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Abstract: This paper presents an integrated framework that integrates the kinematic and dynamic
parameter estimation of an irregular object with non-uniform mass distribution for cooperative
aerial manipulators. Unlike existing approaches, including impedance-based control which requires
expensive force/torque sensors or the first-order-momentum-based estimator which is weak to noise,
this paper suggests a method without such sensor and strong to noise by exploiting the decentralized
dynamics and sliding-mode-momentum observer. First, the kinematic estimator estimates the relative
distances of multiple aerial manipulators by using translational and angular velocities between aerial
robots. By exploiting the distance estimation, the desired trajectories for each aerial manipulator
are set. Second, the dynamic parameter estimation is performed for the mass of the common object
and the vector between the end-effector frame and the center of mass of the object. Finally, the
proposed framework is validated with simulations using aerial manipulators combined with two
degrees-of-freedom robotic arms using a noisy measurement. Throughout the simulation, we can
decrease the mass estimation error by 60% compared to the existing first-order momentum-based
method. In addition, a comparison study shows that the proposed method satisfactorily estimates an
arbitrary center-of-mass of an unknown payload in noisy environments.

Keywords: parameter estimation; arbitrary center-of-mass; cooperative aerial manipulation; dynamic
uncertainty

1. Introduction

Multirotor UAVs (unmanned aerial vehicles), which are highly maneuverable and can
be made small, are gaining popularity as a major air transportation platform [1]. Among
them, cooperative UAVs are widely exploited to handle a heavy or large payload [2] beyond
the limits of a robot’s transportation capabilities. Recently, researchers have developed
cooperative mobile manipulators [2–9] by exploiting grasping capability. However, due to
several issues including the complexity associated with multiple aerial robots, they have
focused on solving a control and coordination problem. To make the problem simple, they
have assumed that a relative distance from the payload frame can be easily calculated
because the regular payload has a uniform mass distribution [2,4–9]. For these reasons,
cooperative aerial manipulations to handle a payload with the non-uniform mass distri-
bution (i.e., the geometry of the payload and center of mass (COM) of the payload are
different) are quite complicated.

1.1. Contribution

This paper is interested in resolving the aforementioned problem of handling a pay-
load with an arbitrary center-of-mass for cooperative aerial manipulators. The contribu-
tions of this paper can be summarized as follows. First, we propose a kinematic estimation
algorithm for unknown kinematics of the payload and the trajectory generation algorithm
using the estimated kinematic parameter. The existing method in [10] estimates the relative
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kinematic parameter between each end-effector. However, the proposed algorithm can
estimate not only the kinematic parameters, but also the the coordinates of COM of the
payload, which is crucial for handling a payload with an arbitrary COM. By exploiting the
distance estimation, the desired trajectories for each aerial manipulator are set. Second, we
propose a dynamic parameter estimation for the mass and COM of a payload by using the
external wrench estimation algorithm. While existing approaches require a force/torque
sensor [11] or a vision sensor [12], the proposed algorithm does not require such sensors.
Unlike the existing estimation algorithms for estimating unknown kinematic and dynamic
parameters [9,13], the proposed algorithm does not require an assumption of uniform
mass distribution or contact-force control. In addition, the proposed algorithm shows
better estimation performance of dynamic parameters even with a noisy measurement than
the first-order momentum-based approach [14–16] or our previous research [4]. Finally,
the numerical simulation results show that the feasibility of the proposed algorithm is
capable of allowing cooperative aerial manipulators to jointly carry a payload with an
arbitrary center-of-mass.

1.2. Related Works

Early works on the cooperative aerial manipulation assumed that the dynamic and
kinematic information of the payload is known [2]. They designed a fully centralized
controller and planning algorithm with a known payload model. Unlike these centralized
approaches, in [11], the decentralized impedance controller was applied for cooperative
aerial manipulators. The mass and COM of the payload were estimated by the external
wrench, which is measured by the force-torque sensor. In [17], the authors designed
an optimization-based force decomposition algorithm and decentralized force controller
with a payload stiffness model. However, these methods require expensive force-torque
sensors, which are difficult to be equipped in aerial robots because of a payload limitation.
Contact force estimation algorithm for dual-arm aerial manipulator was developed using
the Cartesian deflection of the end-effector measured by a stereo vision sensor in [12].
Although the method shows precise estimation performance of the payload mass, the
stereo camera always watches the end-effector for the deflection measurement.

Another approach is to design a controller that is robust/adaptive to parameter
changes in the kinematic or dynamic payload model [4,6–8,18]. A robust optimal control
is designed for dual arm manipulator in [18]. In [4,8], decentralized adaptive controllers
were designed based on a consensus algorithm to ensure that the estimated mass from
every agent gets an equal share of the mass of the payload. In [6], the robust controller
with a disturbance observer is used for each aerial manipulator to carry a common payload.
In [7], the effects of parametric uncertainties for each aerial manipulator were removed by
designing a robust controller without using explicit communication between agents. While
these methods [4,6–8] can easily handle the mass changes of the payload, the kinematic
parameters should be known.

Kinematic parameter estimation for cooperative manipulations is used for ground ma-
nipulators [10] or human–robot interaction [19]. As the exact position of human or other
manipulator is difficult to be identified in both applications, the kinematic parameter estima-
tion is essential to complete the cooperative tasks. In [10], the relative kinematics between the
robotic end-effectors can be identified based on the motion signals of the end-effector. In [19],
the unknown kinematic and dynamic model of a payload are estimated for the human–robot
manipulation tasks. For the aerial robots, this relative position may easily be estimated when
they have an accurate global positioning sensor (GPS). However, the GPS sensor cannot
be applied to GPS-denied environments. To resolve this issue, in [20], the relative position
and orientation for rigidly-attached quadrotors were estimated without using an external
force-torque sensor. However, this method only estimates kinematic parameters including the
relative length and orientation of each quadrotor. Therefore, it is hard to apply for cooperative
aerial manipulators which carry a payload with an arbitrary COM.
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There exists some research for handling both the dynamic and kinematic uncertain-
ties [9,13]. In [13], a distributed algorithm for estimating the kinematic and dynamic
parameters of a common payload was proposed for cooperative ground mobile manipula-
tors. However, this method assumes that each ground mobile manipulator can control the
contact force, which is difficult to use for the aerial robots. In addition, they do not perform
estimation and control simultaneously. In [9], they developed a two-stage approach: at
the first stage, each robot estimates the payload kinematic and dynamic parameters using
external wrenches, while, in the second stage, the estimated parameters are used for a
distributed cooperative controller. Although the proposed algorithm can handle a payload
with a arbitrary COM, this method [9] is only applicable to a payload with a uniform
mass distribution.

2. Dynamics

It is necessary to analyze the dynamics of aerial manipulators when they transport
a payload with an arbitrary COM as shown in Figure 1. In this figure, the distance ρi

j is

the estimated relative distance to j-th end-effector by i-th aerial manipulator and τb
i is the

external wrench. In general, we will use bold letters (e.g., τb
i ) to indicate vector quantities

and the upper manuscript (e.g., e, b etc.) to indicate the frame.
The dynamics for cooperative aerial manipulators is addressed. Figure 1 shows that two

cooperative aerial manipulators transport a payload with non-uniform mass distribution.
The coordination Σe,i, Σb,i, and Σo are the end-effector frame, the body frame of each aerial
manipulator, and the common payload frame, respectively. For better understanding, the
definition of the used terms in this paper is summarized in Table 1.

Table 1. The major terms used in this paper.

Term Definition

qi ∈ R8 a state vector for i-th aerial manipulator

τi ∈ R8 a control input

λi ∈ R8 an applied force at the i-th end-effector

τb
i ∈ R8 an external wrench applied to Σb,i

ci ∈ R a force balance term

ve
i ∈ R3 a linear velocity at Σe,i

ωe
i ∈ R3 an angular velocity at Σe,i

mo ∈ R a mass of a payload

ψi
j ∈ R a relative heading angle between Σb,i and Σb,j

ri ∈ R3 a vector from Σo to Σe,i

Ei ∈ R6×6 a grasp matrix

rg ∈ R3 the geometric centroid of the payload wr.t. the leader robot

ρi
j ∈ R3 a relative distance from Σe,i to Σe,j

pi ∈ R8 a generalized momentum

σi ∈ R8 an estimated external wrench

ox,y ∈ R a vector from the geometric centroid to Σo
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Figure 1. Cooperative flight with a payload with a variable CoM.

2.1. Aerial Manipulator and Payload Dynamics

Using the position of the COM of the multirotor in ΣI , we define the states of the
i-th aerial manipulator qi ∈ R6+n (i = 1, ..., N) in terms of the position of the multirotor
UAV, Euler angle of the multirotor, and joint angles of a robotic arm. Here, n = 2 is the
number of degrees of freedom (DOFs) of a robotic arm and N represents the total number
of aerial manipulators.

While carrying a common payload, the dynamics of the i-th the aerial manipulator
can be obtained as

Mi(qi)q̈i + Qi(qi, q̇i)q̇i + Wi(qi) = τi + τb
i , (1)

where Mi ∈ R8×8 is the inertia matrix, Qi ∈ R8×8 is the Coriolis matrix, and Wi ∈ R8 is the
gravity term. τi is the control input in the inertial frame ΣI and τb

i is the external wrench.
In this study, we can set

τb
i = −JT

i (qi)λi (2)

where λi ∈ R6 is the wrench applied to the end-effector of the i-th aerial manipulator in
Σe,i. Ji(qi) ∈ R6×8 means the Jacobian matrix from Σb,i to Σe,i.

Then, the dynamics of a common payload can be defined as

Hoq̈o + µoq̇o + Go = ∑N
i=1 Eiλi, (3)

where q̇o ∈ R6 is the state of a payload. The state consists of a six-dimensional vector
including the translational velocity and rotational velocity of the payload in ΣI . We use
Ho = diag(moI3, Jo) ∈ R6×6, where mo is the mass of the payload, Jo ∈ R3×3 is the inertia,
and I3 is 3× 3 identity matrix. The parameter µo ∈ R6×6 is a matrix containing centripetal
terms and the Coriolis. Go ∈ R6 is a gravity matrix. Ei ∈ R6×6 is a grasp matrix and is
given by

Ei =

[
I3 03

S(ri) I3

]
, (4)

where 03 is a 3× 3 zero matrix and S(ri) is the skew-symmetric matrix expressing the
cross-product from the position of Σo for Σe,i.
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2.2. Combined Dynamics

Using the assumption of a rigid grasp, the wrench λi can be computed using the force
distribution solution [21] as

λi = ciE†
i (Hoq̈o + µoq̇o + Go), (5)

where ci is the weight satisfying ∑N
i=1 and E†

i can be obtained using the Moore–Penrose
pseudo-inverse solution as

ciE†
i =

[
ciI3 −ciS(ri)Π−1

03 ciΠ−1

]
, (6)

with Π = I3 + ∑N
i=1 ciS(ri)ST(ri). To compute Π, the position of all end-effector with

respect to Σo is required. In our previous work [22], we set ci = 1/N and ri is computed
based on the assumption of uniform mass distribution. However, in this paper, we estimate
ri using the relative distance ρ and the estimated force applied to the end-effector. Using
the estimated ri, the weight value ci can be calculated.

As the manipulator grasps the paylod rigidly, all positions and orientations (i.e., qo)
of the payload and the end-effectors can be expressed using the state variable of the aerial
manipulator itself (i.e., qi). We can obtain the following equation as

q̇o = E−T
i Jiq̇i. (7)

By substituting (5) and (7) into (1), we can obtain the decentralized motion equation
for the i-th aerial manipulator as

Di(qi)q̈i + Ci(qi, q̇i)q̇i + Gi(qi) = τi. (8)

Here, the matrices are calculated as

Di = Mi(qi) + ci Mo(qi), Gi = Wi + ciWo(qi) (9)

Ci = Qi(qi, q̇i) + ciQo(qi, q̇i) + ci JT
i (E†

i HoE−T
i ) J̇i

where the following representations hold

Mo(qi) = JT
i (E†

i HoE−T
i )Ji ∈ R8×8,

Qo(qi, q̇i) = JT
i (E†

i µoE−T
i )Ji ∈ R8×8,

Wo(qi) = JT
i E†

i Go ∈ R8. (10)

The detailed process for (10) are described in the previous work of this research [22].
Thanks to (8), we can control the aerial manipulator separately.

3. Kinematic Parameter Estimation and Path Planning

In this section, we address the kinematic parameter estimation and coordination
algorithm for cooperative aerial manipulations. The overall structure is shown in Figure 2.
The distance ρi

j, heading angle ψi
j between i-th and j-th robots, and mass mo are estimated

by an online parameter estimator by receiving the state qi and the estimated external
wrench τb

i . The estimated kinematic parameters are exploited to calculate the geometry
centroid of the payload. With the given desired trajectory of the common payload, the
desired trajectory for each aerial manipulator can be computed using the geometry centroid.
After the estimation of the dynamic parameters ri and mo in (5), the controller generates
the control input.
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Figure 2. The proposed structure for handling a payload with a non-uniform mass distribution.

Estimation of the relative distance ρi
j can be done with a vision sensor [23] for the

indoor environment or RTK-GPS sensor [24] for the outdoor environment. However, the
method [23] assumed that the vision sensor always watches the plane to compute the
homography matrix. In the outdoor environment, the position can be measured by RTK-
GPS with a few centimeters accuracies [24], but this system cannot be applied in indoor
environments or near buildings. To overcome this issue, this paper proposes the kinematic
parameter estimation algorithm only using a state variable itself.

3.1. Kinematic Parameter Estimation

To achieve this goal, we first make the following assumptions on the kinematic model
of cooperative manipulators.

(1) The position/orientation of the end effector grasping on to the payload in the global
frame are not known.

(2) At each grasping point, the roll and pitch angle of the end effector is the same for the
cooperative aerial manipulators.

(3) Configurations of the payload are previously given, so aerial manipulators know the
grasping point of the payload. However, the exact relative distances and heading
angles between each robot are unknown.

For the ground manipulator, it is necessary to estimate the six DOF kinematic model
(i.e., three DOF for the distance and three DOF for the relative attitude). However, for an
aerial manipulator, roll (i.e., φi) and pitch (i.e., θi) angles can be computed without estima-
tion because those angles are close to 0 degrees in the hovering state, or easily obtained
on the IMU sensor. Despite the inertial measurement unit (IMU) sensor, it is impossible
to accurately estimate the heading angle in the global frame even with the magnetometer
sensor. Because of these issues, unlike approaches for ground manipulators [10,19], we
only estimate the relative heading angle. Therefore, our approach is divided into two steps:
(1) heading angle ψi

j, and (2) the relative distance ρi
j.

The relative heading angle is estimated from the measurement of the IMU sensor
around the z-axis. From the assumption of rigid grasping, the module pair [φi, θi] has to be
the same for both i and j-th aerial manipulator in the same time step k as

kθi
kφi

=
kθj
kφj

tan(ψi
i). (11)
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The above equation should be satisfied for the whole process, so we can augment the
Equation (11) as

ψ̂i
j =

∑K
k=1

(
tan−1(

kθi
kφi

)− tan−1(
kθj
kφj

)

)
K

, (12)

where K is the total number of time steps. It is impossible to estimate the relative heading
angle when the roll and pitch angles are exactly 0 degrees, but in the case of drones, this is
not the case, so the algorithm can run.

For the relative distance estimation, we analyze the kinematics of the payload. Let ve
i

and ωe
i be the linear and angular velocities of the end-effector of the i-th aerial manipulator

in Σe,i. These terms can be computed as[
ve

i
ωe

i

]
=

[
RT

i 0
0 Ti

]
Jiq̇i (13)

where Ri is the rotation matrix, which represents the orientation of Σb,i for the inertial
frame. Ti is a mapping matrix between the angular rate of an aerial robot in ΣI and the
body angular rate ωe

i in Σe,i.
The end-effector velocities at the i-th and j-th aerial manipulator should satisfy the

following constraints:

ωe
i = R(ψ̂i

j)ω
e
j

ve
i = R(ψ̂i

j)v
e
j − ρi

j ×ωe
i (14)

where R(ψ̂i
j) is the rotation matrix using ψ̂i

j, which is the orientation of Σe,j for Σe,i.
The proposed method for parameter estimation ρij is updated based on the following

error terms

evi = ve
i − R(ψ̂i

j)v
e
j + ρi

j ×ωe
i . (15)

To minimize the prediction error in (14), we now define the cost function as

Jvi =
n

∑
i=1

ae

2
‖evi‖

2 +
N

∑
j=1
(i 6=j)

ar

2
(‖ρ̂i

j‖ − ‖ρ̂
j
i‖)

2, (16)

where ae and ar are non-negative weights. Recalling that ρ̂i
j is the distance to from the

i-th end-effector to the j-th end-effector estimated by i-th aerial manipulator. Therefore,
|ρi

j| = |ρ
j
i | = ρ in the true value, which means that the relative distance between i and j-th

end-effector should be the same.
In the cost function, the error term ‖evi‖2 is designed to minimize the error and

estimate ρ̂i
j. The term (‖ρ̂i

j‖ − ‖ρ̂
j
i‖)

2 is the consensus term to share the same estimation

results. Here, we apply the gradient rule to obtain the update rule for ρi
j as

k+1ρ̂i
j =

kρ̂i
j − α

∂Jvi

∂ρ̂i
j

=kρ̂i
j − α · ae(ve

i − R(ψ̂i
j)v

e
j −ωe

i ×k ρ̂i
j)

− α · ar

N

∑
j=1
(i 6=j)

(‖kρ̂i
j‖ − ‖

kρ̂
j
i‖)

kρ̂i
j

‖kρ̂i
j‖

, (17)
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where α is the learning rate. Note that the kinematic estimation of ρ̂ij converges to the true
value ρ if the following PE (persistence of excitation) condition is satisfied as

k+T

∑
k

S(ωe
i )

TS(ωe
i ) > 0, (18)

for the constant time T. Here, S(ωe
i ) is the skew-symmetric matrix of ωe

i . Equation (18)
implies the condition of persistent excitation (PE) and the PE term should be positive
definite. The estimation performance comparison will be shown in Section 5.

3.2. Path Planning

As we discussed the assumption in Section 3, we assume that cooperative robots know
the configuration of the payload. For example, as shown in Figure 3, aerial manipulators
know the basic configuration between each robot. In this case, geometric centroid can be
estimated using the estimated distance ρi

j. For simplicity of the path planning, the i-th
robot can be considered a leader robot and the rest of the robots can be considered as
follower robots. The geometric centroid rg can be calculated as

rg =
N

∑
j=1
i 6=j

ρi
j/N. (19)

Given the desired trajectory of the payload qd
o , the desired trajectory for each end-

effector (i.e., qd
e,i ∈ R6) is derived as

qd
e,i = qd

o − rg

qd
e,j = qd

o + (ρi
j − rg) (j = 1, ..., N, i 6= j) (20)

where j is a randomly selected j-th aerial robot frame to unify and express it in one
coordinate system among several robots (See Figure 3 for the details). Using qd

e,i, the
desired trajectory for each aerial manipulator qd

e,i ∈ R8 is obtained based on the inverse
kinematics solution. The details of inverse kinematics are described in [4].

Figure 3. Relative vectors with respect to the reference robot in Σe,i.
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4. Dynamic Parameter Estimation

External wrench estimation to handle unexpected collisions of robots has begun with
early works on stationary ground manipulators [25]. To increase the speed and accuracy
of the calculation, the wrench estimation algorithm is newly developed for a dual-arm
manipulator [26] and now it is also applied to an aerial robot [15,16]. The hybrid estimation
algorithm based on a generalized momentum and acceleration was satisfactorily applied
for an aerial robot to detect collisions [15,16]. However, these algorithms [15,16] are applied
only for a single aerial robot and the estimation performance was not verified in the
presence of sensor noise. Research has been studied to solve the sensor noise problem of
the wrench estimation algorithm [27], but it was applied only to the collision problem of a
single ground manipulator.

To handle the aforementioned issue, in this section, we propose the dynamic parameter
estimator for cooperative aerial manipulators to obtain the payload mass m̂o and ri. If a
payload has uniform mass distribution and the aerial manipulators exert the same force on
the grasping point of the payload, then the ri is easy to compute, and the mass m̂o can be
estimated only using only the state variable of a robot itself as described in our previous
work [4]. However, for the payload with non-uniform mass distribution, previous works
cannot be applied because the geometry centroid and COM of the payload are different. To
overcome this issue, in this paper, we design the dynamic-parameter-updates rule for the
cooperative aerial manipulator by exploiting the external wrench estimation algorithm.

In this paper, as configuration of a payload is given as described in Section 3.1, we
can assume that the moment of inertia is approximated using the kinematic (i.e., ρi

j) and
dynamic parameter (i.e., mo and ri) of a payload [28]. Therefore, we focus on the estimation
of mo and ri.

4.1. First-Order Momentum Observer

Before addressing the proposed parameter estimation algorithm, we briefly explain the
classical first-order momentum-based wrench estimator for the performance comparison
used in simulations as used in [14].

The momentum-based estimator is designed based on the generalized momentum of
the robot as

pi = Diq̇i. (21)

Using (21), the time derivative of pi is given as

ṗi = τi + τb
i − Ciq̇i − Gi + Ḋq̇i

= τi + τb
i + CT

i q̇i − Gi. (22)

Here, the passivity property (i.e., Ḋ(qi) = C(qi, q̇i) + CT(qi, q̇i)) was used. τb
i and is

the external wrench that we want to estimate.
The derivation of classic momentum-based estimator is designed based on the follow-

ing residual vector as

mi = Ko

(
pi −

∫
(τi + CT

i q̇i − Gi + mi)ds− pi(0)
)

, (23)

where p(0) is the initial value of p and Ko is the positive gain. By using (22), the time
derivative of the residual r can be obtained as

ṁi = −Ko(mi − τb
i ). (24)

This equation means that mi is the first-order filtered value of τb
i ; therefore, it can be

used as an estimation of the external wrench.
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4.2. Dynamic Parameter Estimation with Sliding Mode Momentum Observer

In the classical momentum-based observer, to achieve mi ≈ τb
i , Ko should be large

enough. However, a large value of Ko results in higher noise amplification in the estimated
wrench. In this case, the estimation performance of dynamic parameters may deteriorate.
This issue can be solved by exploiting the second-order sliding mode (SOSM) momentum
observer which was introduced in [29].

SOSM observer, the so-called super twisting algorithm, is widely used in sliding-mode
literature to design controllers, observers, and exact differentiators. Using the generalized
momentum in (21), the momentum observer can be designed

˙̂pi = τi + CT
i q̇i − Gi − T1|p̃i| − T2p̃i + σi (25)

σ̇i = −S1sgn(p̃i)− S2p̃i, (26)

where p̂i is the estimated momentum of i-th aerial manipulator and p̃i = p̂i − pi. Si and Ti
are the user-defined gain.

Using (22) and the definition of new variable si = σi − τb
i , we can obtain the observer

error dynamics as

˙̃pi = −T1|p̃i|1/2sgn(p̃i)− T2p̃i + σi

ṡi = −S1sgn(p̃i)− S2p̃i − τ̇b
i . (27)

Assuming that τb
i and σi are globally bounded by some known constant and Si and

Ti are selected high enough, then the origin (p̃i, si) = (0, 0) is an equilibrium point that
is globally asymptotically stable. Here, we can say that σi becomes an estimation of τb

i .
The detailed proofs are described in [29]. The detailed process for dynamic parameter
estimation is described in Figure 4.

Figure 4. The proposed structure for the dynamic parameter estimation.

As τb
i ∈ R8 is the external wrench applied to the aerial manipulator in Σb,i, we have

to compute the applied force at the end-effector λi. Following the description in [30], λi
can be derived as

λ̂i = (JT
i )

†τ̂b
i

[ f̂ e
i,x, f̂ e

i,y, f̂ e
i,z]

T : =
[
I3 03

]
λ̂i (28)
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where I3 and 03 are 3× 3 identity and zero matrix, respectively. (JT
i )

† = (Ji JT
i )
−1 Ji is the

pseudo inverse of JT
i . Here, we only need the force at x, y and z direction, so

[
I3 03

]
is added.

Now, the dynamic parameters (i.e., m̂o and ri) in Figure 1 are estimated using the
estimated wrench in (26). The mass is updated as

m̂o =
∑N

i=1 f̂ e
i,z

N × g
, (29)

where g is gravitational constant and f̂ e
i,z is the estimated force by i-th aerial manipulator at

z-direction.
The momentum generated by the effective force at the end-effector should be zero, so

the following equation should be satisfied:

N

∑
j=1

(ρi
j − rg − og)× f̂ e

j = 0. (30)

Note that i in (30) refers to the leader robot or the reference frame. As this paper
considers the flat-surface payload as shown in Figure 5, Equation (30) can be rewritten as

N

∑
j=1

f̂ e
j,z(r

g
j,y − og,y) = 0,

N

∑
j=1

f̂ e
i,z(r

g
j,x − og,x) = 0 (31)

N

∑
j=1

f̂ e
j,y(r

g
j,x − og,x)− f̂ e

j,x(r
g
j,y − og,y) = 0 (32)

Finally, ox and oy are computed as

ox =
∑ f̂ e

j,zrg
j,x

∑ f̂ e
j,z

, oy =
∑ f̂ e

j,zrg
j,y

∑ f̂ e
i,z

. (33)

Now, we can compute ri as ri = (ρi
j − rg − og). Equation (32) may not be necessary

for the flat-surface payload considered in this paper, but it is necessary for verification of
the estimated value. In addition, if the surface of the payload is not flat, og can be estimated
by solving (30) directly.

(a) (b)

Figure 5. Analysis for the center of mass of the common payload: (a) by two aerial manipulators and (b) by three
aerial manipulators.
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5. Simulations

To evaluate the performance of the proposed algorithm, we present several simulation
results to compare the performances of the proposed algorithm with the conventional
algorithm. As the conventional estimation algorithm for cooperative robots [4,9,13,14] is
difficult to handle the payload with an arbitrary COM well, it is hard to compare the esti-
mation performance with the proposed algorithm. For this reason, we divide performance
comparison into two fields, mass estimation, and kinematic parameter estimation, and
compare them with existing algorithms. The mass estimation performance is compared
with first-order-based momentum observer [14] and our previous parameter estimation
algorithm [4]. For the kinematic parameter estimation, the adaptive control for an inaccu-
rate kinematic model [10] is used. For detailed analysis, two scenarios (two drones or three
drones) as shown in Figure 5 are considered in the simulation.

5.1. Simulation Environment

In the simulations, each aerial manipulator consists of a quadrotor and a 2-DOF arm.
For the two aerial manipulators in Figure 5a, the mission consists of manipulating an
unknown payload from the initial position [0, 0.6, 0.6]T m to [1.2, 1.6, 0.6]T m. The payload
is characterized as mo = 0.5, ox = 0 m, and oy = −0.2 m. The total length of the payload
is l := 0.8 m. For the three aerial manipulators in Figure 5b, the initial position of the
payload is [0.23, 0.4, 0.6]T m and the final position of the payload is [1.73, 1.9, 0.6]T m. In
this mission, the payload is characterized as mo = 0.5, ox = 0.1 m, and oy = 0.1 m. In the
triangular payload, the length of each side is set to 0.8 m.

In both scenarios, for the property of the persistence of excitation (PE) in (18), two
aerial manipulators rotate for 5 s. After the PE process is finished, the cooperative aerial
manipulator follows the desired trajectory.

The control input in (8) is calculated as

τi = D̂iq̈r,i + Ĉiq̇r,i + Ĝi − (κs,i + δi)si (34)

where D̂i, Ĉi, and Ĝi include the estimated payload mass m̂o. κs,i is the positive-definite
gain matrix. Here, δτ is the auxiliary control input for handling properties and defined as

δi :=
ci
2

JT
e,iE

†
i (Ḣo − 2µ)E−T

i Je,i. (35)

The sliding surface variable si can be defined as

q̇r,i = q̇d
i −Λiei

si = q̇i − q̇r,i = ėi + Λiei (36)

where Λi is a positive diagonal matrix and qd
i is the desired state of the i-th aerial manipu-

lator. The detailed process for the controller is described in our previous research [4].
For the performance analysis, we assumed that

(1) The main uncertainty is caused by the measurement noise, q̇mes
i = q̇i + εv, qmes

i =
qi + εp.

(2) The noise in the measured state εv and εp has a high frequency and is zero mean.

In the simulations, the standard deviation of the measurement noise εv and εp are set as

• 0.2 m in x and y direction and 0.1 m in the z direction
• 0.01 rad in attitude and 0.1 rad in joint angles.
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Let ε̂k is the estimated parameter of ε at the time step k and ε is the true value. The
performance of the payload mass (i.e., m̂o) and kinematic parameter estimation (i.e., ρ̂ij) is
evaluated by considering the average error (Eae) and the maximum error Eme:

Eae =
1
N

T

∑
k=1
‖ε̂k − ε‖, Eme = max

k
‖ε̂k − ε‖. (37)

To analyze the above performance, Monte Carlo simulations are also performed using
30 sample runs.

Based on our proposed framework discussed in the previous section, we first con-
ducted a simulation study with two aerial manipulators carrying an irregular payload,
which are shown in Figure 6a. During the phase to satisfy PE condition (18), the desired
state for the first aerial manipulator is fixed and the desired state for the second aerial
manipulator is set as

qd
2 = [0.05× t, 0.05× t, 0.6, 0, 0,−30 sin(2π/5t),−90, 0]T , (38)

where unit of the attitude and joint angles is written in degrees. After the kinematic
estimation phase, the desired trajectory for the payload is set as

qd
o = [0.1× t, 0.1× t, 0.6, 0, 0, 0]T . (39)

We assume that the noises for the translational and angular velocities have a value
that is twice as large as the position noise.

5.2. Simulation Results

The simulation data are shown in Figures 6 and 7. In Figure 6, the comparison results
including kinematic parameter estimation and trajectory tracking performance are shown.
In Figure 6b, the red dotted line is the true value and the blue line is the estimated results
by the proposed algorithm, and the green dotted line is the estimated results by [10]. The
estimation error between the proposed method and conventional method in Figure 6b is
also caused by the fact that the algorithm proposed in [10] estimates six-DOF poses of a
payload while the proposed algorithm in this paper estimates only four-DOF poses of the
payload considering the characteristics of the cooperative manipulator. For this reason, we
can accurately estimate the location of COM (i.e., ox and oy) in the noisy measurement as
shown in Figure 6e. In Figure 6c,d, the red-dotted line is the desired state for the aerial
manipulator and the blue line means the actual states. As the conventional estimation
algorithm for the relative distance ρi

j contains a relatively large error, the desired trajectory
in the x and z direction may incorrectly be adjusted. The tracking performance in x and z
direction also affects the joint angle of the arm. So our proposed algorithm shows better
tracking performance as shown in Figure 6f.
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Figure 6. Trajectory tracking of a cooperative aerial manipulators. (a) 3D flight scenario. (b) Kinematic parameter estimation.
(c) by the conventional algorithm. (d) by the proposed algorithm. (e) Estimation of ox and oy. (f) Tracing error comparison.
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(a) (b)

Figure 7. Dynamic parameter estimation. (a) Force estimation results. (b) Dynamic parameter estimation.

The dynamic parameter estimation is addressed in Figure 7. In Figure 7, the blue
and green line is the estimated value by the proposed algorithm and the first-order-based
momentum observer used in [14]. The orange line in Figure 7b is the estimated mass
by our previous research in [4]. Our previous algorithm [4] for the mass estimation
shows better performance compared with the first-order momentum observer [14], but
the proposed method in this paper shows the best performance. This is because our
algorithm with second-order sliding-mode observer accurately estimates the external
wrench applied to the end-effector than the first-order-based momentum observer as
shown in Figure 7a. Although showing better performance than the momentum-based
observer, our previous work cannot handle the payload with an arbitrary COM because
of the assumption of the uniform-mass distribution. In addition, as the force distribution
ci in (5) can be calculated using the estimated force on z axis (i.e., ci = f̂ e

i,z/∑N
j=1 f̂ e

j,z), the
estimation of ci in Figure 7b describes that our proposed algorithm estimates the applied
wrench precisely. The detailed estimation performance for the dynamic and kinematic
parameters is presented in Table 2. In this table, the average error Eae and the maximum
error Eme are calculated after parameter converges. std in Table 2 means standard deviation.
As described in Table 2, the proposed algorithm has the smallest value in both Eae and Eme.

Table 2. Mass and kinematic parameter estimation performance.

Proposed Algorithm Comparison Algorithm

Parameter Eae (std) Eme Eae (std) Eme Ref

m̂o [kg] 0.1968 (0.0094) 0.1883
0.4859 (0.0134) 1.0196 by [14]

0.3275 (0.0104) 0.4604 by [4]

ρ̂i
j(x) [m] 0.1265 (0.0107) 0.0242 0.2015 (0.0479) 0.1120

by [10]ρ̂i
j(y) [m] 0.2456 (0.0463) 0.0363 0.2550 (0.0680) 0.1004

ρ̂i
j(z) [m] 0.0549 (0.0055) 0.0048 0.4081 (0.1073) 0.3757

The second simulation using three aerial manipulators is described in Figures 8 and 9.
Unlike the first scenario with two aerial manipulators, the leader or reference aerial ma-
nipulator in the second scenario estimates ρi

j (e.g., i = 1, and j = 2, 3) simultaneously
using their velocity measurement. In this case, it is difficult to distinguish whether the
effect in (14) is caused by the robot with j = 2 or the robot with j = 3. To overcome this
issue, the consensus parameter ar in (17) for the reference or leader robot is set to 0. For the
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follower robot, we set ae 6= 0. Figure 8b shows the estimation performance. The relative
distances between i-th and j-th aerial manipulators are estimated precisely even in the
complex-shaped payload. Figure 9 shows the estimation of the mass and the COM of the
payload. Our algorithms estimate the COM of the payload satisfactorily with or without
the noisy measurement.

(a) (b)

Figure 8. Trajectory tracking of three cooperative aerial manipulators. (a) 3D fight of three aerial manipulators. (b) Estima-
tion of relative distances (ρij).
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(c)

Figure 9. Estimation performance of three aerial manipulators. (a) Dynamic parameter estimation. (b) Estimation of ox and
oy. (c) Estimation of ox and oy without noise.
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6. Conclusions

This paper presents a cooperative aerial manipulation algorithm to handle a payload
with an arbitrary center-of-mass. The proposed framework consists of two estimation
algorithms: relative distance estimation and dynamic parameter estimation. The relative
distances are estimated using the translational and angular velocities between aerial robots.
By exploiting the distance estimation, the desired trajectories for each aerial manipulator
are set. After the kinematic estimation, the dynamic parameter estimation is performed
for the mass of the common object and the vector between the end-effector frame and the
COM of the payload. We performed flight simulations using multiple aerial manipulators
and compared the proposed algorithm with the conventional method involving our previ-
ous work or the first-order momentum-based algorithm. The simulation results showed
that the proposed algorithm achieved the best performance in parameter estimation and
trajectory tracking.

Our future works include relaxation of PE (persistence of excitation) conditions and
taking into account complex payload types. The relaxation of PE is required for the safety
of drones because it can be dangerous when the drone rotates to satisfy the PE condition.
In addition, the proposed method assumes that the COM and the geometric centroid are on
the same horizontal plane and the configuration of a payload should be known previously,
otherwise it may be difficult to estimate. Experimental validation of the proposed method
on a real setup is needed to address the above-mentioned challenges.
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