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Abstract: The presented paper describes a hardware-accelerated field programmable gate array
(FPGA)–based solution capable of real-time stereo matching for temporal statistical pattern projector
systems. Modern 3D measurement systems have seen an increased use of temporal statistical pattern
projectors as their active illumination source. The use of temporal statistical patterns in stereo vision
systems includes the advantage of not requiring information about pattern characteristics, enabling
a simplified projector design. Stereo-matching algorithms used in such systems rely on the locally
unique temporal changes in brightness to establish a pixel correspondence between the stereo image
pair. Finding the temporal correspondence between individual pixels in temporal image pairs is
computationally expensive, requiring GPU-based solutions to achieve real-time calculation. By
leveraging a high-level synthesis approach, matching cost simplification, and FPGA-specific design
optimizations, an energy-efficient, high throughput stereo-matching solution was developed. The
design is capable of calculating disparity images on a 1024 × 1024(@291 FPS) input image pair
stream at 8.1 W on an embedded FPGA platform (ZC706). Several different design configurations
were tested, evaluating device utilization, throughput, power consumption, and performance-per-
watt. The average performance-per-watt of the FPGA solution was two times higher than in a
GPU-based solution.

Keywords: depth sensor; stereo vision; FPGA; HLS; temporal stereo; statistical pattern projection;
hardware acceleration

1. Introduction

Three-dimensional optical measurement systems have seen significant improvements
in measurement capabilities in the past years, and this trend continues to grow. The
increased technological advances in computing hardware and more advanced algorithmic
approaches have also contributed to this aspect, enabling new applications in biomedical
imaging, metrology, and many other areas.

With the development of three-dimensional optical metrology, different approaches
to solving metrological problems have emerged. The type of approaches can generally be
classified based on the presence of pattern projection units. Solutions that do not employ
projection units can be described as passive approaches. The main advantages of passive
approaches are the simplified hardware requirements and high measurement speeds but at
the cost of reduced accuracy and precision. Solutions that utilize illumination are classified
as active approaches [1]. These approaches are often more complex in hardware, due
to non-trivially controlled pattern projectors emitting structured light. These projectors
can be implemented in many different forms, each having its characteristic strengths
and weaknesses. Popular examples of active projector-based systems can employ time-
modulated light illumination (e.g., TOF), statistical pattern projection (e.g., pseudorandom
dot projection), or digital/analog fringe projection, to name a few. Further information on
most coded structured light projection methods can be found in [2,3].
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This paper will focus on the algorithmic side of disparity calculation for a specific ac-
tive projection approach called aperiodic sinusoidal fringe projection. Aperiodic sinusoidal
fringe projection has become increasingly popular in systems that deliver high-speed 3D
depth measurements [4,5]. Traditional binary coding methods and fringe analysis methods
rely on digital pattern projection, which requires precise control of the projected pattern and
a priori pattern knowledge. Depth reconstruction in such scenarios is done using codeword
decoding, and in the case of controlled periodic pattern projection, using phase-measuring
profilometry (PMP) or Fourier transform profilometry (FTP). In contrast, measurement
systems that rely on aperiodic fringe projection methods do not require precise phase shift
control of the projected fringe pattern or any prior pattern knowledge [4]. The method of
disparity calculation relies on finding locally unique temporal changes in brightness to
establish a pixel correspondence between at least two cameras. The minimum requirement
for a working system is a projector source that provides a sufficiently large temporal vari-
ation of the projected pattern and at least two cameras observing the projected pattern.
The projection of temporally varying aperiodic sinusoidal fringes represents an optimized
way of aperiodic fringe projection suitable for epipolar geometries. The overall depth
reconstruction quality depends on the amount of captured temporal samples [5]. The
simplification of complex projector requirements simplifies the end system design, which
enables designers to replace otherwise complex DLP and LCD projectors with simplified
mechanical counterparts [4].

The drawback of aperiodic sinusoidal fringe projection systems is the increased depth
reconstruction error for the same number of temporal measurements, compared to periodic
fringe projection methods [5]. Another less commonly addressed issue is the computa-
tional burden associated with the algorithms used for disparity calculation, as highlighted
in [6]. Compared to algorithms used in periodic fringe projection [1], the computational
requirements of temporal pixel-to-pixel correlation limit the portability of such approaches
to high-end computing devices. Utilization of computationally expensive matching cost
metrics, such as normalized cross-correlation (NCC), often requires processing capabilities
that are only achievable using power-demanding non-mobile GPU platforms. Addressing
this computational burden on a low-power FPGA platform and the FPGA-specific design
decisions at the high-level synthesis (HLS) level is the main focus of the presented paper.

Therefore, we propose a flexible HLS-based architecture for energy-efficient, real-time
disparity calculation. The significant contributions of the presented work are as follows:

• A pipelined HLS-based architecture that utilizes a problem-specific design structure
to minimize the required FPGA resources and maximize throughput.

• Utilization of sliding window buffer design optimizations for reduction of out-of-order
memory accesses as well as balanced use of FPGA resources.

• Performance comparison with a GPU-based solution. We evaluate the device utiliza-
tion, throughput, power consumption and energy efficiency of disparity calculation,
using different configurations.

The rest of the paper is organized as follows: Section 2 provides background informa-
tion and related work. Section 3 describes the architecture and optimizations; Section 4
presents the experimental results, and Section 5 provides the conclusion.

2. Related Work

In the past few years, several stereo-vision disparity calculation methods have been
presented [7]. Most of the published research focuses on stereo systems with no active
illumination—passive stereo systems. Passive stereo systems are easy to implement in
hardware, as they require no active illumination means: the only hardware requirements
are two synchronized camera sensors. This reduced hardware complexity makes end
solutions cheaper to manufacture, more widely available, and thus, easier to obtain [2].

Systems that employ active illumination are more complex in hardware, but often
offer better, more accurate results. Such systems do not necessarily require a stereo vision
pair if proper and accurate knowledge about the projected pattern is available. The most
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used approach that uses active illumination is called sinusoidal fringe projection, utilizing
phase-shift profilometry [2]. Other concepts that employ active illumination are also
Time-of-Flight (ToF) as well as single and multi-shot statistical pattern projection.

The scope of this paper is limited to aperiodic sinusoidal temporal pattern projection.
Currently, some publications are evaluating the use of such methods [4–6,8]. However,
the main subject of these publications mostly stems from the field of optics. The closest
research work that addresses the issue of computational complexity in temporal statistical
pattern stereo was published by Dietrich et al. [6]. The main contribution of this work
was the incorporation of an extended census transform over the temporal axis and the
use of the Hamming distance as the matching cost metric when calculating disparity. This
simplification enabled the real-time operation of such an approach on a desktop graphical
processing unit (Nvidia GTX 1080).

As noted in these publications, temporal statistical projection systems offer relaxed
hardware requirements but at the cost of increased computational complexity. This com-
putational burden becomes apparent in systems with constrained computing capabilities
or in systems operating on a limited power budget. Since the domain of temporal stereo
image vision has seen limited—niche—use over the years, there is still a research gap to be
filled, especially regarding the computational aspect of such systems. Narrowing this gap,
with emphasis on low-power design on an FPGA platform, is one of the main goals of this
research paper.

3. Design Architecture
3.1. Temporal Stereo

The goal of a stereo-vision system is the reconstruction of three-dimensional coordi-
nates from a pair of simultaneously captured images from different viewpoints. This goal
can be achieved by using a stereo camera and is commonly realized in the form of placing
two cameras along a horizontal axis, separated by a baseline distance, forming an epipolar
geometry [7].

After obtaining the stereo image pair, the two separate views are used to estimate the
depth information. This is done by finding the best possible pixel correspondences of the
same environmental features, seen from different views. The correspondence between the
left and right camera view is also known as disparity [7].

Passive stereo vision systems exploit spatial coherence (e.g., texture) to establish
correspondence between views. Temporal stereo vision systems try to establish the cor-
respondence by exploiting the spatial uniqueness of temporal brightness variation of the
actively illuminated scene. The correspondence is, therefore, encoded in the time domain.
This additional dimension makes it possible to obtain accurate and valid correspondence be-
tween the left and right view on a pixel-level resolution if the observed scene is illuminated
in a way that provides sufficient temporal variation and enough samples are available.

An example of finding pixel-level resolution correspondence between the left and
right view when illuminating the scene with an aperiodic sinusoidal fringe projector is
displayed in Figure 1.

Searching for correspondence between two separate views on a single-pixel level only
works on stereo systems with active illumination. A temporal pixel can be described as
the temporal (time) series of brightness values of a single pixel at constant x and y image
coordinates. Accurate and valid results can only be obtained if multiple images of the scene
are taken, and the changes in the illumination pattern can be observed from both views.
The projected pattern needs to exhibit enough temporal variability.
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Figure 1. Correspondence search between individual “temporal pixels” from left (image stack IL) 
and right (image stack IR) view. The closest match to temporal pixel IL(x1, y1) (green arrow) is the 
temporal pixel IR(x3, y3) (red arrow). 
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views. The projected pattern needs to exhibit enough temporal variability. 

3.2. FPGA System Architecture 
In this section, we introduce the high-level structure of the proposed FPGA design. 

We present the design decisions that were made in order to achieve maximum 
throughput. All the important building blocks are presented, using snippets of HLS code. 
The HLS code was designed for the Vivado HLS compiler but can be easily modified to 
be used in any other HLS environment. The proposed structure is displayed in Figure 2. 
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building blocks: 
• AXI Input Interface—An input FIFO structure is required in order to read data from 

external memory and save data in a suitable order for further processing. Captured 
images residing in external memory (DRAM) are stored sequentially in successive 
memory regions, most commonly in an order determined by the time of capture. This 
means that accessing image pixels with the same local x and y coordinates, but taken 
at different time instants, requires non-sequential access. The main purpose of this 
structure is to buffer the respective batched number of pixels from every image in a 

Figure 1. Correspondence search between individual “temporal pixels” from left (image stack IL)
and right (image stack IR) view. The closest match to temporal pixel IL(x1, y1) (green arrow) is the
temporal pixel IR(x3, y3) (red arrow).

3.2. FPGA System Architecture

In this section, we introduce the high-level structure of the proposed FPGA design.
We present the design decisions that were made in order to achieve maximum throughput.
All the important building blocks are presented, using snippets of HLS code. The HLS
code was designed for the Vivado HLS compiler but can be easily modified to be used in
any other HLS environment. The proposed structure is displayed in Figure 2.
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Figure 2. High-level structure of the proposed FPGA-based design.

The operation of such a design can be described, using the following high-level
building blocks:

• AXI Input Interface—An input FIFO structure is required in order to read data from
external memory and save data in a suitable order for further processing. Captured
images residing in external memory (DRAM) are stored sequentially in successive
memory regions, most commonly in an order determined by the time of capture. This
means that accessing image pixels with the same local x and y coordinates, but taken
at different time instants, requires non-sequential access. The main purpose of this
structure is to buffer the respective batched number of pixels from every image in a
way to maximize throughput and minimize the number of external memory accesses.
Data access is done over the Advanced eXtensible Interface (AXI) interface.

• Temporal Census Transform—The temporal variation of brightness at a pixel level
is encoded using a modified census transform operation, forming the feature vector,
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that can be represented as a bitstring. Grayscale pixel values (brightness) are encoded
as a bitstring in the same way as that published in [6].

• Disparity Calculator—Using the temporally encoded features (bitstrings), both left-
to-right and right-to-left disparities are calculated. The Hamming distance is used as
the metric for evaluating the matching costs between bitstrings. The main goal of this
unit is to obtain an initial disparity estimate, which is later refined to a subpixel level.
Calculating both the left-to-right as well as the right-to-left disparities is required in
order to obtain consistent results. The disparity calculation is performed, using a
sliding window architecture.

• Consistency Checker—Consistency checking is required to ensure that the calculated
disparities are valid. A calculated disparity is consistent if the difference between the
left-to-right disparity and right-to-left disparity corresponding to the same point in
space, is less than or equal to 1.

• Median Filter—Not all disparities calculated by the disparity calculator are consistent.
Inconsistent disparities are present, which are marked using the consistency checker.
The spatial distribution of these inconsistencies can be represented as a form of salt
and pepper noise. Such inconsistencies can be mitigated by application of a median
filter. A median filter can be easily realized, using the sliding window approach.

• Subpixel Refinement—The main goal of the disparity calculator is to obtain a coarse
disparity map. This initial coarse disparity estimate can be used as a baseline for
further refinement to a subpixel. Refinement is done using the normalized cross-
correlation similarity measure on a reduced set of temporal pixel candidates. A sliding
window approach, similar to the one used in the coarse disparity calculation, can be
utilized for such a purpose.

• AXI Output Interface—An output FIFO structure is required in order to write the
resulting subpixel disparities over the AXI interface to the external memory (DRAM).

In order to maximize the throughput, instruction and task pipelining have to be
utilized. Single instruction pipelining is achieved with predictable operation and memory
access scheduling inside individual building blocks. Task pipelining is achieved with
proper utilization of high-level operations, but only after every high-level task is internally
adequately pipelined. The high-level task schedule used in the FPGA-based design is
displayed in Figure 3.
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Figure 3. A high-level overview of task pipelining in the design.

The task schedule presented in Figure 3 indicates several key points of the proposed
design. The initiation interval is the time that must elapse between issuing two tasks of
the same type. Because we are working with temporal data, several non-sequential read
operations (non-sequential in terms of in-memory location) must be made to load the
appropriate data from the external memory into the hardware accelerator. Every read
operation has to be issued for a large, contiguous memory region (e.g., image line) in order
to minimize the penalty of external memory access. After the data have been read from the
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external memory and saved in local memory structures, the computational tasks can be
initiated. When the computation is finalized, the subpixel level disparity is written back to
external memory.

Describing such a pipelined high-level design in the form of HLS pseudocode can be
done in the way as presented in Listing 1.
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Listing 1. High-level pseudocode for the proposed FPGA design.

3.3. Feature Calculation—Temporal Census Transform

The temporal census transform procedure used in this design was previously proposed
as the BICOS Plus algorithm by Dietrich et al. [6]. The algorithm represents the use of the
census transform operator over the temporal axis with an additional step of comparison
with the temporal mean and sum of two elements. The transformation is done by encoding
the temporal grayscale values of pixels via the following steps:

• Pairwise comparison of neighboring and non-neighboring brightness values. If value
A is bigger than value B, encode this as 1, else 0.

• Comparison of brightness values with the temporal mean brightness values. If value
A is bigger than mean M, encode this as 1, else 0.

• Comparison of sums of two brightness values with all other neighboring and non-
neighboring sums of two brightness values. If the sum of two brightness values A is
bigger than the sum of two brightness values B, encode this as 1, else 0.

The terms neighboring and non-neighboring refer to the temporal (axis t) and not the
spatial distance (axis x and y).

The main benefit of transforming grayscale values to a lower-dimensional encoding
is the reduction in computational complexity. The end result of this census transform is
a bitstring, which, in this case, was limited to a length of 64 bits. Because of this, simpler
similarity measures can be used for feature comparison (e.g., Hamming distance). The total
feature length in bits depends on the number of temporal brightness values.

3.4. Disparity Calculation

Disparity calculation is accomplished, using a sliding window architecture. Sliding
window buffers are well-known structures that are widely used for solving many signal
processing problems on FPGA-s [9,10]. Usage of sliding window buffers enables the
construction of deep pipeline structures. Therefore, a properly utilized sliding window
approach can be used for the pipelined disparity calculation on rectified images.

A high-level overview of the pipelined disparity calculator is presented in Figure 4.
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The operation of such a design can be described in the following manner:

• Two input features (FR and FL), each encoded as a 64-bit long bitstring, are moved
into the calculator during each operating cycle.

• The calculator includes a buffer, which represents the sliding window. The buffer
consists of D memory cells. Each cell holds a feature (64-bit long bitstring) from the
right camera view. Every memory cell can be accessed simultaneously during each
clock cycle. When a new feature (in this case FR) is fed into the calculator, it enters the
buffer at the head of the buffer (index D-1) and shifts all other features by one element
to the left. The left-most element (index 0) is shifted out of the calculator. This process
repeats every cycle.

• The second input feature, feature (FL), is read into the calculator and stored into a
single memory cell. Since we are calculating the left-to-right disparity, we only require
one memory cell, which holds the temporal feature from the left view (FL). This
input feature is accessed by every processing element (PE) during the calculation in
this cycle.

• The calculator includes D processing elements (PEs). Each of these processing elements
accesses the cell with the FL feature and the respective FR[i] feature cell in the sliding
window, where i represents the PEs index. Each processing element calculates the
Hamming distance, using inputs from the two respective memory cells, and saves the
output to the respective H[i] cell of the Hamming distance buffer, H.

• The calculated Hamming distances in the H buffer represent the input into the min-
imum cost sorting network. Using a divide-and-conquer approach, neighboring
elements of the buffer are pairwise compared. Through a series of comparisons, the
minimum element and the respective index of the minimum element are determined.
The resulting index of the element of the smallest Hamming distance represents the
disparity. The expected disparity value of such a design ranges from -DH to DH
[-DH, DH).

From an image-processing perspective, we are trying to find the closest match between
a single 64-bit feature from the left image in a pool of D numbers of 64-bit feature candidates
from the right image. When calculating the right-to-left disparity, the roles are reversed.

An additional prefill read procedure is required in order for this design to function as
described above. When calculating the left-to-right disparity, a total of D/2 read cycles of
the right input feature FR are required to be read in order to complete the prefill procedure.
The prefill procedure is necessary in order to fill the shift buffer and thus, establish the
candidate pool for the disparity search. For example, if we are calculating the left-to-right
disparity at image location x = 0, y = 0, we require access to the feature FL(0,0) and all
features FR(x, 0), where x ranges from 0 to D/2 [0, D/2).
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After the initial prefill, this design can calculate the disparity in every clock cycle if
sufficient hardware resources are available. The HLS pseudocode of the above-described
design is displayed in Listing 2.
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Listing 2. High-level pseudocode for disparity calculation. Both left-to-right disparity and right-to-
left disparity can be calculated simultaneously if adequate resources are available.

3.5. Consistency Checker

Consistency checking is performed using the following steps:

• The previously calculated left-to-right disparity (DLR) and right-to-left disparity (DRL)
are moved into the consistency checker during each operating cycle.

• A buffer, consisting of D memory cells, represents the sliding window. Every time
the value of DLR is read, it enters the buffer head (index D-1). All other elements get
shifted by one element to the left. The element at the buffer tail is shifted out. This
process repeats every cycle.

• The right-to-left disparity (DRL) is used as the input of the select port for the multi-
plexer. Disparity represents the index difference of corresponding temporal pixels
from different views. This fact can be exploited when determining consistency. If
we take the LR disparity DLR and RL disparity DRL, we expect that the contents of
the memory cell at the D/2 + DRL index of the buffer DLR will contain the value
−DRL = DLR. If this condition is fulfilled, the result is considered consistent. Since we
are working with coarse disparities, we decided to use a less strict condition and con-
sidered the disparity DLR to be consistent under the condition that |DLR − DRL| ≤ 1
is satisfied.

The structure of the consistency checker is displayed in Figure 5.
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3.6. Median Filter

Median filtering represents one of the tasks that has already been evaluated extensively
on many FPGA platforms [11–13]. Median filters can be easily realized using FPGA
hardware and are commonly implemented using a sliding window buffer and compare-
and-swap sorting network. The sorting network can be realized using a systolic array in
order to enable deep pipelining.

The structure of the sliding window and the sorting network is displayed in Figure 6.
The approach displayed in Figure 6 requires two sliding windows. The first window

is the median filter window, which holds the pixels that are input into the sorting network.
The second window is the line buffer. This design only requires one read operation for
every pixel and can, therefore, be easily pipelined. The values of the median filter window
are obtained by accessing the local values stored in the line buffer.

The used sorting network can be described, using a series of compare-and-swap
operations. By adding intermediate buffers after each compare-and-swap operation, this
design can reach single clock cycle pipeline operation. The overall structure can be modified
to be used with any image width and median filter window size.
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compare-and-swap operations. CAS symbols are taken from [13].

3.7. Subpixel Refinement

Subpixel refinement represents the last step in the signal processing pipeline. Subpixel
refinement makes it possible to obtain disparity maps that exceed the nominal pixel
resolution of the input image.

Refinement on a subpixel level is done by recalculating disparity on a smaller search
range, the bounds of which are determined by the initial coarse correspondence search.
The inputs for calculation are not bitstrings (temporal features obtained using the census
transform), but temporal pixels in the form of grayscale values. In order to refine the initial
estimate, we use the normalized cross-correlation similarity measure for calculating the
similarity between different temporal pixels. The final subpixel value is determined, using
parabolic interpolation.

A high-level overview of the subpixel refinement design in displayed in Figure 7.
From Figure 7, it can be seen that the subpixel refinement process structure is similar to

the structure used in disparity calculation. The main difference between these two designs
is the underlying memory structure of the buffers. Both designs use a sliding window
architecture, but the sliding window in the subpixel refinement design is realized using
several parallel buffers (each buffer is implemented as a Dual-port Block RAM) instead of
distributed memory (LUTRAM).

Using Block RAM as the main memory structure reduces the total usage of LUTRAM,
which is already used extensively during the initial coarse correspondence search. This
balances the total resource utilization.

The use of parallel Block RAM memory structures makes it possible to simultaneously
access multiple temporal pixels within the refinement search range, as displayed in Figure 7.
Here, the coarse disparity Dc is used for selecting the search range used for refinement.
In Figure 7, the 125th column of the memory is selected as the refinement search range.
The memory cell in 4th BRAM structure at the 125th column represents the center of the
search range.
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Figure 7. A high-level overview of the subpixel refinement process. Each Block RAM can hold a full image line of
temporal pixels. Each read cycle, the right temporal pixel is saved into every Block RAM structure (8 in this case) at the
respective memory locations (diagonal). Color codes indicate the clock cycle of writing. Characters are used to display the
memory contents.

The mode of access is scheduled to prevent simultaneous memory cell access when
writing and reading. Scheduling enables simultaneous read/write operation without
access collision. Writes that occur on the same clock cycle are displayed using the same
color code. Greyed-out memory cells represent unused memory cells.

When looking at Figure 7, it can be seen that the temporal pixel TR is written into
Block RAM in diagonal writing order. For example, during the 127th clock cycle, TR is
written to the 125th memory cell of the 7th BRAM structure, 126th cell of the 6th BRAM,
127th cell of the 5th BRAM, 128th cell of the 4th BRAM, 129th cell of the 3rd BRAM, 130th
cell of the 2nd BRAM, 131th cell of the 1st BRAM and 132th cell of the 0th BRAM. A prefill
procedure is required to prevent memory access collision in the same way as with every
other sliding window approach used in other components.

The HLS pseudocode of the above-described design is displayed in Listing 4.
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4. Experiments and Results
4.1. Experimental Setup

We use two computing platforms in order to evaluate the performance of the above-
described processing algorithms. The general experimental test setup overview is displayed
in Figure 8.

For the first platform, we used the Xilinx ZC706 Evaluation Kit as the computing
platform. This kit was used to evaluate the FPGA-based design.

The second platform was used to evaluate the GPU performance. The components of
this platform are an Intel Core i7 7700, Nvidia GTX 1070. The GPU solution was not the
main focus of this research but was used for comparative reasons in order to establish a
best-effort reference implementation.
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As previously mentioned, the dataset used for evaluation was taken from the initial
publication explaining the extended census transform (referred to also as BICOS PLUS) [6].
The provided dataset includes 400 rectified image pairs of a scene illuminated by an
aperiodic fringe pattern. The photographed test scene includes objects made from different
surface materials. This includes a ceramic bust, a wooden chest, a ceramic cup with felt
handle, a model of a polyhedral compound made from 3D-printed plastic, a disc and
a turbine housing, both made from cast iron. The authors of the dataset note that an
artificial light source in the form of an inhomogeneous NIR ambient light source was used
to illuminate the scene from the left side in order to simulate real-world conditions.

As already noted by the authors in [6], the raw captured images of the test scene
are subject to lens distortion and lens blur. The captured raw images are rectified, thus
undistorting the image before being processed by the algorithm.

4.2. FPGA Hardware Utilization

Multiple different design configurations were synthesized in order to verify and
evaluate the whole processing pipeline. All HLS designs were compiled, using Vivado HLS
2018.2. The obtained Verilog code was synthesized and implemented, using Vivado 2018.2.

The design parameters were set to the following values for evaluation:

• AXI4 Interface—64 bits data width, burst limit 256 transfers.
• Temporal census transform maximum feature count: 64.
• Image dimensions: 1024 × 1024 pixels, 10-bit grayscale pixels, rectified.
• Coarse disparity search range: 256 disparity levels [−128, 128).
• Median filter window size: 3 × 3 pixels.
• Subpixel disparity refinement search range: 8 disparity levels [−4, 4).
• Subpixel refinement interpolation: parabolic.

The above-mentioned parameters were kept constant during evaluation. The only
parameter of the configuration that was changed was the number of successive temporal
images used for evaluation (N).

The utilization report is displayed in Table 1 and Figure 9.
As seen in Figure 9, resource utilization follows a clear trend. The number of temporal

images used for disparity calculation clearly increases the resource utilization of the pro-
posed design. The amount of DSP and block RAM units used by the design rises linearly
with N. The number of used flip-flops and LUTs rises until the number of features calcu-
lated by the temporal census transform reaches the preset maximum limit (64). Overall,
the resource utilization of every resource is below 50%.

The resource utilization of individual building blocks for the configuration where N
equals 10 is displayed in Table 2 and Figure 10.

The main contributors to the resource utilization are the disparity calculator and
subpixel refinement component. The reason for such a high requirement of FF and LUT
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primitives by the disparity calculator is the large number of processing elements used for
calculating the Hamming distance. When calculating the disparity range of 256 disparities
per clock, we require a constant operation of 256 PEs to fulfill this requirement. Because we
are calculating both LR and RL disparities in parallel, the required amount of PEs doubles
to 512.

Table 1. Utilization report of the implemented design for individual FPGA primitives. The target
FPGA device is XC7Z045FFG900.

LUT Flip-Flop Block RAM DSP

N fmax
[MHz]

Total:
218,600 [%] Total:

437,200 [%] Total:
1090 [%] Total:

900 [%]

5 96.04 54,102 24.7 57,505 13.2 97 8.9 147 16.3
6 93.63 79,174 36.2 114,203 26.1 120 11.0 168 18.7
7 92.6 98,172 44.9 138,090 31.6 128 11.7 189 21.0
8 91.1 98,788 45.2 137,773 31.5 150 13.9 204 22.7
9 92.2 98,762 45.2 139,111 31.8 159 14.6 231 25.7

10 93.6 99,019 45.3 140,388 32.1 182 16.7 252 28.0
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Table 2. Utilization report of the implemented design at N = 10. * The AXI Interconnect component is a Xilinx IP block. The
processing system (ARM Cortex PS) is implemented in silicon but requires some logic utilization for interfacing.

LUT Flip-Flop Block RAM DSP

Component Total:
218,600 [%] Total:

437,200 [%] Total:
1090 [%] Total: 900 [%]

AXI Read Interface 4201 1.9 5096 1.2 45 8.3 0 0.0
Feature Calculator 4051 1.9 3063 0.7 0 0.0 6 0.7

Disparity Calculator 69,355 31.7 109,365 25.0 4 0.7 0 0.0
Consistency Checker 688 0.3 2167 0.5 0 0.0 0 0.0

Median Filter 857 0.4 416 0.1 5 0.9 0 0.0
Subpixel Refinement 16,896 7.7 15,499 3.5 36 6.6 246 27.3
AXI Write Interface 393 0.2 777 0.2 1 0.2 0 0.0
AXI Interconnect * 2087 1.0 3329 0.8 0 0.0 0 0.0

Processing System * 491 0.2 646 0.1 0 0.0 0 0.0
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The overall greatest number of DSP primitives is required by the subpixel refinement
component. Since refinement is done using normalized cross-correlation, an operation that
requires extensive use of multiplication and division, the DSP usage increases drastically.

Block RAM usage is distributed over several components. The AXI read interface
component uses this primitive for the buffering of input data, and the subpixel refinement
component uses Block RAM for implementation of the sliding window buffer. The overall
utilization of this primitive is still low.

4.3. FPGA Performance and Accuracy Results

The FPGA platform was used and tested as a standalone solution. A system clock
frequency of 90.9 MHz was used for evaluation.

The power draw of the evaluation platform was measured, using a programmable
DC power supply Tenma Model 72-2540. The measured power consumption indicates the
power used by the entire evaluation kit.

The validity of every single subpixel disparity is determined separately. A subpixel
disparity pixel is deemed valid if the difference between the ground-truth (disparity map
calculated using 400 temporal samples) and subpixel disparity pixel is less than 1. If this
threshold is exceeded, the result is deemed invalid. The ratio of valid disparity pixels and
the sum of the count of valid pixels and count of invalid pixels represents the percentage
of valid results. A visual example of the importance of validity is displayed in Figure 11.

As seen in Figure 11, the ground-truth disparity map displays accurate and valid
depth information throughout the entire scene, with the exception of the reflective toggle
latch located on the wooden chest. This indicates that the aperiodic fringe projection
method using visible or NIR light is still subject to limitations, such as scanning highly
transparent or reflective materials.

The performance results and power measurements are displayed in Table 3.
The values from Table 3 indicate that the maximum achieved output framerate is the

highest for N = 5. A higher number of temporal images increases the quality (validity)
of the results. At N = 8, we start to experience only diminishing effects when increasing
the number of temporal samples. Power consumption is mostly irrelevant based on the
number of temporal samples. The performance-per-watt expectedly decreases with a
higher number of temporal samples, as the memory bandwidth cannot increase further
without an increase in the AXI interface clock speed.
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Table 3. Performance report of the FPGA solution.

N Input Framerate [FPS] Output Framerate [FPS] Valid [%] Power Consumption [W] Performance-Per-Watt [FPS/W]

5 291 58.2 70.4 8.2 7.10
6 292.2 48.7 88.2 9.0 5.41
7 293.3 41.9 92.0 9.2 4.55
8 294.4 36.8 93.0 9.1 4.04
9 294.3 32.7 93.6 8.9 3.67
10 295.0 29.5 94.0 8.5 3.47

4.4. GPU Performance Results

During the evaluation of the GPU performance, the immediate power draw was
determined by using the nvidia-smi software. The average (mean) power draw was then
determined by averaging out the measured intermediate power values. The performance
results are displayed in Table 4.

Table 4. Performance report of the GPU solution.

N Output Framerate [FPS] Valid [%] Power Consumption [W] Performance-Per-Watt [FPS/W]

5 424.6 70.4 159.2 2.67
6 416.4 88.2 169.2 2.46
7 396 92.0 164.4 2.41
8 348 93.0 155.5 2.24
9 314.5 93.6 147 2.14

10 285.8 94.0 139.2 2.05

4.5. Comparison of Performance Results

The same performance tests were conducted on both computing platforms. The results
of the tests can be summarized in a comparison. A general overview of the performance
results obtained by both platforms is displayed in Figure 12.

The results indicate that the framerates achieved using the GPU platform are much
higher than the framerates calculated by the FPGA platform. The power consumption scales
together with performance. However, when looking at the energy efficiency of calculations,
the FPGA platform achieves two-times higher performance-per-watt on average.
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The work published by Dietrich et al. [6] only performed one performance measure-
ment (64-bit features, N = 10, and other parameters are unknown). The achieved GPU
performance on a GTX1080 was 52.6 FPS, but the measurement included the additional
step of image rectification.
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5. Discussion and Future Work

This paper has proposed a flexible HLS-based FPGA stereo-matching architecture for
temporal statistical pattern projector systems. Furthermore, we provided an implementa-
tion capable of leveraging several FPGA-specific optimization primitives, such as sliding
windows approaches, custom systolic arrays, and optimizations, such as instruction and
task pipelining. The proposed design was tested on an off-the-shelf FPGA platform and
achieved real-time disparity calculation results.

When evaluating the normalized performance-per-watt, the FPGA design achieved
two-times better results than a highly optimized GPU solution. Further optimizations are
possible, as no HDL-level optimizations were made during this work. The proposed work
also did not fully utilize all available FPGA resources, so additional spatial parallelization
can still be used to achieve higher disparity calculation framerates.
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