video sets with
occlusion attributes. Occlusion is one of the challenging issues in visual object tracking,
whereby the tracked object can be either fully or partially occluded from a camera’s point
of view. Occlusion noise greatest affects a tracker that is designed based on a track-by-
detection philosophy as it relies more on appearance information compared to the spatial
relationship. Again, the SmartConvFall tracker achieves the best results of EAO, Ro, Re,
and Ff ail with 0.1713, 0.7501, 1.0833, and 13, respectively. Although the SmartConvFall
tracker employs a tree structure in managing the FC nodes, similar to TCNN, its parent
node is deleted once the child node is created to avoid redundancy in the model pool, as
well as limiting the contribution of an occluded node. Moreover, the obtained results also
corroborate the advantage of maintaining multiple models for the FC layers in resolving
the occlusion issue. The disadvantage of a simple update mechanism as used in TCNN and
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MDNET-N leads to a higher possibility of model drift due to the noisy update. Table 13 also
reveals that the TCNN tracker obtains a higher EAO compared to the MDNET-N tracker,
which indicates that maintaining a set of FC nodes in a tree structure produces better
performance, instead of updating the recent node only. Moreover, the update protocol used
in MDNET-N that relies heavily on recent training samples causes the tracker to be updated
with noisy information, which directly affects the tracker’s performance. Additionally,
SmartConvFall is also able to track the object of interest with the lowest number of tracking
failures, which proves its ability in handling occlusion issues. Figure 18 illustrates some
Bouput comparisons of all tested trackers tested on videos with occlusion attributes.

Table 13. Performance comparison of all tested trackers for the occlusion noise attribute.

Tracker EAO Ac Ro Re Ffail

SmartConvFall 0.1713 0.5008 0.7501 1.0833 13
TCNN 0.1249 0.4886 1.8333 0.5816 22

MDNET-N 0.0923 0.5153 2.0000 0.5118 24

Frame #138 Frame #145 Frame #149

Frame #198 Frame #209 Frame #225

Frame #128 Frame #140 Frame #155

Frame #198 Frame #214 Frame #218

Figure 18. Comparison of Boutput of all tested trackers for occlusion noise attribute.

Meanwhile, Table 14 presents the performance results for the trackers tested on
videos with a cluttered background attribute. A cluttered background is a condition in
which the nearby objects have close appearance resemblance information to the tracked
object, as depicted in Figure 19 with its respective Boutput. The obtained results show that
SmartConvFall is the top tracker with the highest EAO of 0.1509, followed by MDNET-N
and TCNN trackers. Interestingly, SmartConvFall also manages to achieve the top results
for all performance metrics, Ac, Ro, Re, and Ff ail . The good capability of the SmartConvFall
tracker in overcoming the cluttered background noise attribute can be traced back to
the usage of the effective multiple model of FC nodes. Meanwhile, TCNN protocol that
is emphasized more in the recent model in its update procedure causes the model to be
updated with contaminated noisy information. Similarly, the MDNET-N tracker updates its
FC nodes based on the latest training samples only, sampled at a fixed frame interval, which
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leads to having a lower FC score when encountering a cluttered background situation. As
a consequence, the tracker’s ability for the subsequent frames will be affected. Moreover,
Table 14 also indicates that both TCNN and MDNET-N trackers yield similar performance
for Ro, Re, and Ff ail metrics. Nonetheless, the TCNN tracker encounters a tracking failure
case earlier than the MDNET-N tracker, which results in a lower EAO and higher Ac due
to a more frequent re-initialization protocol being executed. Therefore, the experimental
results have validated the SmartConvFall capabilities by maintaining multiple models of
FC nodes to overcome any occluded and cluttered background noise.

Table 14. Performance comparison of all tested trackers for the cluttered background attribute.

Tracker EAO Ac Ro Re Ffail

SmartConvFall 0.1509 0.4813 0.5000 0.7594 2
TCNN 0.1283 0.4575 0.7500 0.6668 3

MDNET-N 0.1367 0.4341 0.7500 0.6668 3

Frame #78 Frame #186 Frame #200

Frame #165 Frame #171 Frame #190

Frame #116 Frame #127 Frame #129

Frame #35 Frame #43 Frame #51

Figure 19. Comparison of Boutput of all tested trackers for the cluttered background attribute.

5. Discussion

This paper proposes SmartConvFall for fall detection based on the instantaneous fall
frame using two subsequent deep learning models: CNN and LSTM. Our work aims to
identify the exact fall frame instantaneously through a regression network rather than
to classify a video clip whether it contains a fall event or not. Hence, the performance
metric used in this work is the mean error that quantifies the mean differences between
the detected frame and its ground truth, instead of the standard performance measure of
the classification task, such as recall and precision. Moreover, we have also implemented
tracking outputs, which are the movement trajectories as the inputs to the regression net-
work. Therefore, several state-of-the-art CNN-based trackers are used as the performance
benchmark. The works in [57,59,78] have adopted a compact CNN design in their proposed
systems with two, three, and five convolutional layers, respectively. Similarly, we have
proposed a compact CNN architecture by utilizing only three convolutional layers. The
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implementation of the compact CNN architecture is essential to reduce the under-fitting
issue [79] that is caused by limited training samples in updating the tracked object model.
Furthermore, the compact design allows for real-time implementation and it is more suit-
able for mobile platform development. On the other hand, a deeper CNN architecture
requires a longer training time due to the increasing number of convolutional layers, as
implemented in [58,61,62]. The increasing number of convolutional layers increases the
computational complexity of the systems. Hence, a fast response time cannot be produced
for fall detection systems that depend on deep CNN architecture.

The nature of fall events that infrequently happen in real-life scenarios has contributed
to another challenge for the vision-based fall detection system. Real-life fall events are
scarce and difficult to acquire. However, most of the previous works make an ideal
assumption on the training samples. Most of these works have used self-collected fall
events videos under a controlled setting, which might pose a different challenge than the
actual fall simulations. This will create a situation whereby the fall event can be easily
triggered, as most of the posed action is not performed accurately. For example, Han
et al. [64] have included twice the number of falling actions in the training phase rather
than the walking poses. Conversely, Min et al. [61] have introduced a set of more typical
human poses such as walking, sitting in a chair, sitting on a sofa, and lying on a sofa. Hence,
this situation can affect the fall detection results. Likewise, our work uses simulated falls
obtained from the FDD dataset. However, the biggest concern regarding the distribution
of the fall events from the typical human poses has been considered. We have excluded
these ADL video sequences from the experiment. This is to ensure that the CNN network
is not trained in a biased manner towards typical human poses which can influence our
system’s performance.

Occlusion and background clutter issues are also critical in vision-based fall detection
systems. For instance, a home-like environment often contains many surrounding objects,
such as a wardrobe, sofas, and tables. These objects may cause occlusion issues when a
person walks behind one of these items. In addition, the object’s appearance may also look
too similar to the person of interest, especially the color. These issues can deteriorate the
performance of the fall event detection system. Therefore, head tracking/segmentation
has been adopted in vision-based fall detection systems. Our work has used the head
information as the region of interest to the tracking network so that the challenges by
occlusion and background clutter can be minimized. Similarly, Yao et al. [51] and Adhikari
et al. [80] have also employed head tracking in their fall detection system. However, there
is also an existing work that does not address these issues specifically, such as the work by
Li et al. [59], whereby their system performance is not very accurate.

At the same time, we have taken a step further in minimizing these crucial is-
sues. Our study aims to determine the fall frame immediately for each input sequence,
which is in contrast to the recent fall detection approaches that only decide the occur-
rence of a fall event after a period of time. The fall frame detection for our SmartCon-
vFall is achieved through the integration of a stacked LSTM model. Moreover, Mobsite
et al. [22] have also employed the LSTM model to provide a time-based fall classification.
However, the proposed technique is not suitable for online implementation because they
have modified the training data by deleting the first and last frames of the fall videos.
This interference can influence the response rate and does not provide the solution to
reducing the negative fall consequences. Similarly, the work in [23] has adopted the LSTM
model for the fall classification approach using the key-points representation of the human
poses. Nevertheless, the proposed system is developed for multiple-person surveillance
applications that are not in our work’s scope. We have put emphasis on single-person
monitoring that targets the elderly or people who live alone at home. We believe that if
more than two persons are available at a scene, the fall detection system is not needed
as the other person can always notify the caretaker immediately in the case of any fall
event occurring.
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6. Conclusions

This paper presented extensive simulation tests of various network configurations for
the proposed SmartConvFall tracker in detecting the exact instantaneous fall frame. The
SmartConvFall tracker relies on deep learning representation. This entails a fully CNN-
based tracker that is employed to track the object of interest in a video sequence. Moreover,
the transfer learning approach was also adopted to improve training accuracy due to
limited training data in a model-free tracker. Hence, optimal training configurations are
crucial to ensure optimized training settings for the network parameter update. Moreover,
we integrated a stacked LSTM model with the output from the tracker to identify the fall
incidents. The stacked LSTM managed to effectively model the temporal information of
the object’s trajectory contained in human movements. The exact instantaneous fall frame
is determined using an assumption that a large movement difference with respect to the
ground level along the vertical axis can be observed if a fall incident has occurred. The
simulation results have proven that the proposed SmartConvFall tracker outperforms the
state-of-the-art CNN-based tracker, which is also suitable to be implemented in a real-time
application with less than a 1-second response time of the input video is streamed in a
30 fps format. This significant result emphasizes that our SmartConvFall has produced
instantaneous response times. This could help to mitigate the slow response rate issues
of the current wearable-based fall detection systems and in opposition with the current
vision-based models that only focus on monitoring the presence of falls within the video
sequences. Furthermore, the recent fall detection systems only manage to detect the
presence of a fall after the patient has fallen and remained on the floor for a prolonged
period of time. Henceforth, the short response time produced by our SmartConvFall
could help to avoid any crucial fall consequences, including death and internal bleeding.
The most important limitation is no existing fall detection system has been developed to
specifically detect the instantaneous fall frame through the LSTM architecture. Therefore,
our current work is unable to compare the performance evaluations with other related
works. We have only managed to make a comparison of instantaneous fall frame detection
performances between the LSTM and RNN models. The current work is also limited by
the lack of publicly available fall detection datasets, particularly those that utilize the RGB
camera to capture the movement of the tracked object in video sequences. Most of the
fall detection datasets only provide wearable-based readings, such as accelerometer and
gyroscope readings. In future works, an attention mechanism and multi-scale scheme can
be integrated into the base SmartConvFall network to produce more robust exact fall frame
detection.
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Abbreviations
The following abbreviations are used in this manuscript:

CNN Convolutional Neural Network
RNN Recurrent Neural Network
LSTM Long Short-Term Memory
GPU Graphic Processing Unit
FDD Fall Detection Dataset
CCTV Closed Circuit Television
IP Internet Protocol
MEMS Microelectrical Mechanical System
WHO World Health Organization
MDNET Multi-Domain Convolutional Neural Network
TCNN Tree-structured Convolutional Neural Network
VOT Visual Object Tracking
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