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Abstract: Research on carbon dioxide (CO2) geological and biogeochemical cycles in the ocean is
important to support the geoscience study. Continuous in-situ measurement of dissolved CO2 is
critically needed. However, the time and spatial resolution are being restricted due to the challenges
of very high submarine pressure and quite low efficiency in water-gas separation, which, therefore,
are emerging the main barriers to deep sea investigation. We develop a fiber-integrated sensor based
on cavity ring-down spectroscopy for in-situ CO2 measurement. Furthermore, a fast concentration
retrieval model using exponential fit is proposed at non-equilibrium condition. The in-situ dissolved
CO2 measurement achieves 10 times faster than conventional methods, where an equilibrium con-
dition is needed. As a proof of principle, near-coast in-situ CO2 measurement was implemented
in Sanya City, Haina, China, obtaining an effective dissolved CO2 concentration of ~950 ppm. The
experimental results prove the feasibly for fast dissolved gas measurement, which would benefit the
ocean investigation with more detailed scientific data.

Keywords: seawater dissolved gas; carbon dioxide; optical cavity ring-down spectroscopy;
in-situ measurement

1. Introduction

Marine carbon cycling is the result of a series of physical, geological and biological
processes on a spatiotemporal scale [1,2]. The ocean absorbs one-third of the anthropogenic
carbon emission, about 2 billion tons per year. As such, the ocean becomes one important
place for carbon sequestration [3]. Furthermore, CO2 is the main greenhouse gas, the main
dissolved gas of seawater and the main fluid component of the deep-sea extreme window
of cold spring and hydrothermal solution. Precise measurement on its spatiotemporal
distribution is significant to investigate the biogeochemical material cycle and global
climate change [4,5]. However, common methods based on sampling-laboratory analysis
are not enough to support modern marine science. In-situ CO2 sensors with high sensitivity,
high fidelity, large dynamic range and fast response are highly needed in many cutting-edge
research topics, such as the sea-air exchange flux of CO2 [6], CO2 concentration of deep-sea
cold spring and hydrothermal fluid components [7–9], and isotope measurement [7,8,10,11].

Currently, optical technology, semiconductor gas sensing and mass spectrome-
try [8,9,11–13] are common methods in in-situ measurement of dissolved gas in seawa-
ter. Among them, laser-based in-situ optical spectrometer is suitable for greenhouse gas
sensing in seawater due to its unique selectivity and sensitivity [12,14,15]. Using infrared
spectroscopy technology, the German Hydro C company demonstrated dissolved CH4
measurement in seawater [16]. Using the off-axis integrated cavity output spectroscopy
(OA-ICOS), the LGR Company in the United States measured the dissolved CH4/CO2 and
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its isotope δ13CH4 in seawater [11]. Using mid-infrared absorption spectroscopy technol-
ogy, Zheng Chuantao et al. achieved the measurement of dissolved CO2 and its isotope
δ13CO2 [12]. In addition, cavity ring-down spectroscopy (CRDS), proposed by O, Keefe
and Deacon in 1988 [17], has ultra-high detection sensitivity, light intensity jitter immunity
and free instrument calibration, making CRDS one of the best candidates for gas detection.
The past years have witnessed its remarkable progresses in precision spectroscopy [18–20]
and important applications in atmospheric trace gas measurement [21–23]. However, the
application of this technology in the marine field for in-situ measurement remains unre-
solved due to the challenges of high stability resonant cavity, high precision/low power
circuit and time-consuming dissolved gas concentration retrieval.

In this paper, we report the development of an in-situ CRDS based dissolved CO2
sensor. A fast exponential regression model is proposed to retrieve the concentration of dis-
solved gas in seawater. In the implementation, we design high-pressure assembling and use
polydimethylsiloxane (PDMS) membrane for water/gas separation and enrichment [24,25].
A long-time in-situ observation near the coast is carried out to prove the feasibility of
in-situ separation, enrichment and measurement of dissolved CO2 in seawater.

2. Principle of CRDS-Based Seawater Dissolved Gas Measurement
2.1. Water/Gas Separation and Enrichment, and Dissolved Gas Retrieval

A PDMS membrane is one common tool, as the gas-liquid interface with a thickness
of l, to separate and enrich seawater dissolved gases [26,27]. The concentration difference
between both sides enables the dissolved gas pass through the membrane and blocks liquid
water molecule (H2O)n. Thus, small gas molecules, such as CH4, CO2 and O2 can be sepa-
rated from seawater. The water/gas separation of PDMS membrane is typically described
by the “dissolution-diffusion” model [24,26]. When concentration difference between both
sides exists, gas molecules diffuse into the membrane and realize gas exchange.

In the case of a stable situation, the dissolved gas concentration remains stable along
the direction of film thickness. The diffusion flux on the side of the gas chamber can be
expressed by Fick’s first law [24,26,27]:

FG =
DGSG A(PG1 − PG2)

l
, (1)

where FG (cm3·cm2(cm2polymer)−1·s−1) is the diffusion flux of gas component G per
unit time, DG (cm2·s−1) is the diffusion coefficient of gas component G in the membrane,
SG (cm3·(cm2polymer)−1·Pa−1) is the solubility coefficient of gas component G in the
membrane, PG1 (Pa) is the partial pressure of seawater dissolved gas G, PG2 (Pa) is the
partial pressure of gas component G in the gas chamber, A (cm2) is the film area, l (cm) is
the film thickness. While gas diffusion flux can be expressed by Fick’s second law in the
case of unstable situation [25,26]:

FG,t = FG,ss

(
1 + 2 ∑∞

n=1(−1)n exp
{
−n2π2DGt

l2

})
, (2)

where, FG,t is the gas flux at time t, FG,ss is the gas flux in the stable situation.
The diffusion coefficient of CO2 in PDMS membrane is about 1.5 × 10−5 cm2/s,

l� 1 cm, t = 1 s, then exp
{
−n2π2DGt

l2

}
is almost zero and FG,t ≈ FG,ss. Thus, the diffusion

flux in this case can also be described by Fick’s first law. Therefore, the concentration
change of the gas component G is as follows:

PG2 ∗V =
∫ DGSG A(PG1 − PG2)

l
dt, (3)
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where V is the volume of the gas chamber. From Equation (3), we can obtain:

dPG2

dt
∗V =

DGSG A(PG1 − PG2)

l
, (4)

With the boundary condition, t→ ∞, PG2 = PG1 , it will be extrapolated that:

PG2 = K ∗ exp
(
−DGSG A

lV
t
)
+ PG1, (5)

where K is related to the initial pressure. For non-condensable gases, such as CO2 and CH4,
the value of −DGSG A

lV is independent from partial pressure.
After measuring the value of PG2 over time in an unbalanced situation, the exponential

regression is used to retrieve PG1. PG1 equals to PG2 in balanced situation.

2.2. Optical Measurement Using CRDS

When laser with an intensity of Iin passes through uniform gas substance, the laser
decays to Iout due to gas absorption, which can be described by the Beer-Lamber law [10,17]:

Iout = Iin ∗ exp(−α ∗ L), (6)

where, α (cm−1) is the spectral absorption coefficient, L (cm) is the interaction distance.
In the configuration of CRDS, a couple of high reflectivity mirrors, usually higher than

99.99%, enable a significant interaction length extension inside a limited physical space [28],
and become capable of detecting minor absorption of trace gas concentration. Its working
principle is shown in Figure 1. When laser beam resonates with one resonant cavity mode,
the laser power inside the cavity will be rapidly built up. With a trigger that the inside laser
power reaches a certain threshold, the incident laser is quickly cut off to generate a free
intracavity ring down. The leaked laser intensity Iν(t) after each ring down is successively
recorded at the exit to obtain optical intensity that decays with time as follows,

Iν(t) = I0ν ∗ exp
(
− tc

Lmirrors
(1− R + ανLmirrors)

)
, (7)

where, c is the speed of light, t (µs) is the time, Lmirrors (cm) is the physical distance between
the two mirrors, R is the reflectivity of the optical cavity mirror, αν (cm−1) is the spectral
absorption coefficient of the specific wavelength; I0ν is the initial laser intensity when the
laser is cut off.
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The time for the initial laser intensity reduces to 1/e in the measurement is defined as
the ring-down time [17]. According to Equation (7), in the case of no gas absorption, the
empty cavity ring-down time τ0 is:

τ0 =
Lmirrors

C(1− R)
, (8)

In the presence of gas absorption, the ring-down time τν is:

τν =
Lmirrors

C(1− R + ανLmirrors)
, (9)

Combining (8) and (9), we obtain the intracavity spectral absorption coefficient as:

αν =
1

Cτν
− 1

Cτ0
, (10)

In the absorption spectrum [29], the absorption coefficient can be expressed as:

αν = S(T) ∗ Ptotal ∗ X ∗ ψ(ν), (11)

where S(T) (cm−2·atm−1) is the intensity of the absorption line, Ptotal (atm) is the total
pressure of the gas, X is the molecular concentration, ψ(ν) (cm) is the absorption line shape
function.

Since integral of ψ(ν) over ν is equals 1, i.e.,
∫ +∞
−∞ ψ(ν)dν = 1, S(T) relates to the

temperature for a specific absorption line, and Ptotal can be measured using a commercial
pressure sensor. Therefore, after fitting the absorption coefficient curve to obtain the
integrated area A, the partial pressure of the gas can be calculated by:

P = XPtotal =
A

S(T)
, (12)

Thus, the partial pressure of dissolved gas (PG1) can be retrieved by measuring the
partial pressure of gas (PG2) in the cavity and fitting formula (5).

3. In-Situ Dissolved CO2 Sensor Configuration

Figure 2 depicts the schematic diagram of the optical dissolved-CO2 sensor, which
comprises three parts, one pressured chamber, one water/gas separation and enrichment
unit and one gas measurement unit. The first part, i.e., the pressure chamber, is a dry
titanium alloy chamber with an inner diameter of 128 mm, a length of 750 mm and
a wall thickness of 10 mm. It can withstand a pressure as high as 57 MPa, which is
suitable for experiments at about 4500 m under water. The second part, i.e., the water gas
separation and enrichment unit consists of a water pump (SEA-BIRD SBE-5T), a PDMS
membrane module (membrane thickness 50 µm, diameter 5 cm, gas separation efficiency
0.034 mL/min at 296 K and 1 atm pressure difference), a drying box, an air pump (KNF
NMP05), a filter (Swagelok, SS-2F-05), two needle valves (Swagelok, SS-ORS2) and the
gas chamber (optical resonant cavity). With the water pump, the seawater continuously
flows through the surface of PDMS membrane at a flow rate of 0.8 L/min, forming a
stable dissolved gas concentration field on the surface of the membrane. The dissolved gas
permeates into the PDMS membrane. On the other side of the membrane, the permeated
gas is desiccated by the drying box, then enters the gas chamber through the needle valve
1 and the filter, and finally returns to the PDMS membrane module through the filter, the
needle valve 2 and the gas pump. Thus, water/gas separation and enrichment can be
completed. The needle valve permits a flow rate of approximately 50 mL/min.

The third part, i.e., the gas detection unit, includes a control circuit (DSP, TMS320C6748,
Texas Instruments, Dallas, TX, USA), a DFB laser (NLK1L5GAAA, NEL, Yokohama, Japan),
a semiconductor optical amplifier (SOA, BOA1080P, Throlabs, USA), an isolator (PIISO-



Sensors 2021, 21, 6436 5 of 12

1600-D-L-05-FA, Qinghe Photonics, Shenzhen, China), an optical resonator and a photo-
electric detector (GPD, GAP1000FC, GPD Optoelectronics, Salem, MA, USA). Sawtooth
signal and step signal generated by the control circuit are combined to drive the laser
to achieve laser beam resonance enhancement inside the optical resonator. When the
enhanced intracavity laser power, monitored by the detector, exceeds a certain threshold,
the incident laser is rapidly cut off using the TTL driven SOA to generate ring-down
signal. With the ring down signal recorded, a fast single exponential fitting is performed
to calculate the ring down time. After 20 recordings of ring-down time for a single longi-
tudinal mode, the step voltage is reset to match the laser to next longitudinal mode until
the whole absorption line of CO2 is covered. With the averaged absorption spectra, the
CO2 absorbance and concentration are calculated by spectral fitting algorithm. Finally, the
concentration of the seawater side gas is retrieved according to the exponential fitting in
the unbalanced situation.
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3.1. Absorption Line Selection

Appropriate absorption line with high absorption intensity and less background
interference can benefit the dissolved CO2 measurement with high signal-to-noise ratio.
Considering the application condition in seawater dissolved gas measurement, absorption
spectra of CO2, 13CO2, H2O and CH4 within 1599.4–1599.7 nm is simulated based on the
HITRAN database [30] (temperature: 296 K, gas pressure: 1.01 × 105 Pa, CO2 = 400 ppm,
13CO2 =, H2O = 2% and CH4 = 2 ppm). The simulation results, shown in Figure 3, illustrate
that CO2 absorption coefficient is 2.5 ×10−7 cm−1 with negligible interference. Thus
absorption transition R(36) at 6251.761 cm−1 is selected for the following CO2 measurement.

3.2. Optical Resonator Design

The optical resonator is shown in Figure 4. Two identical cavity mirrors M1 and M2
(Layertec) have a diameter of 12.7 mm, a radius of curvature of 1000 mm and a reflectivity
of higher than 99.99% (@1500~1700 nm). Lens1 and Lens2 are adjustable focus aspherical
collimators (CFC-8X-C, Throlabs, Newton, NJ, USA). To suppress the high-order modes,
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the laser beam is spatially filtered using a single-mode fiber before illuminating on the
photodetector, achieving a high-order modes suppression ratio of better than 100:1. It
should be noted that, most of the optical and mechanical components of the optical cavity
are fixed with structural adhesive to adapt to the extreme marine environment and improve
the system stability.
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lens for coupling light into fiber.

3.3. Longitudinal Mode Matching and Spectral Scanning

The physical distance between the two cavity mirrors is 420 mm, corresponding to a
free spectral range (FSR) of 0.0119 cm−1. For each measurement using the continuous-wave
CRDS system, the laser frequency is adjusted to resonate with one cavity mode. Since the
cavity length remains stable during the measurement, the longitudinal cavity modes are
used as the frequency reference to depict spectral absorption curve. To avoid potential spec-
tral distortion from the longitudinal mode leakage during the spectral scanning process, we
propose a strategy of longitudinal mode matching in a stepwise manner shown in Figure 5,
and the step size is set as 1/5 FSR. Ideally, when the laser resonates with the longitudinal
cavity mode q, 5 steps can rematch laser and the resonant cavity. However, it can be
hardly realized due to the laser wavelength drift and cavity vibration. Differently, a high
frequency sawtooth modulation (amplitude, 1/4FSR ≤M ≤ 2/5FSR) is simultaneously
superimposed on the step signal to ensure the resonance of each cavity mode with the
laser. In the implementation of this strategy, each longitudinal mode resonates at least once
in 5-step scanning, and at least one step does not resonate. The discrete spectrum can be
obtained by taking the non-resonant step as a marker.
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4. Experimental Results
4.1. Sensor Performance

After assembling the sensor, calibrated CO2 sample with a certain concentration of
885 ppm (uncertainty, 1%) was sealed inside the gas chamber. The absorption spectrum
of CO2 is obtained using the method described in Section 3.3. Voigt spectrum fitting was
performed using a Python LMFIT-based program. Figure 6 presents a direct comparison
between raw spectrum data of and the fitting curve, and a residual error of 1.5 × 10−9 cm−1.
The SNR is calculated to be 500, corresponding to a detection limit of 1.8 ppm.
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Figure 6. Comparison of the measured CO2 spectral data and Voigt fitting curve.

CO2 samples with different concentration of 2000 ppm, 1600 ppm, 1000 ppm, 500 ppm
and 250 ppm were generated by diluting the calibrated 10000 ppm CO2 with pure N2.
The uncertainty for above samples is 1%, mainly introduced by the dilution system. The
mass flow meter was used to control the inlet flow rate at 50 mL/min. A continuous
measurement of each CO2 sample was performed over 45 min and the experimental results
are shown in Figure 7a.
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A linear fit, shown in Figure 7b, was thus performed to the measured data and the
R-square value was calculated to be 0.9999, illustrating a good linear response to the CO2
concentration from 250 ppm to 2000 ppm. The relative error of the measured values of the
five groups of standard gases is less than 2.66%, which is consistent with the uncertainty of
the standard gases.

To prove the feasibility, a long-term (8 h) comparison experiment was carried out
between this sensor and one commercial land-based instrument CRDS instrument (G2201-i,
Picarro). The gas pipelines of G2201-i and this sensor were connected together to guarantee
the same the analyte was simultaneously and separately measured. The comparison result,
shown in Figure 8, demonstrates that the measured CO2 concentration and its variation
trend are consistent with each other and the maximum relative difference is within 1.3%.
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4.2. Verification of Exponential Fit Retrieval Method for Dissolved CO2 Concentration

Sample solutions are prepared by mixing 2000 ppm CO2 and pure N2 (purity: 99.99%)
using two mass flow meters (AST10-DLCMX-100C-025-A2B2-4VE, Asert, Franklin, MA,
USA), as shown in Figure 9a. A submersible pump (SBE-5T, SEA-BIRD, Bellevue, WA,
USA) is used to continuously cycle the solution through the PDMS module to separate
dissolved CO2 to be measured. PDMS module is connected to the chamber of in-situ
measurement system via a stainless tube. After 12-h measurement, the exponential model
combined with Levenberg Marquardt (LM) algorithm is performed on the measured data.
Figure 9b depicts the results with a R-square of 99.84%, when gas-phase CO2 concentration
in the chamber is lower than the dissolved CO2. Figure 9c depicts the results with a
R-square of 98.71% when gas-phase CO2 concentration in the chamber is higher than the
dissolved CO2. The coefficient DGSG A

lV , independent from the gas concentration, inside and
outside the membrane are 0.1389 and 0.1444, respectively. The coefficients of two different
situations are consistent with each other with a small difference of 3.8%. Thus, the method
of exponential fit for dissolved gas concentration proves to be validated.
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4.3. In-Situ Detection of Dissolved CO2 in Seawater

From 6 to 7 March 2021, an in-situ observation was carried out near the coast of Sanya
Institute of Deep Sea, Chinese Academy of Sciences, Sanya, Hainan Province. Figure 10
shows the observation location.

At the beginning of measurement, about 1100 ppm CO2 was filled in the cavity to
quickly balance the concentration inside and outside the membrane. Figure 11 shows the
observation result, the whole measurement is divided into two unstable parts and one stable
part. In the first unstable part (3 h), the measured concentration was higher than that of
seawater dissolved CO2 due to the presence of 1100 ppm CO2 in the measurement chamber,
and the CO2 diffused from the measurement chamber into seawater. The concentration of
seawater dissolved CO2 is calculated to be 850 ppm. In the second stable part (9 h), the
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gas concentration inside and outside the membrane remained equal, and the dissolved
gas concentration fluctuated between 950 ppm to 980 ppm. In the third unstable part
(8 h), the concentration of dissolved CO2 decreased and the CO2 in the cavity continued
to diffuse into seawater. The concentration of dissolved CO2 in the water is calculated to
be 808 ppm. Interestingly, these measured dissolved CO2 concentrations are much higher
than the atmospheric CO2 concentration, about 400 ppm, mainly because of a number of
yachts cruising near the coast and the tide phenomenon.
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5. Conclusions

We develop a fiber-integrated in-situ dissolved CO2 sensor using CRDS, in which a
PDMS membrane is employed for water/gas separation and enrichment, and an exponen-
tial regression model is proposed for fast dissolve CO2 retrieval. The model feasibility is
verified by performing a comparison test under two different situations, i.e., measurement
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chamber CO2 concentration is higher and lower than the dissolved CO2 concentration.
Both their R-square of fitting are better than 98.5% and the difference of the two individ-
ually measured PDMS membrane coefficient DGSG A

lV is only 3.8%. The whole absorption
spectrum of CO2 can be obtained within 90 s and a detection sensitivity of 1.8 ppm has been
achieved. A near coast in-situ measurement has been implemented over 24 h and provided
regular fluctuation of dissolved CO2 concentrations, which is due to the tide phenomenon.
Future efforts will be made to improve the corrosion resistance ability by using titanium
alloy stainless steel as the pressured chamber material and to improve the gas separation
efficiency by increasing the membrane surface area. Therefore, the developed senor could
act as a promising tool to achieve high-precision detection of dissolved gas in seawater and
then support the investigation on the ocean, such as vertical dissolved CO2 profile as deep
as 4500 m and long-term dissolved CO2 monitoring under deep-sea extreme environment
window, e.g., hydrothermal and cold spring.
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