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Abstract: With the development of blockchain technologies, many Ponzi schemes disguise them-
selves under the veil of smart contracts. The Ponzi scheme contracts cause serious financial losses,
which has a bad effect on the blockchain. Existing Ponzi scheme contract detection studies have
mainly focused on extracting hand-crafted features and training a machine learning classifier to
detect Ponzi scheme contracts. However, the hand-crafted features cannot capture the structural
and semantic feature of the source code. Therefore, in this study, we propose a Ponzi scheme con-
tract detection method called MTCformer (Multi-channel Text Convolutional Neural Networks and
Transofrmer). In order to reserve the structural information of the source code, the MTCformer
first converts the Abstract Syntax Tree (AST) of the smart contract code to the specially formatted
code token sequence via the Structure-Based Traversal (SBT) method. Then, the MTCformer uses
multi-channel TextCNN (Text Convolutional Neural Networks) to learn local structural and semantic
features from the code token sequence. Next, the MTCformer employs the Transformer to capture
the long-range dependencies of code tokens. Finally, a fully connected neural network with a cost-
sensitive loss function in the MTCformer is used for classification. The experimental results show
that the MTCformer is superior to the state-of-the-art methods and its variants in Ponzi scheme
contract detection.

Keywords: blockchain; smart contracts; Ponzi schemes; structured sequences; deep learning

1. Introduction

Blockchain is an emerging technology that plays an important role in decentralized
technologies and applications, such as storage, calculation, security, interaction, and trans-
actions. Since 2008, along with the increasing popularity of cryptocurrencies (e.g., Bitcoin
and Ether) in the financial market, the related blockchain technology has also been maturing
and developing and has become one of the most promising network information technolo-
gies for ensuring security and privacy [1,2]. As opposed to conventional security schemes
that focus on the path traversed by data, the blockchain is essentially a decentralized shared
ledger, which focuses on protecting data and providing immutability and authentication.

Smart contracts, as the programs running on the blockchain, have been applied in a
variety of business areas to achieve automatic point-to-point trustable transactions [3–5].

A number of blockchain platforms, such as Ethereum, provide some application
program interfaces (APIs) for the development of smart contracts. When a developer
deploys a smart contract to blockchain platforms, the source code of the smart contract will
be compiled into bytecode and reside on the blockchain platforms [3,4,6,7]. Then, every
node on the blockchain can receive the bytecode of the smart contract, and everyone can call
the smart contract by sending the transaction to the corresponding smart contract address.
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Blockchain and smart contracts have been applied to a variety of fields, such as
the Internet of Things (IoT). For example, the Commonwealth Bank of Australia, Wells
Fargo, and Brighann Cotton conducted the first interbank trade transaction in the world,
which combined IoT, blockchain technologies, and smart contracts (https://www.gtreview.
com/news/global/landmark-transaction-merges-blockchain-smart-contracts-and-iot/ ac-
cessed on 31 July 2021). They employed IoT technologies with a GPS device to track the
geographic location of goods in transit. When the goods reached their final destination,
the release of funds was automatically triggered by the smart contracts. With the help of
smart contracts, paperwork that takes a few days using manual processes can be completed
in minutes, which largely reduces the time cost and improves the trade efficiency. In addi-
tion, smart contracts make transactions more transparent, because the transaction data are
updated in real time in the same system. Meanwhile, smart contracts cannot be tampered
after deployment; thus, security is greatly enhanced, and the risk of fraud is reduced.

However, due to the high complexity of blockchain-related technologies, it is generally
difficult for investors to understand the business logic of smart contracts in depth, and they
can only comprehend the operation mechanism of the business through some descriptive
information about smart contracts. As a result, some speculators have introduced the
classic form of financial investment fraud—the Ponzi scheme—into blockchain transactions
and brought extremely costly losses to investors. The highly complex smart contract
program makes Ponzi schemes more confusing. For the endless stream of smart contract-
based Ponzi schemes, a post on a popular Bitcoin forum (bitcointalk.org) showed that more
than 1800 Ponzi scheme contracts emerged between June 2011 and November 2016, where
the financial losses caused were even harder to estimate [8]. As Ponzi schemes become
more prevalent in blockchain transactions, researchers need to find a way to automatically
detect Ponzi scheme contracts.

Some existing works in the literature [7,9] focused on manually extracting features
from the smart contract code and the transaction history of smart contracts. Specifically,
Chen et al. [7,9] compiled the smart contract code to generate bytecode and then decom-
piled it into operating code (Opcode) using external tools to extract the Opcode features.
In addition, they extracted the statistical account features from the transaction history of
smart contracts. Finally, the random forest algorithm was used as the classification model
based on the composited features to detect Ponzi scheme contracts. However, the source
code of smart contracts has a well-defined structure and semantic information, which the
hand-crafted features cannot capture well. Therefore, the detection performance of the
existing works is not satisfactory enough.

With the development of deep learning technologies, many researchers have tried
to apply deep learning algorithms to extract more powerful features from source code to
conduct the related tasks. However, to the best of our knowledge, there is no investigation
on the significance of deep learning for Ponzi scheme contract detection. The challenges of
automatic Ponzi scheme contract detection using deep learning usually include:

(1) How to extract the structural features of the smart contract code well.
Using the plain source code of smart contracts as the input ignores the structural

information of smart contracts. How to achieve the serialization transformation of the
code without destroying the structural semantics of the code and conform to the input
requirements of the deep learning model after the transformation is a problem that needs
to be considered.

(2) How to capture the long-range dependencies between code tokens of smart contracts.
The source code of smart contract in our experimental dataset is very long. For the

long sequence training, traditional deep learning models (e.g., LSTM [10] and GRU [11])
have the problem of gradient disappearance. The more relevant the output of the last time
step is, the later the input is. Furthermore, an earlier input causes more information to be
lost in the transmission process. Obviously, such logic does not make sense in the context
of semantic understanding. This phenomenon is manifested in the model as gradient
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disappearance. Therefore, in the long sequence training, we need a model that can capture
the long-range dependencies efficiently and without gradient disappearance.

To address these problems, we propose a Ponzi scheme contract detection approach
called MTCformer based on the multi-channel TextCNN (MTC) and Transformer. The MTC-
former first parses the smart contract code into an Abstract Syntax Tree (AST). Then, in order
to reserve the structural information, the MTCformer employs the Structure-Based Traver-
sal (SBT) method proposed by Hu et al. [12] to convert the AST to the SBT sequence. After
that, the MTCformer employs the multi-channel TextCNN to learn feature representations
based on neighboring words (tokens) to obtain local structural and semantic feature of
the source code. The multi-channel TextCNN contains multiple filters of different sizes,
which can learn multiple different dimensions of information and capture more complete
local features in the same window. Next, the MTCformer uses Transformer to capture the
long-range dependencies between code tokens. Finally, a fully connected neural network
with a cost-sensitive loss function is used for classification.

We conduct experiments on a Ponzi scheme contract detection dataset, which con-
tains 200 Ponzi scheme contracts and 3588 non-Ponzi scheme contracts. We extensively
compare the performance of the MTCformer against the three recently proposed methods
(i.e., Account, Opcode, Account + Opcode). The experimental results show that (1) the
MTCformer outperforms Account by 51.56% in terms of precision, 315% in terms of recall,
and 297% in terms of F-score; (2) the MTCformer performs better than Opcode by 3.19%,
13.7%, and 8.54% in terms of the three metrics; and (3) the MTCformer also outperforms
Account + Opcode by 2.1%, 20.29%, and 12.66% in terms of precision, recall, and F-score,
respectively. We also evaluate the MTCformer against the variants, and the experimental
results indicate that the MTCformer outperforms its variants in terms of the three metrics.

In summary, the primary contributions of this paper are as follows:
(1) We propose an MTCformer method combining the multi-channel TextCNN and

Transformer for Ponzi scheme contract detection. The MTCformer can both extract the
local structural and semantic features and capture the long-range dependencies between
code tokens.

(2) We compare the MTCformer with the state-of-the-art methods and their variants.
The experimental results show that the MTCformer achieves more encouraging results
than the compared methods.

The remainder of this paper is organized as follows. Section 2 introduces the related
work and background. Section 3 proposes our MTCformer method to detect Ponzi scheme
contracts. Section 4 presents the experimental setup and results. Section 5 discusses the
impact of the parameters. Finally, Section 6 concludes the paper and enumerates ideas for
future studies.

2. Related Work and Background

This section provides background information on topics relevant to this paper. Section 2.1
describes the application of blockchain in the Internet of Things (IoTs). Section 2.2 briefly
explains the basic concepts of Ethereum and smart contracts. Section 2.3 introduces the
related work of the Ponzi scheme contract detection. Section 2.4 briefly introduces the
Abstract Syntax Tree and Structure-Based Traversal used to structure the source code of the
smart contract. Section 2.6 briefly introduces the text-based Convolutional Neural Network
and Transformer.

2.1. Blockchain and IoT

Blockchain refers to a series of decentralized and tamper-proof ledgers combined
into a network. It provides a service to the end-users with lower transaction costs and
without unnecessary intervention. Because of its uniqueness, blockchain has offered many
benefits to business and management, such as decentralization, intractability and strategic
applications, security and behavior, and operations and strategic decision making [13].
Currently, blockchain is already widely used in the Internet of Things (IoT). Singh et al. [14]
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used blockchain and artificial intelligence to design and develop IoT architectures to
support effective big data analysis. Tsang et al. [15] explored the intellectual cores of the
blockchain–Internet of Things (BIoT). Zhang et al. [16] proposed an e-commerce model
for IoT E-business to realize the transaction of smart property. Puri et al. [17] designed
a strategy based on smart contracts to handle the security and privacy issues in an IoT
network. Zhang et al. [18] studied key access control issues in IoT and proposed a smart
contract-based model to enable reliable access control for IoT systems. By integrating the
IoT with blockchain systems and smart contracts, Ellul et al. [19] provided the automatic
verification of physical processes involving different parties.

2.2. Ethereum and Smart Contracts

Ethereum is a blockchain platform that provides a Turing-complete programming lan-
guage (Solidity) and a corresponding runtime environment (i.e., EVM) [20]. The platform
allows users to develop blockchain applications using short code [21]. Currently, Ethereum
is the largest platform that provides an execution environment for smart contracts [22].
The smart contracts running on Ethereum are a series of EVM bytecodes residing on the
blockchain that can be triggered for execution. These bytecodes are compiled by the EVM
compiler from the smart contract source code. Deployment is accomplished by uploading
bytecode to the blockchain through an Ethereum client. These codes implement certain
predefined rules and are “autonomous agents” that exist in the Ethereum execution envi-
ronment. Once deployed, smart contracts cannot be changed, and the execution of their
coding functions produces the same result for anyone running them.

In Ethereum, two types of accounts exist. One is an externally owned account (EOA)
and the other is a contract account [23,24]. EOAs have a private key that provides access to
the corresponding Ethereum or contract. On the other hand, contract accounts have smart
contract codes. Contract accounts cannot run their own smart contracts. Running a smart
contract requires an external account to initiate a transaction to the contract account, which
initiates the execution of the code within it.

2.3. Ponzi Scheme Contract

A Ponzi scheme is a type of investment scam in the financial market. Organizers of
Ponzi schemes use the funds of new investors to pay interest and short-term returns to
previous investors. The organizers often package the investment project with the illusion
of low risk and high and stable returns, which are used to confuse investors who are
unfamiliar with the industry or have a fluke mentality.

In the blockchain era, many Ponzi schemes are disguised in smart contracts. We
refer to these Ponzi schemes as smart Ponzi schemes and refer to the corresponding smart
contracts as Ponzi scheme contracts [9]. Due to their self-executing and non-tamper-evident
characteristics, smart contracts have become a powerful tool for Ponzi schemes to attract
victims. More importantly, the originators of Ponzi schemes are anonymous.

Machine learning and data mining technologies have been used to detect Ponzi scheme
contracts. Ngai et al. [25] proposed a technology based on data mining to detect financial
fraud, and it is used for detecting Bitcoin Ponzi schemes [26]. Chen et al. [7,9] used the
transaction history of smart contracts in Ethereum and the Opcode of smart contracts as hand-
crafted features to detect smart Ponzi schemes. Different from their studies, our paper focuses
on automatically learning the hidden rich semantic features from the source code to detect
Ponzi scheme contracts by using deep learning and natural language processing technologies.

2.4. Abstract Syntax Tree and Structure-Based Traversal

In the field of natural language processing, the processing of text data includes syn-
tactic analysis, lexical analysis, dependency analysis, and machine translation. Generally,
ordinary text is unstructured data, which requires to be structured before analysis and
understanding. The structured data is more conducive to learning semantic features and
dependencies in the text.
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An abstract syntax tree (AST) is a tree-like representation of the abstract syntactic
structure of the source code, where each node is a construct occurring in the code [27–29].
The reason for the abstraction is that the abstract syntax tree does not represent every
detail of the appearance of the real syntax. For example, nested brackets are implied in the
structure of the tree and are not presented in the form of nodes. In short, it is the conversion
of unstructured code into a tree structure according to certain rules.

The Structure-Based Traversal (SBT) method proposed by Hu et al. [12] converts the
abstract syntax trees into specially formatted sequences via globally traversing the trees.
Existing code representation works [30–32] have proved that the SBT method has a strong
ability in preserving the code structure and lexical information. Therefore, we also employ
the SBT method to structure the source code.

2.5. Text-Based Convolutional Neural Network

Convolutional Neural Networks (CNN) were initially applied in the field of computer
vision. Subsequently, they have been proven to achieve excellent results in traditional natu-
ral language processing field, such as semantic analysis [33–36], search query [37], sentence
modeling [38], etc. The TextCNN is a deep learning algorithm with high performance in
feature learning [39].

The core goal of the TextCNN is to capture local features. All words need to be
converted to low-dimensional dense vectors. During the training process, if these word
vectors are fixed, it is called CNN-static. Otherwise, as the word embeddings are updated,
the corresponding model is called CNN-non-static [40]. In general, the i-th word can be
represented as a k-dimensional word vector xi ∈ Rk in the sentence. A sentence of length
n is expressed as x1:n = [xT

1 , xT
2 , . . ., xT

n ]
T . In this way, x1:n is similar to an image that can

be used as input to CNN. In the convolution layer, many filters with different window
sizes are sliding over xi. Each filter convolves x1:n to generate a different feature mapping.
Correspondingly, for the text, local features are sliding windows consisting of several
words, similar to N-grams. The advantage of Convolutional Neural Networks is that they
can automatically combine and filter N-gram features to obtain local semantic information
at different levels of abstraction [41–46]. Then, the maximum pooling operation is applied
to the feature mapping to obtain the maximum value as input to the Transformer layer.
Generally, some regularization techniques such as dropout and batch normalization can be
used after the pooling layer to prevent model overfitting.

2.6. Transformer-Related Structures

With traditional RNN-based models (e.g., LSTM, GRU, etc.), the computation can only
be done sequentially from left to right or from right to left when text is used as input. There
are two problems with this mechanism:

• The computation of time step t relies on the results of the computation at moment
t− 1. This limits the parallel computing capability of the model.

• LSTM and GRU can solve the problem of back-and-forth dependence of long se-
quences to some extent, but the performance will drop sharply when encountering
particularly long sequences.

Both problems are addressed to some extent by the Transformer model [47] proposed
by Google in 2017. Unlike CNN and RNN, the entire network structure of the Transformer
is composed entirely of the attention mechanism. More precisely, the Transformer only
consists of self-attention and a Feed Forward Neural Network. A trainable neural network
based on Transformer can be built by stacking the Transformer.

The Transformer model does not need to process words sequentially in sequence
and can train all words at the same time, which greatly improves the degree of parallelism
and increases the computational efficiency. Furthermore, the attention mechanism pays
attention to all words of the whole input sequence, making the model associate the words of
the context. It helps the model to encode the text better. However, the attention mechanism
itself cannot capture positional information. Therefore, the “positional encoding” approach
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is proposed. Specifically, positional encoding adds the positional information of words
to the word vector and uses the word embedding and positional embedding together as
the input of Transformer. It makes the model understand the position of each word in the
sentence, not just the semantics of the word itself.

In this paper, Ponzi scheme contract detection is a classification task that does not
require the use of the full Transformer model but instead uses positional encoding and an
attention encoder for feature learning.

3. Smart Ponzi Scheme Detection Model
3.1. Overall Process

As shown in Figure 1, the overall process of Ponzi scheme contract detection consists
of four steps:

• Data pre-processing: The source code of the smart contract is firstly parsed into an
Abstract Syntax Tree (AST) according to the ANTLR syntax rules. Then, we employ the
SBT method to convert the AST into a SBT sequence to reserve the structure information.

• Word embedding: The pre-processed SBT sequences are fed into the embedding layer
for word embedding, and the words (tokens) in each sequence will be converted into
fixed dimensional word vectors. Then, an SBT sequence will be converted into word
embedding matrices.

• Feature learning: We use the multi-channel TextCNN and Transformer to automati-
cally generate structural and semantic features of smart contract code from the input
word embedding matrices. The feature learning process is shown in Figure 2.

• Ponzi scheme contract detection: We use a fully connected layer neural network to do
the final classification and conduct a calculation on the real label (presence of a smart
Ponzi scheme) to optimize the loss function.
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3.2. Data Pre-Processing

The source code of the smart contract is in unstructured form; thus, we need to
learn the structure features of the smart contract code for better Ponzi scheme contract
detection [48–50]. Therefore, instead of using the plain source code directly as the input of
the model, we parse the source code into an Abstract Syntax Tree (AST) according to the
ANTLR [51] syntax rules and then generate a Structure-Based Traversal (SBT) sequence
from the AST using the SBT method [12].

The detailed process of the SBT method is as follows:

• Starting with the root node, the method firstly uses a pair of parentheses to represent
the tree structure and places the root node itself after the right parenthesis.

• Next, the method traverses the subtree of the root node and places all root nodes of
the subtree in parentheses.

• Finally, the method recursively traverses each subtree until all nodes are traversed to
obtain the final sequence.

As shown in Figure 3, we firstly use the parsing tool solidity-parser-antlr (https:
//github.com/federicobond/solidity-parser-antlr accessed on 31 July 2021) to parse the
source code to the AST and then convert the AST to the SBT sequence. The StockExchange
contract defines a function called ‘withdraw’, in which non-leaf nodes are represented by
type (e.g., the root node of the contract is FunctionDefinition, and variable, function name,
return value name, etc., are represented by “#”). The leaf nodes represent the value of
each type.

3.3. Embedding Layer

The word embedding matrix can be initialized using random initialization or using
pre-trained vectors learned by models such as CodeBert [52], Word2Vec [53], GloVe [54],
FastText [55], ELMo [56], etc. The pre-trained word embedding can leverage other corpora
to obtain more prior knowledge, while word vectors trained by the current network can
better capture the features associated with the current task. Random initialization is used
in this paper due to the absence of the pre-trained model of the smart contract code.

The ei ∈ Rk is the k-dimensional word vector corresponding to the i-th word in the SBT
sentence. A sequence of length n can be expressed as a matrix E1:n = (eT

1 , eT
2 , . . ., eT

n )
T ∈

Rn×k. Then, matrix E1:n is taken as the input to the convolution layer.

Generate AST

contract stockExchange{
  function_withdraw() public return(uint256 
withdraw)
 {
  return_latium.balanceOf(address(this));
  }
}

Generate SBT
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  (#_withdraw)
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      (#withdarw)
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      )pureType
    )VarDeclare
  )ReturnParas
  (Block
    (ReturnState
         (FunctionCall
         (MemberAccess
           (#_latium)
           (#balance)(#Of)
         )MemberAccess
         FunctionCall
           (pureTypeExpression
           (this)this
        )FunctionCall
      )FunctionCall
    )ReturnState
  )Block
)FunctionDefinition

FunctuinDefinition

# Authority ReturnParas Block

withdraw public VarDedare

# PureType

withdraw #

uint256

ReturnState

FunctionCall

MemberAccess FunctionCall #

# #

latium balance of

PureTypeExp this

#

pureType

adress

Figure 3. The SBT process.

3.4. Convolutional Layer

In the convolution layer, in order to extract local features, J filters of different sizes
are convolved on E1:n. The width of each filter window is the same as E1:n; only the height
is different. In this way, different filters can obtain the relationship of words in different

https://github.com/federicobond/solidity-parser-antlr
https://github.com/federicobond/solidity-parser-antlr
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ranges. Each filter has S(s ∈ S) convolution kernels. The Convolutional Neural Networks
learn parameters in the convolutional kernel, and each filter has its own focus, so that
multiple filters can learn multiple different pieces of information. Multiple convolutional
kernels of the same size are designed to learn features that are complementary to each
other from the same window. The detailed formula is as follows:

Cj
i = f (W j · Ei:i+h−1 + b), (1)

where the W j ∈ Rh×k denotes the weight of the j-th(j ∈ J) filter of the convolution
operation, the Cj

i is the new feature resulting from the convolution operation, b ∈ R is a
bias, and f is a non-linear function. Many filters with varying window sizes slide over the
full rows of E1:n, generating a feature map [Cj

1, Cj
2, . . ., Cj

n−h+1]. The most important feature

value Ĉj
s was obtained by 1-max pooling for one scalar and mathematically written as:

Ĉj
s = Max([Cj

1, Cj
2, . . ., Cj

n−h+1]). (2)

S convolution kernels are computed to obtain S feature values, which are concatenated
to obtain a feature vector Pj:

Pj = [Ĉj
1, Ĉj

2, . . ., Ĉj
S]. (3)

Finally, the feature vector of all filters is stacked into a complete feature mapping
matrix M ∈ RJ×S:

M = [P1, P2, . . ., Pj], (4)

which is used as the input of the Transformer layer. Generally, some regularization tech-
niques such as dropout and batch normalization can be imposed after the pooling layer to
prevent model overfitting [40].

3.5. Transformer

Since the multi-head attention is not the convolution and recurrent structure, it needs
position encoding to utilize the sequence order of the feature matrix M. This kind of positional
encoding rule is as follows:

PE(pos,2i) = sin(
pos

10,000
2i
d
), (5)

PE(pos,2i+1) = cos(
pos

10,000
2i+1

d
), (6)

where pos is the token position in the sequence, i is the dimension index, d is the dimensions
of the complete feature mapping M, and PE is the position encoding matrix isomorphic
to M.

The matrix PE + M is fed into multi-head attention to capture long-range dependen-
cies. The details are given by the following equations:

q1, q2, . . .qJ = split(QWQ) (7)

k1, k2, . . .k J = split(KWK) (8)

v1, v2, . . .vJ = split(VWV) (9)

headj = So f tmax(
qjkT

j√
dK

) (10)

MultiHead(Q, K, V) = Concat(head1, head2, . . ., headJ)Wo (11)

The matrices of queries, keys, and values are denoted by Q ∈ RQl×Qd , K ∈ RKl×Kd , V ∈
RVl×Vd , respectively, while qj ∈ RQl×qd , k j ∈ RKl×kd , vj ∈ RVl×vd represent their splitted

matrices for headj. Specifically, qd = kd = vd = dmodel
J . The WQ ∈ RQd×dmodel , WK ∈
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RKd×dmodel , WV ∈ RVd×dmodel are three weight trainable matrices. Equation (10) describes the
output of headj. After the concatenating from all heads and the linear transformation with
Wo ∈ RJvd×dmodel , we can obtain the output of the multi-head attention [47,57].

Then, the output of the multi-head attention is delivered to the FFN (Feed Forward
Network). The FFN contains two linear transformation layers and the activation function
(ReLU) in between. The detailed equation of the FFN is as follows:

FFN(x) = max(0, xW1 + b1)W2 + b2, (12)

where W1 and W2 are the weight matrices of each layer, b1 and b2 are their correspond-
ing bias, and x is the input matrix. Finally, the matrix FFN(x) is reshaped into a one-
dimensional vector V ∈ R1,J×S, which is the input to the fully connected network classifier.

3.6. Loss Function

The smart Ponzi scheme detection problem studied in this paper can be considered as
a binary classification task. Therefore, there are two types of misclassifications:

• A non-Ponzi scheme contract is wrongly predicted to be a Ponzi scheme contract.
At this point, we can manually check the smart contract to confirm security. Even if a
transaction is generated, it will not cause financial loss.

• A Ponzi scheme contract is wrongly predicted to be a non-Ponzi scheme contract. There-
fore, the Ponzi scheme contract will be deployed and reside on the blockchain platforms.

As the failure to find a Ponzi scheme contract can lead to large economic loss, misclas-
sifying a Ponzi scheme contract results in a higher cost than misclassifying a non-Ponzi
scheme contract. In addition, there are far fewer contracts with Ponzi schemes than the
non-Ponzi scheme contracts in the smart Ponzi scheme detection dataset. The smart Ponzi
scheme detection model trained on the imbalanced dataset will focus more on the non-
Ponzi scheme contracts and is prone to predict that the new contract to be a non-Ponzi
scheme contract. Therefore, a cost-sensitive loss function is used for the fitting. In the
training set, we suppose the number of contracts with a Ponzi scheme is u, and the number
of contracts without a Ponzi scheme is v. The cross entropy loss function with weights is
defined as follows:

Weightc =

{
p ∗ v

u+v if c is a Ponzi scheme contract
1
p ∗

u
u+v otherwise

(13)

Loss(Ŷ, Label) = −∑
c

WeightcLabelclog(Ŷc), (14)

where Label is the true label, Ŷ is the predicted outcome, and c denotes each contract.

3.7. Time Complexity Analysis

The time complexity has an important impact on the model, which qualitatively
describes the running time of the algorithm. The MTCformer model proposed in this paper
has the structure of both the multi-channel TextCNN and Transformer. Its specific time
complexity is analyzed as follows.

There are m filters in the multi-channel TextCNN, where each filter has s convolution
kernels. Furthermore, we perform n convolution kernel operations, and each convolution
kernel size is k × d. Thus, the total time complexity of the multi-channel TextCNN is
O(msnkd).

The Transformer consists of the self-attention stage and the multi-head attention stage.
Let the size of K, Q, and V be n× d. In the self-attention stage, the time complexity of
the similarity calculation, the softmax calculating for each line, and the weighted sum
are O(n2d), O(n2), and O(n2d), respectively. Therefore, the time complexity of the self-
attention stage is O(n2d).
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In the multi-head attention stage, the time complexity of the input linear projection,
attention operation, and output linear projection are O(nd2), O(n2d), and O(nd2), respec-
tively. Therefore, the time complexity of the multi-head attention stage is O(n2d + nd2).

In summary, the time complexity of MTCformer is O(msnkd)+O(n2d+ nd2). After ig-
noring the constant term and taking the highest power, the time complexity of MTCformer
is O(n2d + nd2).

4. Experiment
4.1. Datasets

In this study, we use the same Ponzi scheme contract detection dataset as Chen et al. [7].
These contracts were collected through the API provided by etherscan.io and then man-
ually checked for whether they are Ponzi scheme contracts by Chen et al. [7]. Before
constructing the model, we recheck the results and organize them. The data from the
secondary confirmation results are taken as real data. Among these smart contracts, there
are 200 Ponzi contracts and 3588 non-Ponzi contracts. For most commercial projects, when
investors invest in projects based on Ethereum contracts, they will require the project party
to provide contract audits performed by a third party, which ensures that most smart
contracts in Ethereum are not Ponzi scheme contracts. Therefore, our experimental dataset
is imbalanced.

4.2. Evaluation Metrics

Ponzi scheme contract detection has the following four typical outputs, i.e., True
Positive (TP), True Negative (TN), False Positive (FP), and False Negative (FN). TP denotes
the number of the Ponzi scheme contracts that are correctly identified; TN denotes the
number of the contracts without Ponzi schemes that are correctly identified; FP denotes
the number of the smart contracts without Ponzi schemes that are wrongly predicted as
Ponzi scheme contracts; and FN denotes the number of the Ponzi scheme contracts that are
wrongly predicted as the contracts without Ponzi schemes. We use precision, recall, and
F-score to evaluate the performance of the model, which are introduced as follows:

Precision =
TP

TP + FP
(15)

Recall =
TP

TP + FN
(16)

F− score = 2× Precision× Recall
Precision + Recall

(17)

4.3. Methods in Comparison

To demonstrate that MTCformer outperforms the state-of-the-art Ponzi scheme detec-
tion methods, we compare the MTCformer with the method proposed by Chen et al. [7,9]
and a recently proposed deep learning method (i.e., CodeBERT). Moreover, we investigate
the performance of the variants of MTCformer based on the traditional model (i.e., STC,
RNN, BiLSTM, and BiGRU). These methods are briefly described as follows.

Account: The fraudulent nature of Ponzi schemes makes them have some unique
features. These features are called account features and are readily reflected in the history
of the transaction. Chen et al. [7] use the address of the smart contract to find the corre-
sponding transaction history on the Ethereum. Account features are extracted based on
transaction history for Ponzi scheme contract detection, including known rate, balance,
N_investment, N_payment, difference index, paid rate, and N_maxpay. The random forest
algorithm is used as the classification model based on the account features.

Opcode: At the level of the Ethereum Virtual Machine (EVM) [58,59], the Opcode
features can also reflect the logic of the smart contract. Chen et al. [7] firstly used the
Ethereum native client to obtain the bytecode, then used the disassembly tool to get the
Opcode, and finally extracted all the operating codes and calculated their frequency in
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the contract. The random forest algorithm is used as the classification model based on the
Opcode features.

Account + Opcode: Chen et al. [7] combined the account features and Opcode features
as the composited features of a smart contract. The random forest algorithm is used as the
classification model based on the composited features.

STC: Kim et al. [39] proposed the single-channel TextCNN method for text classifica-
tion tasks using Convolutional Neural Networks. All words in a sentence are turned into a
set of word vectors by word embedding as the input of CNN. In the convolutional layer,
features are extracted to complete the classification.

RNN: This is a neural network used to process sequence data [60]. The current output
of a sequence is also related to the previous output. The specific expression is that the
network will memorize the previous information and apply it to the computing of the
current output, and the input of the hidden layer includes not only the output of the input
layer but also the output of the hidden layer at the previous moment [61].

BiLSTM: This is a special kind of RNN used to solve the gradient disappearance and
gradient explosion problems during the training of long sequences by introducing the
forget gate, input gate, and output gate [62]. The idea of Bidirectional LSTMs (BiLSTMs) is
to duplicate the first recurrent layer in the network and then provide the input sequence
to the first layer and a reversed copy of the input to the second, so that all available
information in the past and future of a specific processing step can be considered during
training [63].

BiGRU: This is an improved version of RNN, which is mainly improved from the
following two aspects [64]. First, the influence of words at different positions in the se-
quence on the current hidden layer state is weighted by distance. The further the distance,
the smaller the weight. Second, when an error arises, the error may be triggered by one
or a few words, so only the corresponding word weight should be updated. The idea of
bi-directional GRU (BiLGRU) is to include a reverse GRU in the network and then provide
the input sequence simultaneously with the forward GRU so that all available informa-
tion from the past and future of a particular processing step can be considered during the
training process.

CodeBERT + SVM: Feng et al. [52] proposed a state-of-the-art pre-trained model
called CodeBERT, which is built based on Transformer neural architecture and supports
both natural language text and programming language as input. We use CodeBERT to ex-
tract semantic features and then employ SVM as the classifier to complete the classification.
The reason we choose SVM as the classifier is that SVM performs the best among some
widely used classifiers (i.e., naive Bayes, decision tree, random forest, k-nearest neighbor)
according to our preliminary experimental results.

4.4. Parameter Setting and Experimental Procedure

In the word embedding part, we use the random initialization to generate the word
embedding matrix as the input of the model. The dimension of the word embedding is 200.
In the TextCNN part of the model, we choose five convolutional kernels of different sizes,
which are [3, 4, 5, 6, 7] in height and 200 in width. Each convolution operation corresponds
to 200 output channels. Thus, regardless of the length of the input sequence, TextCNN
will always output a feature-mapping matrix of the fixed size. In the Transformer part,
we set the number of hidden layer units to 200, the number of heads in the multi-head
attention mechanism to 20, and the number of sub-encoder layers in the encoder to 7. The
learning rate is initialized to 1 × 10−5. Due to the imbalance problem of the Ponzi scheme
contract detection dataset, we introduce the cost-sensitive cross-entropy loss as the loss
function and set the weight factor p to 0.8. The batch size is set to 4, and the number of
epoch is 100. We choose the ReLU function as the activation function of the middle layer,
the sigmoid function as the activation function of the last layer output, and AdamW [65] as
the optimizer of the model.
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We employ five-fold cross validation in the experiment. Specifically, we evenly divide
the dataset into 5 folds. Then, we train all above-mentioned Ponzi scheme contract detection
methods on 4 folds, and the left fold is used as the testing data. The procedure is repeated
5 times to result in each fold being used as training and testing data. Finally, we repeat the
five-fold cross validation 10 times to reduce the variance and bias. Therefore, we can obtain
50 = (5 × 10) testing results and list the average value of the 50 results in the following
tables, in which the highest value is marked in bold in each row.

4.5. Experimental Results
4.5.1. Comparison between MTCformer and the Baselines

In order to verify the advantage of the deep learning techniques for Ponzi scheme
contract detection, we first compare the MTCformer with the traditional feature-based
Ponzi scheme contract detection methods, i.e., Account, Opcode, and Account + Opcode,
as introduced in Section 4.3. Table 1 presents the precision, recall, and F-score values of the
methods. We have the following findings in Table 1.

Table 1. The performance of different Ponzi scheme contract detection methods.

Method Precision Recall F-Score

Account 0.64 0.20 0.30
Opcode 0.94 0.73 0.82

Account + Opcode 0.95 0.69 0.79
MTCformer 0.97 0.83 0.89

(1) The MTCformer performs the best in terms of all evaluation metrics, which indi-
cates the superiority of the deep learning techniques. Specifically, it achieves a precision
value of 0.97, a recall value of 0.83, and an F-score value of 0.89. The MTCformer outper-
forms Account by 51.56% in terms of precision, 315% in terms of recall, and 197% in terms
of F-score. The MTCformer performs better than Opcode by 3.19% in terms of precision,
13.7% in terms of recall, and 8.54% in terms of F-score. The MTCformer also outperforms
Account + Opcode by 2.1%, 20.29%, and 12.66% in terms of precision, recall, and F-score,
respectively. To summarize, the experimental results show that the MTCformer has a
powerful ability to automatically learn structural and semantic features from the smart
contract code.

(2) When the random forest model is trained based on only the Account features, it
achieves the lowest performance in terms of all evaluation metrics. The low recall value
(0.20) indicates that the Ponzi scheme contract detection model based on the Account
features is almost useless. When using the Opcode features to train the random forest
model, the performance of the model is high. When the Account features and Opcode
features are combined to train the random forest model, the precision of the model is
further improved, but the recall and F-score values decrease.

In summary, the MTCformer achieves the highest precision, recall, and F-score values
compared with the three state-of-the-art methods.

4.5.2. Comparison between MTCformer and Its Variants

Table 2 presents the precision, recall, and F-score values of different variant models.
We have the following findings.

(1) The single-channel TextCNN (STC) achieves a precision value of 0.94, a recall
value of 0.44, and an F-score value of 0.60, respectively. The low recall value shows that
the single-channel TextCNN model can only capture a part of the features of the Ponzi
scheme contract. In other words, due to the limitation of a single channel, it cannot capture
more complete features. By replacing the single-channel TextCNN with a multi-channel
TextCNN (MTC), each filter has multiple channels (convolutional kernels), which are used
to learn features that complement each other from the same filter window. When using the
multi-channel TextCNN, the recall value is improved by 65.91%, and the F-score value is
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improved by 66%. This demonstrates that the multi-channel TextCNN has a significant
improvement in capturing local features in comparison to the single-channel TextCNN.
However, the recall value of the multi-channel TextCNN is only 0.73, which indicates that
there are still many Ponzi scheme contracts that cannot be recognized. The potential reason
is that the long-range dependencies between code tokens cannot be captured.

Table 2. The performance of different variant models.

Method Precision Recall F-Score

STC 0.94 0.44 0.60
MTC 0.94 0.73 0.82

MTC + RNN 0.94 0.73 0.82
MTC + BiLSTM 0.97 0.76 0.85
MTC + BiGRU 0.92 0.80 0.86

CodeBERT + SVM 0.72 0.83 0.77
MTCformer 0.97 0.83 0.89

(2) Introducing the RNN does not improve the model performance. The reason is that
RNN can only remember the nearest code tokens. However, when the distance increases,
RNN cannot capture the long-range dependencies between code tokens well. However,
there is an overall performance improvement after learning long-range dependencies be-
tween code tokens by adding BiLSTM, BiGRU, and Transformer. Although introducing
the BiLSTM achieves the highest precision value (0.97), we hope that the Ponzi scheme
contract detection model can find as many Ponzi scheme contracts as possible. Therefore,
the higher recall value is more important. The Transformer has the best learning effect for
long-range dependencies in terms of recall and F-score. Introducing Transformer improves
the precision value by 3.2%, the recall value by 13.7%, and the F-score value by 8.5% in
comparison to the multi-channel TextCNN.

(3) The CodeBERT + SVM achieves a precision value of 0.72, a recall value of 0.83,
and an F-score value of 0.77, respectively. Although both CodeBERT + SVM and MTC-
former achieve the same recall value, the low precision value (0.72) of CodeBERT + SVM
indicates that it has high false alarms. The potential reason is that CodeBERT is pre-trained
on other programming languages instead of Solidity.

In summary, the MTCformer outperforms its variants in terms of recall and F-score.

4.5.3. Effectiveness of the SBT Sequence

During the processing of natural language, in addition to the semantic information of
the context, structural information can also provide assistance in understanding the text.
In order to verify whether structured SBT sequences highlight feature information better
than unstructured code sequences, we compare the performance of the MTCformer and its
variants using the SBT code sequences and plain source code as inputs. Table 3 presents
the precision, recall, and F-score values of the MTCformer and its variants using the SBT
code sequences and plain source code as inputs, where ’(SBT)’ represents using the SBT
code sequences, and ’(PSC)’ represents using the plain source code.

The experimental results indicate that the performance of all models, except MTC
and MTC + RNN, is improved. Comparing the results in Table 3, we observe that for
MTC + BiLSTM, MTC + BiGRU and MTCformer, there are 1.2%, 3.6%, and 1.1% perfor-
mance improvements in terms of F-score when using the structured SBT sequences as
inputs. In contrast, using the structured SBT sequences is not effective for MTC and MTC +
RNN. The reason is that converting the original code to SBT sequences results in a substan-
tial increase in sequence length. Thus, there is no performance improvement for MTC and
MTC + RNN, which are not good at capturing the long-range dependencies between code
tokens. For models that are skilled at learning long dependencies (e.g., LSTM, GRU, and
Transformer), using SBT sequences as input can yield better performance results. Therefore,
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using the structured code sequences generated by the SBT method can improve the overall
performance of the MTCformer.

Table 3. The performance comparison when using the SBT sequence and plain source code as input.

Method Precision Recall F-Score

MTC (PSC) 0.94 0.73 0.82
MTC (SBT) 0.94 0.73 0.82

MTC + RNN (PSC) 0.94 0.73 0.82
MTC + RNN (SBT) 0.94 0.73 0.82

MTC + BiLSTM (PSC) 0.94 0.77 0.84
MTC + BiLSTM (SBT) 0.97 0.76 0.85
MTC + BiGRU (PSC) 0.89 0.78 0.83
MTC + BiGRU (SBT) 0.92 0.80 0.86

MTCformer (PSC) 0.94 0.83 0.88
MTCformer (SBT) 0.97 0.83 0.89

4.5.4. Effectiveness of the Cost-Sensitive Loss Function

Since the smart Ponzi scheme detection dataset contains more non-Ponzi scheme
contracts (i.e., the majority class samples) than Ponzi scheme ones (i.e., the minority class
samples), the prediction model trained on the imbalanced dataset is prone to predict that
the new contract contains a Ponzi scheme. Since misclassifying an actual Ponzi scheme
contract will result in considerable economic losses, we introduce a weighted cross-entropy
loss function, and a cost-sensitive parameter p is added to the function. Different p values
will affect the classification performance of the model. In order to explore the effect of the
parameter p, we set p to 0.7, 0.8, 0.9, 1.0, 1.1, and 1.2, respectively. In addition, the rest of
the parameters are the same, and we use the SBT sequence as input. Table 4 presents the
precision, recall, and F-score values of the MTCformer with different p values, where “-”
indicates that the original cross-entropy loss function is used.

Table 4. The performance of the MTCformer with different p values.

Method Precision Recall F-Score

- 0.94 0.76 0.84
0.7 0.97 0.80 0.88
0.8 0.97 0.83 0.89
0.9 0.97 0.78 0.86
1.0 0.94 0.83 0.88
1.1 1.00 0.76 0.86
1.2 0.90 0.80 0.85

We can find that the MTCformer achieves the highest recall and F-score values when
the p is equal to 0.8 and performs the best in terms of precision when the the p is equal to 1.1.
Although the precision value is 1 with p = 1.1, the MTCformer achieves the lowest recall
value (0.76), which indicates that fewer Ponzi scheme contracts can be found. We set p to
0.8 as the optimal parameter, since the MTCformer achieves the best overall performance.
When the original cross-entropy loss function is used, the precision, recall, and F-score
values are 0.94, 0.76, and 0.84, respectively. The recall value (0.76) and F-score value
(0.84) are lower than those of the MTCformer using the cost-sensitive loss function with
different p values. Therefore, introducing the cost-sensitive parameter indeed improves
the performance of the MTCformer.

4.6. Efficiency of Different Methods

In this subsection, we focus on the efficiency of different methods. Four GeForce RTX
2080 Ti GPUs are used to train our model, and we list the training time and testing time
of the eight methods in Table 5. We observe that the MTCformer requires 84.09s to train
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a model and 0.038s to test it. In addition, the training times of STC, MTC, MTC + RNN,
MTC + BiLSTM, MTC + BiGRU, and CodeBERT + SVM are 49.71 s, 77.41 s, 81.65 s, 81.92 s,
82.10 s, and 103.98 s, respectively. The longer training time of MTCformer than STC,
MTC, MTC + RNN, MTC + BiLSTM, and MTC + BiGRU is due to the multi-head attention
mechanism. Although, the training time of the MTCformer is a little long, the testing time
for detecting whether a smart contract is a Ponzi scheme contract is less than 0.1 s, so we
argue that it is still acceptable.

Table 5. The efficiency of different methods.

Method Train Time Test Time

STC 49.71 s 0.036 s
MTC 77.41 s 0.036 s

MTC + RNN 81.65 s 0.039 s
MTC + BiLSTM 81.92 s 0.065 s
MTC + BiGRU 82.10 s 0.039 s

CodeBERT + SVM 103.98 s 0.051 s
MTCformer 84.09 s 0.038 s

5. Discussion

In the MTCformer, the parameters (i.e., Encoder Layer and Word Embedding Di-
mension) have a significant impact on the feature learning and feature representation.
Therefore, this section conducts an experimental comparison to explore the best parameter
combination. Furthermore, the effect of different encoder layers and word embedding
dimensions of the MTCformer is discussed. We use SBT sequences as input and employ
the cost-sensitive loss function with parameter p = 0.8, and the remaining parameters
are unchanged in the experiment. In addition, we discuss the practical implications of
our study.

5.1. Encoder Layer

Generally, when fewer encoder layers are used, the data are poorly fitted, thus result-
ing in poor performance of the model. On the contrary, when more encoder layers are
used, not only will the efficiency of the model training be poor, but the phenomenon of
overfitting will also be triggered. In this experiment, the number of the encoder layers is
set from 2 to 10, and the performance results of the MTCformer are shown in Table 6.

Table 6. The performance of the MTCformer with different encoder layers.

Encoder Layer Precision Recall F-Score

2 0.94 0.78 0.85
3 0.97 0.80 0.88
4 0.94 0.83 0.88
5 0.94 0.83 0.88
6 0.94 0.83 0.88
7 0.97 0.83 0.89
8 0.94 0.83 0.88
9 0.91 0.78 0.84
10 0.91 0.76 0.83

From Table 6, we can find that the MTCformer achieves the highest F-score value (0.89)
when the number of encoder layers is equal to 7; obtains the highest precision value (0.97)
with Encoder Layer = 3, 7; and performs the best in terms of recall (0.83) with Encoder
Layer = 4, 5, 6 , 7, and 8. When the number of encoder layers is less than 7, the model is
not well-fitted. When the number of encoder layers is larger than 7, the recall value of the
model shows a decreasing trend, and the overfitting phenomenon occurs. Therefore, we
conclude that Encoder Layer = 7 is the optimal option for the MTCformer.
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5.2. Word Vector Dimension

The dimension of the word vector represents the number of features of words, and a
higher dimension can distinguish the words from each other more accurately. However,
in practice, high-dimensional word vectors not only cause a huge memory overhead but
also fade the relationship between words. On the contrary, low-dimensional word vectors
also suffer from the difficulty of distinguishing different words. Therefore, we choose
word vectors in the range of 100, 200, 400, 600, and 1000 in the experiment. Table 7
presents the precision, recall, and F-score values of the MTCformer with different word
vector dimensions. We find that the MTCformer achieves the highest recall and F-score
values when the word vector dimension is equal to 200 and performs the best in terms of
precision when the word vector dimension is equal to 200 and 400. When the word vector
dimension increases, the overall performance (measured by F-score) of the MTCformer
tends to decrease. Therefore, we conclude that the optimal word vector dimension is 200
for the MTCformer.

Table 7. The performance of the MTCformer with different word vector dimensions.

Method Precision Recall F-Score

100 0.94 0.83 0.88
200 0.97 0.83 0.89
400 0.97 0.80 0.88
600 0.94 0.76 0.84
1000 0.86 0.76 0.81

5.3. Practical Implications

Financial fraud based on blockchain and cryptocurrencies is already a very serious
problem. With the development of blockchain technology, Ponzi schemes are now under
the veil of smart contracts [7,9]. From a practical perspective, the method proposed in
this paper, MTCformer, has high accuracy and can actually be used to detect potential
smart Ponzi schemes. Therefore, the financial losses due to fraud can be alleviated, and the
transaction environment in the blockchain can be improved.

Technically speaking, the experimental results in Section 4.5.1 show that our proposed
MTCformer method outperforms the hand-crafted features-based methods (i.e., Account,
Opcode, and Account + Opcode) by a substantial margin. The MTCformer differs from the
existing Ponzi scheme detection methods in that we employ the deep learning technique
(i.e., multi-channel TextCNN and Transformer) to automatically generate discriminative
features from smart contract code instead of manually designing features, which can extract
the structural and semantic information of source code and result in more accurate Ponzi
scheme prediction. Therefore, we suggest that subsequent researchers also take advantage
of deep learning techniques to automatically extract structural and semantic features from
smart contract code for better prediction.

The experimental results in Sections 4.5.2 and 4.5.3 show that introducing the Trans-
former and SBT can improve the performance of MTCformer. Indeed, some researchers
have employed Transformer and SBT for smart contract code analysis. For example,
Yang et al. [5] proposed a smart contract code summarization approach, which leverages
the SBT method to represent global semantic information of source code and Transformer
to capture the long-range dependencies between code tokens. Therefore, we suggest that
subsequent researchers also use the SBT method to preserve the code structure, and employ
Transformer to extract the long-range dependencies for more accurate prediction in the
field of smart contract code analysis.

6. Conclusions and Future Work

In the blockchain era, many Ponzi schemes are disguised as smart contracts, which has
a significantly negative effect on the development of blockchain. The existing Ponzi scheme
contract detection studies mainly focus on designing manually extracted features, which are
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used to train a classification model to detect Ponzi scheme contracts. However, the manually
extracted features generally fail to capture the structural and semantic information of smart
contract code. Therefore, in this paper, we propose a deep-learning-based Ponzi scheme
detection method (i.e., MTCformer). The MTCformer firstly uses the SBT method to
generate the code token sequence to retain the structural information and then utilizes
the multi-channel TextCNN and Transformer to automatically extract the structural and
semantic features from source code and to learn the long-range dependencies between
code tokens. Our experimental results show that the MTCformer performs better than the
state-of-the-art methods and their variants. In future work, we will collect more Ponzi
scheme contracts to validate the generality of the MTCformer. In addition, we plan to
apply our MTCformer method to other classification tasks in the field of blockchain.
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Acronyms
AST Abstract Syntax Tree
BiGRU Bi-directional Gate Recurrent Unit
BiLSTM Bi-directional Long Short-Term Memory
BIoT Blockchain–Internet of Things
CNN Convolutional Neural Networks
DL Deep Learning
EOA Externally Owned Account
EVM Ethereum Virtual Machine
FFN Feed Forward Network
GRU Gate Recurrent Unit
IoT Internet of Things
LSTM Long Short-Term Memory
MTC Multi-Channel TextCNN
Opcode Operating code
PSC Plain Source Code
RNN Recurrent Neural Networks
SBT Structure-Based Traversal
STC Single-Channel TextCNN
SVM Support Vector Machine
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