
sensors

Article

Detection of Error-Related Potentials in Stroke Patients from
EEG Using an Artificial Neural Network

Nayab Usama 1, Imran Khan Niazi 1,2,3,* , Kim Dremstrup 1 and Mads Jochumsen 1

����������
�������

Citation: Usama, N.; Niazi, I.K.;

Dremstrup, K.; Jochumsen, M.

Detection of Error-Related Potentials

in Stroke Patients from EEG Using an

Artificial Neural Network. Sensors

2021, 21, 6274. https://doi.org/

10.3390/s21186274

Academic Editors: Cosimo Ieracitano,

Mufti Mahmud, Maryam Doborjeh

and Aime’ Lay-Ekuakille

Received: 7 August 2021

Accepted: 17 September 2021

Published: 18 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Health Science and Technology, Aalborg University, 9000 Aalborg, Denmark;
nu@hst.aau.dk (N.U.); kdn@hst.aau.dk (K.D.); mj@hst.aau.dk (M.J.)

2 Centre for Chiropractic Research, New Zealand College of Chiropractic, Auckland 1060, New Zealand
3 Health and Rehabilitation Research Institute, AUT University, Auckland 0627, New Zealand
* Correspondence: imran.niazi@nzchiro.co.nz; Tel.: +64-9-526-6789

Abstract: Error-related potentials (ErrPs) have been proposed as a means for improving brain–
computer interface (BCI) performance by either correcting an incorrect action performed by the BCI
or label data for continuous adaptation of the BCI to improve the performance. The latter approach
could be relevant within stroke rehabilitation where BCI calibration time could be minimized by
using a generalized classifier that is continuously being individualized throughout the rehabilitation
session. This may be achieved if data are correctly labelled. Therefore, the aims of this study were:
(1) classify single-trial ErrPs produced by individuals with stroke, (2) investigate test–retest reliability,
and (3) compare different classifier calibration schemes with different classification methods (artificial
neural network, ANN, and linear discriminant analysis, LDA) with waveform features as input
for meaningful physiological interpretability. Twenty-five individuals with stroke operated a sham
BCI on two separate days where they attempted to perform a movement after which they received
feedback (error/correct) while continuous EEG was recorded. The EEG was divided into epochs:
ErrPs and NonErrPs. The epochs were classified with a multi-layer perceptron ANN based on
temporal features or the entire epoch. Additionally, the features were classified with shrinkage LDA.
The features were waveforms of the ErrPs and NonErrPs from the sensorimotor cortex to improve the
explainability and interpretation of the output of the classifiers. Three calibration schemes were tested:
within-day, between-day, and across-participant. Using within-day calibration, 90% of the data were
correctly classified with the entire epoch as input to the ANN; it decreased to 86% and 69% when
using temporal features as input to ANN and LDA, respectively. There was poor test–retest reliability
between the two days, and the other calibration schemes led to accuracies in the range of 63–72%
with LDA performing the best. There was no association between the individuals’ impairment level
and classification accuracies. The results show that ErrPs can be classified in individuals with stroke,
but that user- and session-specific calibration is needed for optimal ErrP decoding with this approach.
The use of ErrP/NonErrP waveform features makes it possible to have a physiological meaningful
interpretation of the output of the classifiers. The results may have implications for labelling data
continuously in BCIs for stroke rehabilitation and thus potentially improve the BCI performance.

Keywords: error-related potentials; brain–computer interface; calibration; neurorehabilitation; stroke;
classifier interpretation

1. Introduction

A brain–computer interface (BCI) is a means for people with motor impairments
to control external devices using only brain activity [1]. Individuals with severe motor
impairments can use it for controlling, e.g., wheelchairs, spelling devices, and for induc-
ing neural plasticity in stroke patients during motor rehabilitation [2,3]. A BCI typically
consists of different building blocks: signal acquisition, pre-processing, feature extraction,
classification, and device commands, and several advances have been made over the years
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to improve each of the building blocks. For optimal control of the BCI, the classifiers
need to be calibrated to be individualized for the user to account for the non-stationarity
of the EEG, but it takes time to collect data for calibrating them. Different approaches
have been proposed in the literature to use a generalized classifier where the BCI works
without the need of individualized training data [4–7]. However, user-specific classifiers
based on within-day calibration data generally perform better, but they also suffer from
changes in the brain activity that cause an inadequate representation with respect to the
distribution of brain activity in the calibration data. These changes may be due to shifts
in attention and fatigue, which may be pronounced in people with neurological diseases
such as stroke [8]. A way to overcome this and optimize the performance of a BCI could
be through the detection of error-related potentials (ErrPs), where the detection of this
signal can be used for error correction or labelling data [9]. Error correction and labelling of
data would work in different scenarios, e.g., error correction can be used for automatically
deleting mistyped letters in a speller application or reverting the movement of a robotic
arm, i.e., the application would be applicable for communication and control purposes.
In BCI-based stroke rehabilitation (and the aforementioned applications as well), data
labelling would also be applied either for updating a classifier continuously to reduce the
effect of fatigue during a rehabilitation session. Moreover, it could be used to transfer from
a generalized classifier that could be used initially to avoid collecting user-specific training
data for the BCI before the actual rehabilitation training starts to an individualized classifier.
It has been shown in several studies that ErrPs can be decoded (see [9,10] for a review
about decoding ErrPs) and how the performance of the decoder can be optimized using
different types of features [11–21], classifiers [11,12,17,18,22,23], time windows [24–26], and
channels [17,25,27,28]. Moreover, it has been shown that generalized ErrP detectors can
be transferred across different tasks and types of ErrPs such as observation and interac-
tion ErrPs, across participants, and time which eliminates the need for calibration (see,
e.g., [11,29–36]). This transfer may be successful due to the stability of the ErrP over time as
good test/retest reliability has been reported for evoking the ErrP [37–39]. However, these
studies have been conducted with healthy participants. This applies to the majority of the
ErrP decoding literature as well with some exceptions. A few studies have investigated the
decoding of ErrPs in people with motor impairments after amyotrophic lateral sclerosis [27]
and spinal cord injury [14,31,40] but the literature for decoding of ErrPs within stroke is
scarce. Studies are needed to address this, especially since a growing body of research has
emerged within BCI-based rehabilitation after stroke [2]. As outlined previously, in this
application ErrPs could be used to maintain good BCI performance by alleviating the effect
of fatigue. Some studies have shown that ErrPs can be elicited in people with stroke [41–43],
brain lesions [44–49], and traumatic brain injuries [50], but there is some variability in the
ErrP morphology known from healthy volunteers. Generally, this is manifested through
smaller or attenuated peak amplitudes. Despite the literature about eliciting ErrPs in
stroke, there are no studies investigating the decoding of ErrPs. Additionally, with the
variability of ErrP morphology, it may be difficult to make a generalized ErrP detector
across people with stroke and across days. The aim of this study was threefold: (1) decode
ErrPs in people with stroke using different calibration schemes, within-day, between-day,
and across-participant, (2) investigate the reliability of the decoder across two separate
days, and (3) compare different classification methods. These classification problems were
assessed with waveform features as input to the classifier from the sensorimotor cortex to
allow a meaningful physiological interpretability of the classifiers.

2. Methods
2.1. Participants

In this study, 25 stroke participants (see Table 1) were recruited. The experiments were
conducted at Allied Hospital Faisalabad, Pakistan. All participants provided their written
consent before the experiment, and the local ethical committee at Allied Hospital approved
the study. The stroke participants were recruited through the Department of Neurology at
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Allied Hospital Faisalabad. Prior to the experiments, the impairment level of the stroke
participant’s affected limb was assessed by a neurologist. The impairment level was
quantified using the Brunnstrom Stage classification [51]. Additionally, eight able-bodied
participants (3 females; age = 42 ± 11 years) were included in the Supplementary Materials.

Table 1. Stroke participant ID, gender, age (years), affected side due to stroke (hemiplegia), type
of stroke, number of days since injury and Brunnstrom Stage (I = flaccidity, II = spasticity appear-
ance, III = increased spasticity, IV = decreased spasticity, V = complex movement combinations,
VI = spasticity disappears, VII = normal function returns) are shown.

Subject ID Gender Age
(Years)

Affected
Side

Type of
Stroke

Time Since
Injury (Days)

Brunnstrom
Stage

1 M 48 Right Haemorrhage 91 II

2 M 55 Right Ischemic 172 V

3 M 41 Left Ischemic 70 III

4 M 50 Left Haemorrhage 90 III

5 M 57 Right Haemorrhage 52 V

6 M 52 Right Ischemic 188 V

7 M 24 Left Haemorrhage 180 IV

8 F 32 Left Ischemic 25 II

9 F 26 Left Haemorrhage 20 I

10 M 60 Right Ischemic 87 IV

11 M 54 Left Ischemic 220 VII

12 M 46 Left Ischemic 42 III

13 M 58 Right Ischemic 84 III

14 M 37 Right Haemorrhage 36 II

15 M 42 Left Haemorrhage 118 V

16 M 24 Left Haemorrhage 45 IV

17 F 26 Right Ischemic 12 I

18 M 62 Right Haemorrhage 118 III

19 M 30 Right Ischemic 60 III

20 F 53 Left Ischemic 93 IV

21 F 38 Right Haemorrhage 45 VI

22 F 28 Left Ischemic 27 V

23 M 45 Left Ischemic 90 IV

24 M 35 Left Haemorrhage 17 II

25 M 45 Right Haemorrhage 280 VI

2.2. Data Recording

64 channels EEG were recorded with a sampling rate of 1200 Hz using active elec-
trodes (g.HIamp G.Tec, Graz, Austria). The electrodes were placed according to the
10-10 system. A linked ear reference was used, and the ground electrode was located at
AFz. The impedance of all electrodes was kept below 5 kΩ during the experiments. By
using an Arduino microcontroller, an external trigger was sent to the EEG amplifier from
a custom-made MATLAB (MathWorks, 2018) interface software. The trigger pulses were
recorded to synchronize the continuous EEG with the presentation of feedback for the
participant and to divide the EEG into ErrP (‘Incorrect’ in Figure 1) and NonErrP (‘Correct’
in Figure 1) epochs.
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Figure 1. Timeline of a single trial. The participant is cued to perform a specific movement after which the movement is
attempted immediately after the presentation of the cue. The sham feedback was provided to the participant three seconds
after the attempted movement.

2.3. Experimental Details

The participants performed the experiment while seated in a comfortable chair facing
a computer screen where cues were shown to them throughout the experiment. Figure 1
shows the timeline for a single trial during the experiments. Each repetition of a trial
started with an idle phase of five seconds, during which the participants could blink and
relax. Subsequently, a preparation phase was started during which a text was displayed on
the screen: ‘Prepare for the movement’. The preparation phase lasted for three seconds. Next,
a picture of a hand or foot (pointing towards the right or left direction) was shown in the
center of the computer screen to indicate movement of the respective hand (wrist extension)
or foot (dorsiflexion). During the attempted movement and feedback monitoring phase,
the participants were asked to avoid making eye movements by focusing their gaze on
the screen, blinking, activate facial muscles and sit as still as possible. An equal number
of repetitions was performed for each movement type, which was randomized for each
participant individually. The participants were asked to attempt to execute the movement
as soon as they saw the picture on the screen. Random feedback with a ratio of 70/30
(correct/error) was provided with a delay of three seconds in the form of a green tick mark
or a red-colored cross sign as it has been shown to elicit ErrPs [18] to ensure that enough
ErrPs and NonErrPs were elicited for the classification analyses within the time frame of
the experiment. Before the experiment, it was conveyed to the participants that the system
was decoding the intended movement from their brain signals, and the feedback type
solely depended on their brain signals during the attempted movement [18]. 100 attempted
movements were performed of each movement type, i.e., 400 attempted movements in
total. The experiment was completed in 20 runs, where each run consisted of 20 trials.
After the completion of each run, a break was given to the participants until they were
ready to start the experiment again. The experiments were completed in approximately
150–180 min. The same experiment was performed on two separate days with a gap of
approximately one month between the days. The brain activity during the presentation of
correct or erroneous feedback was used for discrimination between NonErrPs and ErrPs.
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2.4. Signal Processing
2.4.1. Pre-Processing

Thirty-seven channels of EEG (AF3-4, Fz, F1-6, FCz, FC1-6, Cz, C1-6, CPz, CP1-6, Pz,
P1-6) were used for the analysis. Initially, the channels were bandpass filtered between
0.05–10 Hz using an 8th order zero phase-shift Butterworth filter [9]. Afterwards, bad
channels were excluded from further analysis for each participant individually. Bad
channels were defined as having a mean amplitude more than three standard deviations
above the overall mean amplitude of the 37 channels. The filtered data were divided into
400-millisecond epochs starting from 100 milliseconds after the time the feedback was
presented (t = 3 s in Figure 1) and ending 500 milliseconds after the feedback was presented.
Bad epochs were rejected from further analysis if they had amplitudes exceeding 150 µV.
All trials were normalized by subtracting the mean value of the entire trial from each value
in the trial. The number of ErrPs and NonErrPs was balanced. NonErrPs were randomly
selected to match the number of included ErrP epochs in the remaining analyses.

2.4.2. Classification

Two types of classifiers were used. A multi-layer perceptron artificial neural network
(MLP ANN) and shrinkage linear discriminant analysis (LDA) were employed for the
classification of ErrPs and NonErrPs for both recording days of the stroke and able-bodied
participants. The classification with MLP ANN was performed with temporal features as
input and with the entire epochs as input. The temporal features were the waveform signal
values of the epochs downsampled to 50 Hz. The classification with ANN was compared
with classification of the temporal features with LDA, which is a traditional approach for
decoding ErrPs [9]. The waveform features from the channels over the sensorimotor cortex
were chosen to capture the ErrP to allow interpretability of the output of the classifier.

A 5-layer MLP ANN was used [28,52] with an input layer equal to the number of
features (number of channels x number of samples in epoch), three hidden layers of the
size 100-50-25, and an output layer of size 1 with a sigmoid activation function. The
scaled conjugate gradient descent method was used for training the neural network with
a maximum number of epochs of 200. Network performance was checked by the cross-
entropy, and to avoid the early stopping the validation checks were set equal to 200. Three
different types of calibration were performed: (1) Within-day calibration was performed on
the data for each participant individually using 10-fold cross-validation, (2) Between-day
calibration was performed for each participant individually by calibrating the classifier
on data from one day and testing on the other, and (3) Across-participant calibration
was performed using leave-one-participant-out cross-validation, where the data from one
participant were used for testing while the data from the other participants were used for
training (the analysis was performed separately for stroke and able-bodied participants).
All analyses were performed using MATLAB (MathWorks®).

2.5. Statistics

A two-way repeated measure analysis of variance (ANOVA) test was performed on
the classification accuracies calibration schemes (3 levels: within-day, between-day, and
across-participant) and classification method (3 levels: features classified with ANN, entire
epoch classified with ANN, and features classified with sLDA) as factors. The mean of
the classification accuracies obtained on the two days for each participant was used in
the analysis. Significant test statistics were followed up with post hoc analysis using a
Bonferroni correction to avoid multiple comparisons. The Greenhouse-Geisser correction
was applied if the assumption of sphericity was violated. The reliability of the classification
accuracies obtained for the within-day calibration scheme across the two days was tested
using Pearson’s correlation. Lastly, Spearman’s correlation test was performed between
the classification accuracies for the within-day calibration scheme (recording day one) and
the Brunnstrom Stage score (obtained prior to recording day one). Statistical significance
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was assumed when p < 0.05 for all tests. The statistical analyses were performed using
IBM® SPSS®.

3. Results

On average, 0.28 ± 0.50 channels (range: 0–1, maximum one channel was removed)
and 72 ± 64 epochs (range: 2–228) were excluded for the stroke participants in the first
recording day, and 0.32 ± 0.50 channels (range: 0–1) and 73 ± 75 epochs (range: 3–293) were
excluded from the second recording day. A grand average across participants is presented
in Figure 2 (see Figure S1 in Supplementary Materials for able-bodied participants) as
well as a plot of the mean and standard deviation of single trials for one participant. For
the grand averages, a negative peak is observed approximately 350 milliseconds after the
presentation of the feedback and a positive peak 450 milliseconds after the presentation
of the feedback. The ErrP and NonErrP epochs overlie with a slightly higher amplitude
of the negative peak for the ErrPs compared with the NonErrPs. The shape of the ErrPs
and NonErrPs are similar across the two recording days. For the single trials the ErrPs and
NonErrPs overlap with a similar shape for both recording days.
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Figure 2. Top: Grand average across 25 participants for the ErrP and NonErrP epochs for recording day 1 and 2. The shaded
area indicates the standard error across participants and the solid line is the mean. Bottom: Single trials for participant 1 for
recording day 1 and 2. The shaded area indicates the standard deviation, and the solid line is the mean across the trials.
Time ‘0 s’ is the onset of the presentation of the feedback. The signals in all trials are from the electrode position FCz. The
vertical dotted lines indicate the part of the signal that was used for the classification analyses.

The classification accuracies associated with the three different calibration schemes are
summarized in Figure 3. The results in the following are presented as mean ± standard error.
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Figure 3. Classification accuracies associated with different calibration schemes using features or the entire epoch as input
for the artificial neural network and classification of features using linear discriminant analysis. The bars represent the
mean ± standard error across the participants. For the between-day calibration, the three bars under “Day 1” represent
training the classifier on data from recording day 1 and testing on recording day 2 and vice versa for the three bars under
“Day 2”.

The average within-day classification accuracies (see Figure 3) using features as input
for the ANN were 84.9 ± 2.5% (day 1) and 86.7 ± 2.5% (day 2). When using the entire epoch
as input for the ANN the within-day classification accuracies were 89.8 ± 2.5% (day 1) and
90.2 ± 2.9% (day 2). Lastly, the within-day classification accuracies with features and LDA
were 69.3 ± 2.3% (day 1) and 69.0 ± 3.2% (day 2). There was no correlation between the
classification accuracies obtained for the two recording days using features (Pearson’s cor-
relation = 0.09; p = 0.66) or the epoch (Pearson’s correlation = −0.17; p = 0.43) with ANN or
with features and LDA (Pearson’s correlation = −0.04; p = 0.85). The correlation analysis be-
tween the within-day classification accuracies of recording day 1 and the Brunnstrom Stage
score revealed no association for ANN with features as input (Spearman’s correlation = 0.03;
p = 0.88), ANN with epochs as input (Spearman’s correlation = 0.14; p = 0.52), and LDA
with features as input (Spearman’s correlation = −0.01; p = 0.96).

The average between-day classification accuracies (see Figure 3) using features as
input for ANN were 62.7 ± 3.9% (training on day 1 and testing on day 2) and 62.6 ± 3.3%
(training on day 2 and testing on day 1). When using the entire epoch as input for ANN the
between-day classification accuracies were 62.3 ± 2.5% (training on day 1 and testing on
day 2) and 63.4 ± 2.6% (training on day 2 and testing on day 1). Lastly, when using features
as input for LDA the between-day classification accuracies were 68.3 ± 3.1% (training on
day 1 and testing on day 2) and 67.7 ± 3.5% (training on day 2 and testing on day 1).

The average across-participant classification accuracies (see Figure 3) using features
as input for ANN were 64.0 ± 3.4% (day 1) and 65.2 ± 4.1% (day 2). When using the
entire epoch as input for the ANN, the across-participant classification accuracies were
61.4 ± 1.9% (day 1) and 65.7 ± 2.3% (day 2). The average across-participant classification
accuracies were 67.0 ± 4.0% (day 1) and 71.9 ± 3.8% (day 2) when using features as input
for the LDA. The classification accuracies for the able-bodied participants for the within-
day, between-day and across-participant calibration schemes are presented in Figure S2 in
the Supplementary Materials.
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The statistical analyses revealed a significant interaction between calibration scheme
and classification method (F(4,96) = 30.74; p < 0.001; η2 = 0.56), and a significant effect of
calibration scheme (F(2,48) = 37.73; p < 0.001; η2 = 0.61). The effect of the classification
method was not significant (F(2,48) = 1.86; p = 0.17; η2 = 0.07). The post hoc analysis
revealed that significantly higher classification accuracies were obtained for within-day
calibration compared with the other calibration schemes. Three one-way repeated measures
ANOVA tests were performed with classification method as the factor for each calibration
scheme individually. The results revealed a significant effect of within-day (F(1.5,35.9) = 62.25;
p < 0.001; η2 = 0.72) and across-participant calibration (F(2,48) = 3.32; p = 0.04; η2 = 0.12), the
effect of between-day calibration was not significant (F(2,48) = 2.43; p = 0.10; η2 = 0.09). The
post hoc test revealed that the ANN with features and epochs as input achieved higher
classification accuracies than the LDA with features as input. In the across-participant
calibration scheme, the LDA performed better than the ANN, but due to the conservative
nature of the Bonferroni correction there was no significant difference (p = 0.06).

4. Discussion

In this study it was shown that ErrPs could be classified with accuracies in the range of
90% using within-day calibration and the entire epoch as input for the ANN. The accuracies
decreased to 86% and 69% when using temporal features as input for the ANN and
LDA, respectively. The classification accuracies associated with between-day and across-
participant calibration were significantly lower compared with the within-day calibration.
There was poor reliability between the classification accuracies obtained on day 1 and 2,
and there was no correlation between the classification accuracies and the impairment
level of the participants. The classification accuracies for the different calibration schemes
were significantly higher than chance level (calculated with a significance level of 5% [53]).
The accuracies above chance level for the between-day and across-participant calibration
schemes are in agreement with several other studies that have reported that ErrPs can
be detected using these approaches [17,22,30–33,35,36,54]. The classification accuracies
obtained for LDA in between-day and across-participant calibration are similar to what has
been reported previously, but lower for ANN. This may suggest that better generalization
across days and participants can be obtained with LDA compared with ANN. The grand
averages presented in this study indicate a similar morphology on both days, and across
participants there are only slight differences in amplitudes for the ErrPs and NonErrPs
which makes it difficult to discriminate between them. The correlation analysis also
showed there was poor reliability between the classification accuracies obtained on the
two days, despite relatively high within-day classification accuracies, possibly due to
variability across days. The findings in this study suggest that for people with stroke,
using these classification approaches, it is necessary to train an ErrP detector on data
from the same day, but it takes time to collect calibration data for this. In this study
400 trials with NonErrPs and ErrPs (70/30 ratio) were elicited and ~70 epochs of these
were rejected. This number of NonErrPs and ErrPs was enough for calibrating a classifier
to obtain good performance, but other approaches could be used to reduce the time it
takes to collect calibration data such as changing the NonErrP/ErrP ratio to allow more
ErrPs [54,55] or use observation ErrPs that are fast to elicit and that can generalize to other
types of ErrPs such as interaction ErrPs [35]. Moreover, it may not be needed to use as
many ErrP and NonErrP epochs as were utilized in this study; it has been reported that
a steep increase in classification accuracies was observed after ~50–100 ErrPs were used
for calibration [33,36,40]. The classification accuracies based on within-day calibration
are in agreement with findings in several other studies which have reported a detection
performance in the range of roughly 70–90% [12,13,15–17,22,28,30,32,33,56]; it should be
noted that different classification metrics have been reported. This was the case when using
either features or the entire epoch as input for the ANN classifier. The similar findings
obtained for the two approaches for ANN were expected since waveform data were used
in both cases (with/without downsampling). The fact that waveform data can be used
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indicates that identifying various feature types may not be needed to obtain good ErrP
detection performance. Such features make it possible to make a meaningful physiological
interpretation of the output of the classifier. It is also a challenging task to identify features
that generalize well across time, such as individuals and ErrP paradigms, due to factors
that affect the ErrP morphology such as temporal variability and jitter, although methods
have been proposed for overcoming this [11,34]. By using the waveform data or epoch
from the specific user, it is also possible to eliminate some of the factors that affect the
ErrP morphology. Age has consistently been reported to reduce the ErrP amplitude
(see, e.g., [57]), and factors such as the perceived severity of the error [16], awareness of
error [41,58], and error type modulate the ErrP morphology [16,59,60]. The latter factors in
particular may be more pronounced in individuals with stroke compared with able-bodied
individuals. Many stroke patients may have some degree of cognitive impairment that may
alter the awareness of an error, depending on how it was elicited. This could lead to lower
ErrP peak amplitudes. On the contrary, stroke patients may have a stronger perception of
error severity, leading to higher peak amplitudes. However, this will also be affected if they
think it was the system and not themselves making an error, which will lead to smaller
peak amplitudes. These are some questions that should be addressed in future studies
where it would be relevant to include some qualitative data to better understand how these
factors modulate the ErrP in a stroke population [41]. Moreover, future studies should also
address online decoding of ErrPs in stroke patients when operating a real-time BCI in a
relevant BCI user scenario such as rehabilitation with BCI-triggered electrical stimulation.

5. Conclusions

In conclusion, it was shown that ErrPs and NonErrPs in stroke patients could be
classified correctly with high classification accuracies when using a within-day calibration
scheme, but with poor test–retest reliability this was across days. The classification accura-
cies decreased significantly when applying between-day and across-participant calibration
schemes. The best performance was obtained when using the entire ErrP and NonErrP in-
put for the ANN classifier compared with temporal features classified with LDA. By using
physiologically meaningful brain potentials (ErrP and NonErrP) as input for the classifiers,
it may be possible to interpret the output with respect to the existing physiological research
within this area. The results may have implications for using ErrP classification as a tool
for labelling EEG data during BCI use in a stroke rehabilitation scenario.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/s21186274/s1, Figure S1: Top: Grand average across eight able-bodied participants for the
ErrP and NonErrP epochs for recording day 1 and 2. The shaded area indicates the standard error
across participants and the solid line is the mean. Bottom: Single trials for participant 1 for recording
day 1 and 2. The shaded area indicates the standard deviation and the solid line is the mean across
the trials. Time ‘0 s’ is the onset of the presentation of the feedback. The signals in all trials are from
the electrode position FCz. The vertical dotted lines indicate the part of the signal that was used for
the classification analyses. Figure S2: Classification accuracies associated with different calibration
schemes using features or the entire epoch as input for the artificial neural network and classification
of features using linear discriminant analysis. The bars represent the mean ± standard error across
the able-bodied participants. For the between-day calibration, the three bars under “Day 1” represent
training the classifier on data from recording day 1 and testing on recording day 2 and vice versa for
the three bars under “Day 2”.
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