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Abstract: Generally, people do various things while walking. For example, people frequently
walk while looking at their smartphones. Sometimes we walk differently than usual; for example,
when walking on ice or snow, we tend to waddle. Understanding walking patterns could provide
users with contextual information tailored to the current situation. To formulate this as a machine-
learning problem, we defined 18 different everyday walking styles. Noting that walking strategies
significantly affect the spatiotemporal features of hand motions, e.g., the speed and intensity of the
swinging arm, we propose a smartwatch-based wearable system that can recognize these predefined
walking styles. We developed a wearable system, suitable for use with a commercial smartwatch,
that can capture hand motions in the form of multivariate timeseries (MTS) signals. Then, we
employed a set of machine learning algorithms, including feature-based and recent deep learning
algorithms, to learn the MTS data in a supervised fashion. Experimental results demonstrated that,
with recent deep learning algorithms, the proposed approach successfully recognized a variety of
walking patterns, using the smartwatch measurements. We analyzed the results with recent attention-
based recurrent neural networks to understand the relative contributions of the MTS signals in the
classification process.

Keywords: sequence classification; fine-grained motion classification; human activity recognition;
recurrent neural network; attention mechanism; interpretability; gait analysis

1. Introduction

As wearable devices are gaining popularity, wearable-based human activity recogni-
tion (HAR) has attracted increasing attention. Some fundamental functionalities have been
adopted by many consumer smartwatches. For example, the device may encourage us to
stand up if we sit still for a long time or request an SOS if we fall while alone. With the re-
cent advances in sensors and wearable technologies, many studies have investigated using
smartwatches as data-collection equipment [1–4]. To date, many HAR studies have focused
on the coarse-grained classification of human movements, such as walking, running, sitting,
and lying, each of which is a distinct activity.

However, in various situations, it is often necessary to recognize fine-grained move-
ments. In some cases, fine-grained classification would make computational experi-
ences contextually aware [5]. For example, differentiating regular walking from inclined
walking—walking on steps or on a uniform slope—may be required for the precise calcu-
lation of human energy expenditure [6]. In addition, recognition of a slight tremor when
walking would make screening processes, such as for Parkinson’s disease [7], more precise.

In a similar context, we focus on the fine-grained classification of walking, which is a
fundamental movement that comprises the largest proportion of humans’ daily movements,
and propose a system that can recognize predefined walking styles in a supervised manner.
To that end, we defined 18 different walking styles, such as regular walking, carrying
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an umbrella while walking, and looking at a mobile phone while walking., as described
in Table 1.

Table 1. Walking styles defined in our study.

No. Class Description

C0 walking walking on flat ground
C1 walking snow walking on thick snow (approx. 5 cm to 7 cm)
C2 walking umbrella left walking with umbrella in left hand on a rainy day
C3 walking umbrella right walking with umbrella in right hand on a rainy day
C4 walking phone left walking while looking at a smartphone in the left hand
C5 walking phone right walking while looking at a smartphone in the right hand
C6 walking dumbbell left walking with a 2-kg dumbbell in the left hand
C7 walking dumbbell right walking with a 2-kg dumbbell in the right hand
C8 walking dumbbell both walking with a 2-kg dumbbell in each hand
C9 walking cross arms walking with arms crossed
C10 walking hands behind back walking with hands behind the back
C11 walking pocket both walking with hands in pockets
C12 jogging fitness running
C13 uphill walking up a hill
C14 downhill walking down a hill
C15 upstairs walking up steps
C16 downstairs walking down steps
C17 standing and sitting doing something while standing or sitting

Many applications require fine-grained activity recognition; however, achieving a
high recognition rate is challenging, because similar movements produce similar signals. A
recent work reported that errors occurred when its system classified similar movements
that involved walking patterns, e.g., differentiating regular walking from vacuum clean-
ing [2]. Weiss et al. [4] proposed a system that classifies various everyday activities using a
consumer smartwatch. They reported that recognizing similar hand-oriented eating activi-
ties, such as eating pasta and soup, was challenging. Kwapisz et al. [8] also proposed a
system to classify similar walking activities, including regular walking, and ascending and
descending stairs. However, ascending and descending stairs were frequently evaluated as
identical movements.

Extensive feature-engineering work may mitigate such recognition issues; however,
finding the ideal set of features for a classification process would be time-consuming [9,10].
Thus, classification with manually defined features may not be able to capture subtle
differences in similar but different complex temporal patterns. To address the challenges in
recognizing fine-grained activities, we adopted recent deep neural networks, such as one-
dimensional convolutional neural networks (Conv1D); gated recurrent neural networks
(RNNs), such as long short-term memory (LSTM); and gated recurrent units (GRU).

Although deep learning algorithms can learn complex and hierarchical features auto-
matically from raw multivariate timeseries (MTS) data, the learning process is normally
not designed to explain how its internal model works. To learn an interpretable represen-
tation and visualize the indicators of the raw data that seems influential in the model’s
evaluations, we further utilized attention-based neural networks.

The primary contributions of this paper are as follows:

1. We defined a set of fine-grained walking styles that appear every day and proposed a
wearable system that can recognize these predefined patterns in a supervised fashion.

2. We conducted an experiment to validate the feasibility of an intelligent wearable
system with feature-based machine learning and recent deep learning algorithms,
including attention-based deep neural networks.

3. We visualized and analyzed the parameters in the attention layer, which indicate the
extent to which the classification result would depend on input signals from different
time steps.
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2. Related Work
2.1. Fine-Grained Recognition of Walking Activity

Although quality of walking is used as a measure of the healthiness of a person [7,11,12],
few studies have undertaken detailed classification of walking motion, as summarized
in Table 2.

In an earlier pioneering work, Bao and Intille [13] proposed a system that classifies
daily movements, including activities related to walking, e.g., regular walking, walking
while carrying items and ascending stairs, using the measurements from multiple on-body
accelerometers. They found that overall recognition accuracy was highest when a decision-
tree classifier was used for the task. They also envisioned that machine learning algorithms
could be used to recognize different types of walking styles, such as walking slowly and
walking briskly. In another study, a smart band-based wearable system was proposed to rec-
ognize five different walking styles, such as while texting or calling, with hands in pockets,
whilst carrying a suitcase and regular walking, and achieved high and robust classification
performance with a support vector machine (SVM)-based classification model [14]. Another
previous work proposed a wearable system that utilized gait phase information [15]. Based
on the walking distance-estimation algorithm and a decision-tree model, their system
successfully recognized three different walking strategies, such as regular walking, walk-
ing upstairs and walking downstairs. Interestingly, another previous work demonstrated
that acceleration information could be used to recognize differently inclined surfaces in
a supervised fashion [16]. They proposed using customized time-frequency domain fea-
tures to recognize different inclined walking based on a Gaussian-mixture-model classifier.
Their experimental results demonstrated its remarkable classification accuracy. They also
emphasized that the normalization process for features is crucial to minimize individual
variation. A HAR system, based on a body-worn smartphone, was proposed in another
recent study [17]. The proposed deep neural network learned the features successfully in
an end-to-end fashion, after turning raw input signals into a multi-channel image using
Fourier and wavelet transformations, resulting in high classification performance.

Table 2. List of studies on human activity recognition related to walking activities.

Type of Machine
Learning

Classification
Accuracy

Classification
Model Target Motions Literature

Feature-Based

84.26% decision tree

walking, walking carrying items, running, sitting,
standing, lying, stretching, watching TV, scrubbing,
folding laundry, brushing teeth, working, eating, or
drinking, reading, bicycling, vacuuming, ascending

stairs, riding elevator, or escalator

[13]

90.80% random forest walking, running, sitting, lying [3]

93.30% random forest

walking, running, ascending stairs, standing,
sitting, kicking soccer ball, dribbling basketball,

playing catch with tennis ball, typing, handwriting,
clapping, brushing teeth, folding laundry, eating,

or drinking

[4]

93.91% decision tree walking, running, standing, walking slope-up,
walking slope-down [18]

82.46% Gaussian mixture
model

walking, walking slope-up, walking slope-down,
ascending stairs, descending stairs, [16]
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Table 2. Cont.

Type of Machine
Learning

Classification
Accuracy

Classification
Model Target Motions Literature

Deep Learning

99.24% neural network
(5-level layer)

walking, running, working, reading, studying,
taking a rest, playing a computer game, eating, or

drinking, cooking, washing dished, taking
a transport

[1]

91.06%
neural network

(multilayer
perceptron)

walking, running, ascending stairs, descending
stairs, sitting, standing [8]

98.70%
neural network

(multilayer
perceptron)

walking, running, ascending stairs, descending
stairs, sitting, standing, lying [19]

92.05%
neural network

(multilayer
perceptron)

walking, walking slope-up, walking slope-down,
ascending stairs, descending stairs [6]

99.40% neural network
(CNN)

walking, running, jumping, ascending stairs,
descending stairs, standing and sitting,

lying, bicycling
[17]

Table 2 summaries previous studies on walking-related activity recognition.

2.2. Smartwatch-Based Activity Recognition

With the advances in sensor and wearable technologies, studies using smartwatches to
recognize human activities have been increasing. In real-life situations, using a smartwatch
to capture human activity is advantageous as compared to using a smartphone, in that a
smartwatch it is normally placed on a specific body part (e.g., wrist) and does not interfere
with body movements.

One crucial but implicit assumption of using a smartwatch to recognize various human
activities is that different types of activities would result in different hand movements;
thus, types of the whole-body activities could be recognized (or observed) differently using
measurements from the smartwatch. Based on this assumption, there have been numerous
studies on HAR using recent smartwatches, particularly during the last decade.

For example, an earlier study investigated the possibility of using a smartwatch to
recognize 18 different everyday activities [20]. Remarkably, they achieved high accuracy
and Fm by proposing a stacked architecture, comprised of a convolution neural network
(CNN) and LSTM.

In another previous work, Mekruksavanich et al. [21] proposed a smartwatch-based
system that can recognize six different human activities, i.e., sitting, standing, lying, walk-
ing, walking upstairs and walking downstairs, in the context of preventing office workers
syndrome. With nine different selected features and an ensemble model, they achieved
93.5% classification accuracy. In a follow-up study, they used an LSTM-based deep neural
network and achieved 96.3% classification accuracy [22].

A recent work explored and validated the feasibility of sensing hand-oriented activities
using consumer smartwatches [5]. Based on an analysis of the spatiotemporal aspect of
inertial hand movements using a recent deep CNN model, they achieved 95.2% accuracy
across 25 fine-grained everyday hand activities.

Although we have summarized relevant recent studies, it is important to note that
research into smartwatch-based activity recognition systems is in an early stage.

In this paper, we assumed that different types of walking activities generally involve
different dynamic hand motions, as shown in Figure 1. Note that different walking strate-
gies would result in different arm-swing patterns. From this perspective, we hypothesized
that differences in MTS motion signals from different walking patterns could be learned
by machine learning algorithms. To validate our hypothesis, we first developed an in-
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telligent wearable system that leverages recent advances in artificial neural networks.
Then, we conducted an experiment in which participants were asked to walk as instructed
with the device on their wrist. We will describe the experiment and the results in the
following section.

Figure 1. An example of the different hand motions affected by walking strategies: running (upper)
and regular walking (bottom). The position of the left hand is highlighted and connected by a
dotted line. Note that walking strategies significantly affect the hand motions while walking (e.g.,
spatiotemporal walking parameters, such as the speed and intensity of the waving arm). Here, the
poses overlayed on the pictures have been extracted based on a recent work [23].

3. Experiment

In this section, we first describe the wearable system developed for the proposed
fine-grained activity recognition task. As described in the previous section, we focused
on the wrist-worn smartwatch as walking patterns affect the hand motions while walking,
differently from the previous studies that focused on the sensors attached to the leg [15] for
recognizing the walking patterns. We then describe the activities defined in this study and
the experimental procedure conducted to validate the proposed approach’s feasibility.

3.1. Equipment

In the data collection process, we used a consumer smartwatch (DW9F1 by Fossil
Group, Inc., Texas, USA) as the sensing device and a smartphone (Galaxy Note 20 by
Samsung Electronics Co. Ltd., Korea) as the host device. For the smartwatch, we developed
a custom application to capture the inertial movements of the hand in the form of MTS
data using Wear OS by Google. Here, sensor values from the built-in motion sensors (e.g.,
triaxial accelerometer and gyroscope) were captured at every 20 ms. For the smartphone,
we developed a custom host application to manage smartwatch application remotely over
the Bluetooth low-energy (BLE) connection. With the host application, the experimenter
can assign a label to the motion, take notes for the experiment, and control the start and
end of the capture process remotely. Figure 2 shows the smartwatch device used in this
study (left) and an example of the custom application running on the smartwatch (right).
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Figure 2. Smartwatch system with its axes displayed (left), and a screen from the running application
created to capture dynamic hand motion (right).

3.2. Activity Definition

We defined a set of 18 different walking styles (Table 1 and Figure 3) that are used
frequently in daily life. For motion classes C4 and C5, we asked the participants to
read arbitrary content displayed on the smartphone while walking. For motion classes
C6, C7, and C8, the participants walked while holding a 2-kg dumbbell (approximately
4.4 pounds) in the left, right, and both hands, respectively, to simulate holding a heavy
load (e.g., groceries).

Figure 3. Example photographs taken to describe the 18 different walking styles defined in Table 1. Class index is displayed
at the bottom-right corner of each picture. Class #C17 (i.e., doing something while sitting and standing) was added as the
reference class.

3.3. Proposed Method
3.3.1. Problem Definition

Given the MTS input data x =
(

x〈1〉, x〈2〉, . . . , x〈T〉
)
∈ RT×D, the machine learning

systems for activity recognition attempt to estimate y ∈ RM, i.e., a type of activity from
a predefined set of activities. Here, x〈t〉 ∈ RD represents the t-th measurements, T and D
(=6 in our case) represent the length of the signal and the dimension of the sensor data,
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respectively, and M denotes the number of activity types. Figure 4 shows the pipeline of
the machine learning process used in this study.

Figure 4. Pipeline of the machine learning process. A feature-based approach, in which machine
learning step is preceded by a feature engineering process is used as the baseline models of deep
learning-based approach.

3.3.2. Data Collection

Thirty-six subjects (20 to 62 years old; average age: 27.91; standard deviation: 11.57 years)
participated in this experiment. Note that all participants self-reported being right-handed. In
this experiment, the participants wore the smartwatch on their non-dominant hand (i.e., the
left wrist).

The participants were asked to walk according to the instructed walking styles. For
class C0, we instructed participants to walk at a self-paced speed but not at higher intensities
exceeding moderate levels. Most participants walked at least one lap around the 400-m
campus track.

For classes C15 and C16, the participants were moved to stairs, and for classes C13
and C14, the participants walked up and down ramps (inclined approximately 10 degrees),
respectively, on the university campus.

Although the experiment was conducted in different seasons (winter to summer), the
amount of data obtained for classes C2 and C3 (walking with an umbrella) and class C1
(walking on thick snow) was relatively small compared to the other cases because specific
weather conditions were required for data collection. In addition, a relatively small amount
of data was collected for class C12 (jogging) because this task was performed in a shorter
time over the same distance. Note that we instructed the participants to stop the trial
whenever they felt uncomfortable, to avoid becoming tired after the experiment.

The total time taken for each class is shown in Table 3. Cumulatively, we collected a
total of 45.18 h (std: 0.72) of data from the 36 participants.
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Table 3. Durations of data acquired for the experiment.

No. Class Total Duration
(min)

Total Duration
(h)

C0 walking 188.7 3.14
C1 walking snow 109.2 1.82
C2 walking umbrella left 108.3 1.81
C3 walking umbrella right 86.8 1.45
C4 walking phone left 188.0 3.13
C5 walking phone right 188.0 3.13
C6 walking dumbbell left 180.2 3.00
C7 walking dumbbell right 191.8 3.20
C8 walking dumbbell both 70.5 1.18
C9 walking cross arms 99.8 1.66

C10 walking hands behind back 200.0 3.33
C11 walking pocket both 180.0 3.00
C12 jogging 96.2 1.60
C13 uphill 121.7 2.03
C14 downhill 148.2 2.47
C15 upstairs 194.2 3.24
C16 downstairs 174.0 2.90
C17 standing sitting 185.2 3.09

Total 2768.8 46.45

3.3.3. Data Segmentation

As described in Section 3.1, labelled information was assigned by the host device
during the experiment. The collected MTS data were normalized by removing the mean
and scaling to unit variance on each axis. The preprocessed data were then segmented
using two different partitioning windows (T = 100 and 150 samples, accounting for 2 and
3 s of movement, respectively) without overlaps between adjacent segmentations. Here,
we selected a motion segment length of T = 100 and 150 because common walking activities
have a cycle of less than 2–3 s. Note that we did not align the signals according to the
walking phase so that the machine learning models could learn features from each activity
regardless of the activity phase (Figure 5), a viable strategy according to a recent study [17].

3.3.4. Feature-Based Machine Learning

Rather than relying on time-consuming feature-selection tasks, we employed the
tsfresh library [9] to extract statistically significant timeseries features. The tsfresh library
provides highly parallel feature selection algorithms based on the Benjamini–Yekutieli
procedure [24], which is a false-discovery-rate-controlling procedure.

In the feature-extraction process, a comprehensive number of features (e.g., 4686 =
781 × 6 features in our case) was extracted from the segmented MTS signal x ∈ RT×D.
We then selected the 180 most-significant features. Here, approximately 30 features could
be extracted for each axis based on the significance hypothesis test. The entire feature
extraction process is illustrated in Figure 5, and Table 4 shows the 12 most significant
features based on the results of the feature significance hypothesis test.

As the baseline, we used a set of feature-based classifiers, including naïve Bayes
(NB), support-vector-machine (SVM) [25], and random-forest (RF) [26] classifiers. The
NB classifier is a probabilistic model based on Bayes’ theorem [27]. The NB classifier is
applicable to many practical problems; however, its performance often degrades due to
the naïve assumption that features are conditionally independent and contribute equally
to the output. The RF classifier utilizes ensemble learning, which is a machine-learning
technique that combines many decision-tree classifiers. The RF classifier can handle high-
dimensional data efficiently and can mitigate the overfitting issue [28]. The SVM classifier
is a machine-learning tool that is effective at classifying high-dimensional data [25]. In this
study, the radial basis function (RBF) was used as the kernel function.
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Figure 5. Flow of the feature-extraction and -selection processes using the tsfresh library [9]. Final feature set is selected
according to the p-values from the feature significant test.

Table 4. Features selected based on significance hypothesis test (a total of 180 features were used in this study).

Feature Name Descriptions

sum_values sum over the timeseries values

fft_coefficient Fourier coefficients of the one-dimensional discrete Fourier transform for real input by fast Fourier
transform algorithm

autocorrelation autocorrelation coefficient
partial_autocorrelation value of partial autocorrelation function at the given lag

ar_coefficient unconditional maximum likelihood of an autoregressive process
fourier_entropy binned entropy of the power spectral density of the time series

change_quantiles average absolute value of consecutive changes of the time series inside the corridor
binned_entropy binned entropy
agg_linear_trend linear least-squares regression for values of the time series

permutation_entropy permutation entropy
number_peaks number of peaks of the time series

lempel_ziv_complexity complexity estimate based on the Lempel–Ziv compression algorithm

3.3.5. Deep Learning Algorithm

We adopted Conv1D, LSTM, and GRU to learn features and classify the segmented
MTS signal x ∈ RT×D. In addition, we employed attention-based LSTM and GRUs to learn
an interpretable representation that describes which parts of the input sequence receive
the model’s attention during classification. We adopted the attention mechanism, initially
devised for machine translation tasks, for densely visualizing the machine attention to
explain and interpret how the models come to a decision.
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Conv1D

A convolutional neural network (ConvNet) is a particular kind type of artificial neural
network comprised of multiple building blocks, e.g., alternating convolution and pooling
layers to learn features, and fully-connected layers for classification and regression. A
ConvNet extracts local features efficiently at a specific hidden layer by limiting the size of
the receptive fields of filters (i.e., sparse connectivity). It also learns the spatial hierarchies
of features using stacked deep-layer structures. Especially during the last few years,
it has successfully demonstrated its capability to learn features from different types of
information, such as regular image, spectral data [5,17,29], 3D volumes [30], etc. In a one-
dimensional convolutional neural network (Conv1D), convolutional kernels are convolved
with the layer input over a single temporal/spatial dimension [31,32] to produce latent
features. Conv1D can learn hierarchical features with low computational complexity, as
the major operation is a simply weighted sum of two one-dimensional arrays [33], it is
widely used in many practical sequence classification tasks, e.g., sentence classification [32],
earthquake detection [34], surface recognition [35], context understanding [36], and real-
time electrocardiogram monitoring [37]. Similar to a recent work [38], we set all the kernel
sizes (i.e., the length of the 1D convolution window) as 3 and the stride length of the
convolution as 1.

LSTM

The standard RNN with the traditional tanh unit suffers from the vanishing and
exploding gradient problem, which makes difficult its learning long-term dependencies.
LSTM was proposed to mitigate this issue. LSTM can learn long-term dependencies using
memory-cell and gate units [39], and LSTM-based architectures have been employed in
many sequence classification applications [35,36]. The memory cell stores information taken
from the input and previous cells over the given period. This information is controlled by
the gate units, i.e., update, forget, and output gates.

GRU

Similar to LSTM, the GRU [40] performs better than the basic RNN in many sequence
transduction tasks, e.g., language modelling [41], torque generation [42], and many se-
quence classification tasks [36,43]. For the GRU- and LSTM-based architectures, we stacked
recurrent cells two times (i.e., stacked two-layer GRU/LSTM [44]) to retain more long-term
dependence information. The dimensionality of the output space of the recurrent hidden
states was set to T, identical to the length of the input signal x ∈ RT×D.

GRU and LSTM with Attention Mechanism

Although gated RNNs, e.g., LSTM and GRU, and Conv1D have demonstrated their
effectiveness in various sequence classification tasks, it remains difficult to explain and in-
terpretate how the models come to a decision. Thus, for the proposed classification task, we
utilized attention-based RNNs, which are typically applied to a variety of sequence trans-
duction tasks in which alignments between different modalities must be learned [45–47].
Here, we adopted a multiplicative attention mechanism, which reduces encoder/decoder
states to an attention score via a simple matrix multiplication [46]. As shown in Figure 6,
our network comprises an LSTM/GRU-based sequence encoder, an attention layer, and a
classification layer.

Given the MTS input data x =
(

x〈1〉, x〈2〉, . . . , x〈T〉
)

, where x〈t〉 ∈ RD represents the
t-th measurement, the sequence encoder generates a sequence of hidden states
a =

(
a〈1〉, a〈2〉, . . . , a〈T〉

)
, where a〈t〉 ∈ Rh represents the output of the t-th data point.
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The context vector, which is a weighted sum of a and captures relevant source-side
information to predict the label of the input signal, is calculated by multiplying attention
weights α with the encoder outputs a as follows.

c〈T〉 = ∑
t′

α〈T,t′〉a〈t
′〉 (1)

Figure 6. Multiplicative attention-based LSTM/GRU for the classification process.

Here, α〈T,t′〉 describes the amount of attention that ŷ〈T〉 should pay to the input feature
at time t′ (i.e., a〈t

′〉 ). As shown below, the alignment score is normalized with a softmax
layer to produce the attention weights.

α〈T,t′〉 = softmax
(

score
(

a〈T〉, a〈t
′〉
)T

t′=1

)
=

exp
(

a〈T〉Waa〈t
′ 〉>
)

∑Tx
t′=1

exp(a〈T〉a〈t′ 〉>)

(2)

Here, score(·) is a bilinear function, which compares the two hidden states, and Wa is
the trainable weight matrix of attention. The length of the alignment score α is T. Differing
from attentional encoder–decoder problems [45,46], in our classification problem, a〈T〉 is
the last hidden state of the encoder network because our problem does not involve any
decoder structure. A similar approach was used in recent studies [48,49].

The attentional hidden state h̃〈T〉 is produced by concatenating the context vector c〈T〉

and the last hidden state aT as follows:

h̃〈T〉 = tanh
(

Wc

[
c〈T〉; a〈T〉

])
. (3)

Then, the attentional vector h̃〈T〉 is used to calculate the probability and label of the
output ŷ〈T〉 as follows.

p(y
∣∣∣x) = so f tmax

(
Ws h̃〈T〉

)
. (4)

ŷ〈T〉 = argmaxy p(y
∣∣∣x) (5)
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For the cost function of all deep learning-based approaches, we employed cross
entropy between measured values, y, and estimated values, ŷ, which is defined as follows:

CE = −
m

∑
i

y(i)log
(

ŷ(i)
)
+
(

1− y(i)
)

log
(

1− ŷ(i)
)

(6)

where m is the batch size. Also, we added a dropout layer to the hidden layer output of
all the deep networks to prevent overfitting. The Adam optimizer (with a learning rate
of lr = 10−3, β1 = 0.9, β2 = 0.999) is used to train all of the deep learning-based models
outlined to minimize cross-entropy loss [50].

4. Results
4.1. Classification Results

We use F1 score in the evaluation of each class, defined as harmonic average of
precision (P) and recall (R), and weighted F1 score as the primary performance metric.

F1 =
2·P·R
P + R

(7)

To compute mean F1 score (Fm), we weight the per-class F1 scores by the number of
instances for each class.

Fm = 2
C

∑
c=1

Nc

Ntot

Pc × Rc

Pc + Rc
(8)

Here, Nc is the number of samples that belong to class c, and Ntot is the total number
of the samples from C different classes. Table 5 shows the classification accuracies and Fm
obtained from the experiments, and Table 6 shows the mean and standard deviation time
required for inferencing a single data sample ∈ RT×D. Confusion matrices of the results
from feature-based and deep-learning algorithms are shown in Figure 7.

Table 5. Accuracies and Fm with respect to the machine learning models.

Approach Model
T = 100 (Approx. 2 s) T = 150 (Approx. 3 s)

Train Accuracy (Fm) Test Accuracy (Fm) Train Accuracy (Fm) Test Accuracy (Fm)

Feature-based
NB 49.564 (48.494) 49.441 (48.442) 53.019 (51.801) 53.382 (52.108)
RF 54.764 (49.016) 53.895 (48.152) 53.968 (48.096) 53.400 (47.439)

SVM 88.513 (88.357) 83.524 (83.262) 88.843 (88.707) 84.933 (84.706)

Deep Learning

Conv1D 96.902 (96.893) 94.597 (94.571) 99.212 (99.211) 96.976 (96.971)
GRU 99.968 (99.967) 96.122 (96.109) 100.0 (100.0) 96.788 (96.782)
LSTM 99.970 (99.974) 96.252 (96.249) 99.989 (99.990) 97.158 (97.156)

GRU + Att 99.949 (99.946) 96.157 (96.156) 99.997 (99.996) 96.902 (96.903)
LSTM + Att 99.994 (99.996) 96.103 (96.091) 99.994 (99.993) 97.096 (97.097)

Table 6. The mean and standard deviation inference time per each MTS data (∈ RT×D). For the feature-based approach,
elapsed time for the feature extraction is displayed in parentheses.

Approach Model T = 100 (Approx. 2 s)
Inference Time (msec)

T = 150 (Approx. 3 s)
Inference Time (msec)

Feature-based
NB 3.553 ± 0.327 (521.888 ± 3.797) 3.554 ± 0.092 (547.842 ± 0.479)
RF 9.726 ± 0.908 (564.915 ± 3.968) 9.627 ± 0.448 (526.848 ± 9.573)

SVM 8.947 ± 0.167 (519.796 ± 3.379) 7.249 ± 0.137 (566.064 ± 3.605)

Deep Learning

Conv1D 32.336 ± 2.131 31.831 ± 2.390
GRU 34.947 ± 1.998 35.542 ± 2.173
LSTM 34.493 ± 1.636 36.731 ± 2.022

GRU + Att 35.261 ± 1.932 36.398 ± 1.934
LSTM + Att 35.174 ± 1.908 36.693 ± 1.985
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Figure 7. Normalized confusion matrix.
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For the feature-based learning conducted as the baseline, the accuracy (Fm; weighted
F1 score) for SVM, NB, and RF were 84.933 (84.706), 53.382 (52.108), and 53.400 (47.439),
respectively. Note, here the length of the partitioning windows was T = 150 (approx.
3 s). Despite the extensive feature engineering work, the deep learning-based approach
demonstrated higher performance. The accuracy (Fm) for LSTM, LSTM with attention
mechanism (LSTM + Att), Conv1D, GRU with attention mechanism (GRU + Att) and GRU
when the length of partitioning windows was T = 150 (approx. 3 s) were 97.158 (97.156),
97.096 (97.097), 96.976 (96.971), 96.902 (96.903), and 96.788 (96.782) respectively. There was
no significant performance difference with the addition of attention. The benefits of an
attention mechanism will be discussed in Section 5. Detailed classification performances
are listed in Table 5.

We also examined the high-dimensional internal features (D = 64 in our case) learned
by our deep neural networks, such as Conv1D, LSTM, GRU, LSTM + Att, and GRU + Att,
using t-distributed stochastic neighbor embedding (t-SNE) [51]. The two-dimensional
embeddings projected from the last fully-connected layer are shown in Figure 8.

4.2. Blind Test

We collected an additional blind test dataset to further evaluate the robustness of
the proposed system. The blind test data was collected from the subjects who did not
participate in the experiment. We obtained the blind test dataset in a comparable but not
identical environment to the training data because the blind test dataset was obtained
assuming real-world conditions (e.g., flat walkway and field tracks on campus). Table 7
shows the total time spent on each class. Cumulatively, we collected a total of 35.90 min of
data for the 18 classes, which is approximately 1.99 min (std: 0.87 min) for each class. The
sampling rate was set to 50 Hz, the same as for the training dataset.

Table 7. Data acquired for the blind test with each duration displayed.

No. Class Duration
(min)

C0 walking 2.4
C1 walking snow 2.1
C2 walking umbrella left 2.5
C3 walking umbrella right 2.0
C4 walking phone left 3.0
C5 walking phone right 3.0
C6 walking dumbbell left 1.9
C7 walking dumbbell right 2.1
C8 walking dumbbell both 2.9
C9 walking cross arms 2.1

C10 walking hands behind back 3.1
C11 walking pocket both 3.0
C12 jogging 1.4
C13 uphill 0.5
C14 downhill 0.7
C15 upstairs 0.7
C16 downstairs 0.5
C17 standing sitting 2.0

Total 35.9
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Figure 8. t-SNE visualization of high-dimensional (D = 64) internal features of deep-learning-algorithm models, each of
which is displayed in the title of the subfigures. Each two-dimensional point represents a segmented motion of T = 150 that
is projected from the 64-dimensional feature space.
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In the blind test, we analyzed the results using only deep learning algorithms that
outperformed feature-based algorithms during the main experiment. The accuracy (Fm) for
Conv1D, LSTM+Att, GRU, GRU+Att and LSTM, when the length of partitioning windows
was T = 150 (approx. 3 s), were 87.290 (88.259), 77.793 (78.167), 74.720 (76.570), 74.022
(75.877), and 74.441 (75.326), respectively. While the LSTM-based classifier demonstrated
the best results for the test dataset, Conv1D showed the best classification performance
for the blind test dataset. However, compared to the test dataset, the overall Conv1D
classification performance, in terms of accuracy and Fm, during the blind test was worse.
For example, these values were particularly reduced when recognizing C0 (p: 71.154,
r: 78.723), C5 (p: 90.698, r: 65.0), C8 (p: 1.0, r: 26.316), C13 (p: 50.0, r: 60.0), and C14
(p: 75.0, r: 23.077) when Conv1D was employed, where p is precision and r is recall. In case
of LSTM, these values were reduced significantly in recognizing C0 (p: 20.690, r: 12.766),
C5 (p: 69.565, r: 26.667), C7 (p: 44.737, r: 39.535), C8 (p: 86.667, r: 22.807), C13 (p: 10.526,
r: 20.0), and C14 (p: 44.444, r: 30.769). Note that, compared to the results from the LSTM
model, the projected feature points in the same class are well clustered together when
the Conv1D model was employed, as shown in Figure 9. This may be partly because the
pre-trained LSTM model was overfitted to the training dataset.

Figure 9. Example of confusion-matrix (left) and t-SNE visualization (right) of the blind test results when (a) Conv1D
and (b) LSTM-based classifiers were employed. Here, T was set to 150. As the t-SNE plot from the Conv1D model shows
well-clustered distributions, our model could collect similar activities into similar points in the high-dimensional feature
space (D = 64). However, results from LSTM demonstrated low accuracy during the blind test.

Figure 9 shows the confusion matrix (left) and the corresponding t-SNE visualization
of the blind test set using the Conv1D (upper) and LSTM (bottom) model as a classifier
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(right). Correctly classified data is marked with a filled circle and incorrectly classified data
is marked with a cross.

5. Discussion
5.1. Classification Performance

In general, based on the overall classification results, deep learning-based approaches
successfully learned features from the different fine-grained walking styles defined in
our study. During the test phase, it is noticeable that the LSTM/GRU-based approach
demonstrated the highest accuracies and Fm, i.e., greater than 96%, in both segmentation
conditions. In our study, the addition of an attention layer did not significantly affect
classification performance. Conv1D also exhibited high accuracies and Fm over 96% when
the length of the segmentation window was T = 150 (approx. 3 s). The most challenging
activity to recognize was C8 (p: 88.027, r: 86.442) when LSTM was utilized.

In contrast, feature-based approaches demonstrated lower classification performances
over almost all the activities despite of the extensive feature-engineering process. Therefore,
except for the SVM, it is apparent that the feature-based machine-learning models adopted
in our study do not have sufficient capacity for learning the features from proposed fine-
grained motion dataset.

Regarding the blind test described in Section 4.2., the accuracy (Fm) was significantly
reduced by 9.686 (8.712) percent in the case of Conv1D compared to those from the test
dataset. Although our approach validated the feasibility of the proposed learning scheme,
robust recognition of some classes, such as C5, C8, C13, and C14, was found to be challeng-
ing as shown in Figure 9. More specifically, we found that C5 (walking phone right) was
misclassified as C0 (regular walking) when the Conv1D model was used. This may be be-
cause there were differences in the degree to which participants focus on their smartphones,
although they were asked to read the arbitrary contents displayed while walking. Also,
we found that walking with a dumbbell in both hands (C8) was confused with walking
with a dumbbell in the left-hand (C6). In addition, walking uphill (C13) was somehow
confused with walking with a dumbbell in the right-hand (C7) and walking downhill
(C14) was confused with walking downstairs (C16). An earlier work [8] reported a similar
misclassification issue: ascending and descending stairs were frequently evaluated as
identical movements.

Noting that walking with something in the right hand and walking on inclined/stepped
surfaces were successfully recognized in the training and test datasets but not in the blind
test dataset, we plan to collect more data on these activities from diverse users to make our
model more robust.

Except for these classes, the rest of the classes’ classification performance was better
than or similar to the test dataset results. The blind test dataset, on the other hand, was
analyzed using a modest amount of data. As a result, additional research with data from
the various distributions is required.

5.2. Attention Mechanism

Learning an interpretable representation is crucial in many machine-learning tasks.
A deep learning algorithm has an advantage of extracting features from the raw data;
however, typically, understanding the relative contributions of the input data is a chal-
lenging task. To mitigate this issue, the concept of attention was introduced in earlier
studies [45,46]. In this paper, we incorporate an attention mechanism, originally devised
for neural–machine-translation tasks [46], into our classification model to learn an in-
terpretable representation that describes which parts of the input data are receiving the
model’s attention. Different from recent studies on attention-based HAR systems [52–54],
we further focus on densely visualizing and analyzing the attention weights along with the
raw sensor input signal, x ∈ RT×D.

Figures 10 and 11 are examples of visualization of attention vectors, α ∈ RT , high-
lighted in the bottom of each figure. The darker the highlighted bar, the more attention the
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attention vector received from the model during the inference phase. Note that attention
values are formed in a continuous manner. In other words, a machine-learning model
takes a collection of adjacent parts of input signals, rather than discrete parts of the sig-
nals, during the training and inference phases. This may be because input signals from
specific intervals contribute to the calculation of the context vector, which captures relevant
source-side information required to predict the label of the given MTS input signals.

Figure 10. Example of MTS input signals from three different walking activities with temporally aligned attention vectors
highlighted. The darker the highlighted bar, the more attention it received from the model, and thus contributing more
during the inference phase. If the repetition cycle of the exercise was long, this example indicates that attention peaks shown
in purple were formed at a slow cycle.

Figure 11. Examples of input signals from walking with something in the right hand, with temporally
aligned attention vectors highlighted.

5.3. Walking with Something in the Right Hand

Activities with something in the left-hand are relatively easy to recognize in that
sensor values are recorded in the smartwatch worn in the left hand. There was little
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confusion reported between walking with an umbrella in the left and right hand (C2/C3)
and between walking with a phone in the left and right hands (C4/C5).

Although we initially assumed that it would be challenging to recognize cases in
which the objects are being held in the right hand, it turned out that the proposed system
could successfully recognize these activities, i.e., walking with an umbrella in the right
hand (C3), walking with a phone in the right hand (C5), and walking with a dumbbell in
the right hand (C7). This may be because our whole-body motion, including that of the
left hand, is somehow affected by the constraints imposed on the right hand. For example,
holding an umbrella or a heavy load in the either hand normally affects our dynamic
walking patterns, such as spatiotemporal-stride and arm-swing parameters, significantly.

Figure 11 shows examples of input signals from walking with something in the
right hand (C3/C5/C7) with temporally aligned attention vectors highlighted. Note
that the darker the highlighted bar, the more attention it received from the model; thus,
contributing more during the inference phase. As shown in Figure 12, the two-dimensional
feature embeddings from these activities (C3/C5/C7) are well clustered in distribution
and separated those from other types of activities, including regular walking (C0).

Figure 12. t-SNE visualization of high-dimensional internal features. Only samples from asymmetric
activities are highlighted in color. Here, LSTM+Att was employed as a classifier.

However, as we said in Section 5.1, our system is unable to detect all walking behav-
iors during the blind test. C8 (p: 100.0/86.667, r: 26.316/22.807 when Conv1D/LSTM
were used) was, for example, mistaken with C6 (p: 46.213/29.605, r: 100.0/100.0 when
Conv1D/LSTM were used). This could be because typical motion aspects (for example,
swinging the left arm slowly due to a heavy load in the left hand) are invariant to right-hand
motion. Figure 13 exhibits example input signals with attention weights aligned when
our system misidentified C8 as C6 during the blind test. In contrast to Figures 10 and 11,
which show examples of when the recognition process was correct, attention weights are
not routinely and densely formed in Figure 13.

5.4. Evaluation on Walking-Related Datasets

We compared the classification results to those of other publicly available datasets.
First, we used the PAMAP2 dataset (Physical Activity Monitoring for Aging People 2) [55],
which includes 12 daily physical activities measured by on-body sensors attached to three
different body parts, the hand, chest, and ankle. This dataset, interestingly, contains walking-
related activities, such as walking, running, Nordic walking, ascending/descending stairs,
and vacuum-cleaning. To achieve a temporal resolution comparable to our dataset, we
downsampled the PAMAP2 dataset from 100Hz to 50Hz. The data was segmented into
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3 s fixed-width sliding windows with no overlap. We also created a hand-oriented subset
(PAMAP2-hand) using measurements from a sensor attached to the hand.

Figure 13. Examples of input signals from C8, each of which was mistakenly recognized as C6, with
temporally aligned attention vectors highlighted.

Second, we used the SBHAR dataset (Smartphone-Based HAR dataset with Postural
Transitions), which is a multivariate time series data from 30 participants ranging in
age from 19 to 48 years [56]. This dataset includes six basic activities (walking, walking
upstairs, walking downstairs, sitting, standing, and lying) and six postural transitions
(standing-to-sitting, sitting-to-standing, sitting-to-lying, lying-to-sitting, standing-to-lying,
lying-to-standing). A smartphone mounted on the participant’s waist served as an inertial
motion-capture device, equipped with a triaxial accelerometer and a gyroscope operating at
50 Hz. For testing our approach with the SBHAR dataset, we segmented the measurements
using a sliding window of 3 s, with 50% overlap.

Third, we used the Daphnet freezing of gait (DG) dataset [7], which consists of
inertial measurements (i.e., acceleration) from 10 Parkinson’s disease (PD) patients who
are experiencing freezing of gait (FoG), which manifests as a sudden and temporary
inability to move. The DG dataset is collected while PD patients are walking using on-body
sensors attached to 3 different body parts (ankle, knee, and trunk). We validated our
approach by downsampling our DG dataset from 66Hz to 50Hz and segmenting it with
a sliding window of 3 s without overlap. Table 8 contains detailed information used for
the evaluation. For more information on each dataset, see previous studies [10,57], which
extensively summarizes the public dataset.

Table 8 shows performance in terms of weighted F1 scores (i.e., Fm) from the different
public datasets along with ours. As shown below, we demonstrate that it is feasible to learn
features from the walking-related activities, each of which is inherently bound to have
similar temporal features, using the recent deep learning-based approaches. Although there
is no significant performance improvements with the addition of attention, it enhances the
explainability of the classification process.
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Table 8. Comparison of classification results in terms of weighted F1 scores. Here, we added bi-LSTM, which uses two LSTMs
to learn sequential data based on both the past and the future context of the signals [58,59], for measuring performances.

PAMAP2 [55] PAMAP2-Hand [55] SBHAR [56] DG [7] Our Dataset

Sensor IMUs on the hand,
chest and ankle IMU on the hand smartphone on

the waist
embedded board

on the waist
smartwatch on

the wrist
Dim. 18 (=3 × 6) 6 (=1 × 6) 6 (=1 × 6) 9 (=3 × 3) 6 (=1 × 6)

# of classes 12 classes 12 classes 12 classes 2 classes 18 classes

Sampling rate 50 Hz
(downsampled)

50 Hz
(downsampled) 50 Hz 50 Hz

(downsampled) 50 Hz

Window 3 s 3 s 3 s
(50% overlap) 3 s 3 s

Metric Fm Fm Fm F1 Fm

LSTM+Att 92.850 86.830 94.123 82.596 97.097
GRU+Att 86.981 86.981 94.069 82.979 96.875

LSTM 91.383 86.188 93.353 82.805 97.156
bi-LSTM 92.112 84.805 93.132 82.756 97.122
Conv1D 93.093 89.811 94.295 85.272 96.971

6. Limitations and Applications
6.1. Limitations

The proposed model demonstrated high accuracies and Fm in recognizing activities
on the test set. However, as discussed in Section 4.2, it is not guaranteed that similar
recognition performance can be achieved in real-life scenarios because our data was col-
lected in a controlled environment and from a limited number of participants. In fact, Bao
and Intille [13] emphasized the importance of unsupervised and naturally collected data.
They collected two different types of data. One type was collected in a semi-naturalistic
environment, wherein the participants were asked to complete descriptive tasks. This
setting allowed participants to move on their own to some extent. The other type was
collected in a laboratory setting where the participants were instructed to execute several
predefined activities. Since our data was also collected in a controlled setting, we plan to
design experiments in which participants are allowed to move more naturally.

6.2. Applications

Fine-grained classification of walking styles would open a new venue for promising
applications in diverse fields, such as providing contextual information tailored to a user’s
current situation, measuring precise energy expenditures during exercise, and monitoring
abnormal activities.

Assistance for Distracted Walkers
As smartphones become more common, people often look at their smartphone screens,

even when walking. Consequently, a distracted walker may get into an accident. A part of
our study, i.e., differentiating walking activities while looking at the smartphone screen
(C4/C5) from regular walking (C0), can be utilized to help walkers. For example, wearable
assistants based on our approach could provide distracted walkers with warnings when
they enter a busy street. Identifying or recognizing cognitive loads while walking using
wearable devices would be interesting future work.

Contextual Applications
Furthermore, recognition of the availability of the user’s hands, e.g., walking with

dumbbells in both hands (C8) and walking with an umbrella in either hand (C2/C3), would
be useful for those who cannot use their hands to manipulate smart devices. For example,
wearable applications could read incoming messages or open car doors automatically if
the system recognized that a user was moving with luggage in both hands.

Encouraging Fitness
Recognition of fundamental activities, such as running and walking, are already

embedded in modern consumer smartwatches. For example, the device may encourage
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us to stand up if we sit still for a long time, and the device can recognize whether we are
walking or running for fitness.

As we investigated throughout this study, our activities could be recognized in much
finer detail. A wearable system may encourage users who are exercising to walk faster if
they are walking slowly or with their hands in their pockets. Without loss of generality,
the proposed approach can be extended to summarize the recorded activities into a set of
fine-grained activities, enabling personalized fitness suggestions and encouragements.

7. Conclusions

Assuming that hand motions are an important part of human walking activities and
thus have different spatiotemporal characteristics according to the walking styles, we
propose a wearable system that can recognize fine-grained walking patterns. To that end,
we defined 18 different everyday walking styles and developed a wearable system that can
capture a user’s body motions from their hand motion in the form of MTS signals. Then,
we employed a set of machine-learning algorithms, including feature-based algorithms
and recent deep-learning algorithms to learn the MTS data with the predefined walking
patterns in a supervised fashion.

With our model, the LSTM-based approach demonstrated the best classification results
in terms of accuracy (Fm) of 97.158 (97.156). However, deep-learning-based approaches,
including Conv1D, LSTM, GRU, LSTM + Att, and GRU + Att, generally exhibited higher
classification performance, i.e., accuracy and Fm greater than 95%. Despite of our extensive
feature engineering work, feature-based approaches demonstrated poor classification
performances overall. One remarkable finding from the experimental results was that
walking activities with something in the dominant hand can be recognized even when the
smartwatch is worn on the non-dominant side. Regarding the blind test, the classification
results of accuracy (Fm) were 87.290 (88.259) when Conv1D was employed. Our model has
trouble robustly recognizing specific walking patterns, such as walking with something
in the right hand and walking on inclined/stepped surfaces, according to the findings
of the blind test. To resolve this generalization issue, we plan to collect more data on
these activities from diverse users to make our pretrained model more robust. Using
the attention-based neural networks, we further analyzed the classification results to
understand the relative contributions of the MTS signals used in the classification process.
In the application section, we explored a set of wearable applications that utilize the
proposed fine-grained walking activity-recognition scheme. Future studies will focus on
increasing the robustness of the model and extending the proposed approach to diverse
healthcare applications.
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