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Abstract: Teaching robots to learn through human demonstrations is a natural and direct method,
and virtual reality technology is an effective way to achieve fast and realistic demonstrations. In this
paper, we construct a virtual reality demonstration system that uses virtual reality equipment for
assembly activities demonstration, and using the motion data of the virtual demonstration system,
the human demonstration is deduced into an activity sequence that can be performed by the robot.
Through experimentation, the virtual reality demonstration system in this paper can achieve a 95%
correct rate of activity recognition. We also created a simulated ur5 robotic arm grasping system to
reproduce the inferred activity sequence.

Keywords: virtual reality; activity recognition; learn from demonstration

1. Introduction

Due to the complex and boring industrial environment of modern industry, it is
of great practical significance to complete assembly tasks by robots instead of humans.
Traditional robots require users to have programming skills, which gives robots capabilities
beyond that of the general public. Currently, these robotic arms can only handle simple
tasks. The operation skills of the agent are mostly generated by manual hard programming,
which requires a lot of labour and debugging. When the production line is optimised and
adjusted, a lot of manual operation skills are also required.

Today, robotics researchers are studying a new generation of robots that can learn from
human demonstrations without programming [1,2]. In other words, these new types of
robots can use sensors to perceive human movements and imitate human movements [3],
which can greatly accelerate the deployment efficiency of robots in new environments and
new tasks. Learning the human-like operating skills required to complete complex tasks
through the demonstration of “observing” human experts and realising the migration of
human skills to robot agents are hot topics in the field of intelligent robots and have im-
portant theoretical significance and application value. The core of demonstration learning
is to let the agent understand the behavioural intention of the demonstrator in order to
achieve a specific task goal and have the ability to reproduce the task. In recent years,
robot imitation learning [4] represented by behavioural cloning [5], inverse reinforcement
learning [6] and generative adversarial network [7] methods has made certain progress,
laying a certain research foundation for demonstration learning in terms of application
scenarios and research methods. Robot learning from demonstration can be divided into
three parts: (1) How to demonstrate? (2) How to understand the demonstration of human
beings. (3) How to learn from human demonstration.

Compared with traditional demonstration methods based on real environments, vir-
tual reality [8] technology has many advantages. Nowadays, the application scenarios of
virtual reality technology are becoming increasingly extensive, and the digital twin [9]
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technology in the industrial field constructs an increasingly complete digital copy of the real
production environment, which can construct virtual scenes and establish task knowledge
with minimal cost. In addition, the virtual reality system can record all the demonstra-
tion data of human experts. In terms of assembly tasks, how to achieve realistic physical
assembly effects in a virtual environment is a difficult problem?

Although virtual assembly [10] has been a topic of widespread concern in academia
for more than 20 years, however its practical application in industry is still limited. We be-
lieve this is due to the following reasons. First, most existing virtual assembly applications
use unnatural user interfaces for control. Second, dynamic, physical assembly simula-
tion cannot be realised. To this end, this paper designs and implements a virtual reality
demonstration program for mechanical assembly. The application will solve the above
problems by providing a natural user interface and a combination of dynamic assembly.
In the dynamic simulation, physical components can be carried out. In order to create an
assembly simulation that is both physically persuasive and convenient for hand tracking,
we use the combination of real-time physical technology to achieve natural interaction
between objects and kinematic constraints, thereby simplifying the assembly operation.

In summary, contributions of this paper include the following.

1. We construct a virtual reality demonstration system that uses virtual reality equipment
for assembly activities demonstration.

2. We built a module for activity recognition and reasoning of human demonstrations.
3. The action sequence can be used as knowledge to transfer to different robots in

different environments to perform the same task goal.

2. Related Works
2.1. Virtual Assembly

For many years, assembly training and virtual simulation based on virtual reality have
been a topic of widespread concern in academia. Virtual assembly methods can be roughly
divided into two types of commonly used methods: physical-based modelling (PBM)
and constraint-based modelling (CBM). In the former method, physical interaction occurs
between objects, and the connection between the parts is completed by physical contact
between the parts. However, in CBM, the assembly is performed by introducing physical
constraints, which reduces the degree of freedom between the objects to be manipulated,
thereby restricting the relative position and rotation between the parts.

Physics-based modelling: Although physics-based modelling can provide high-precision
simulation of assembly, the accuracy of physical simulation depends on the accuracy of
the model used. Behandish et al. developed a general effective force model for virtual
assembly [11]. Their method uses the artificial energy field around the virtual object to
detect collisions between parts, and guides the parts to the required spatial configuration
during the virtual assembly process. A major achievement of their method is the ability to
unify the two phases of free movement and insertion into the body.

Constraint-based modelling: Although PBM focuses on providing realistic, physically-
based interactions between parts, CBM sacrifices some physical precision to obtain other
benefits, such as increased stability, better performance, accuracy, and simplicity. In the
case of virtual assembly, CBM may be particularly useful, because the use of virtual
constraints may be helpful to the user when physical constraints are missing. Wang et al.
discussed the basis of constraint motion simulation and provided methods and algorithms
for checking and applying constraints in assembly simulation [12]. In their research, they
studied the analysis of the combination of axis and plane constraints and maintained the
previously added constraints throughout the assembly process. They also proposed a way
to guide users through visual display constraints during the assembly process. Murray et al.
developed a virtual environment in the research on immersive assembly and maintenance
simulation environment for constraint-based assembly and maintenance task simulation
and analysis of large mechanical products [13].



Sensors 2021, 21, 6201 3 of 15

In addition to PBM and CBM, hybrid modelling has also proposed a variety of hybrid
methods that try to combine the advantages of the two methods. Tching et al. used the
Virtuose tactile device to build an interactive simulation of CAD model assembly [14].
In addition to using mechanical joints to limit the relative movement between two parts,
they also use virtual walls to guide objects to specific spatial configurations. They also
formalised this concept as virtual constraint guidance (VCG) for insertion tasks. Although
their approach is closer to CBM than PBM, they allow physical contact between virtual parts
until the insertion task reaches a certain state. Seth et al. [15] also used a similar approach
to combine PBM and CBM. They used the B-Rep solid model data in the CAD model data
for collision detection between virtual parts and obtaining geometric constraints. Their
application uses a custom physics engine for simulation. Although this method provides
accurate simulation, we do not know of any available physics engine that will support
B-Rep-based collision detection.

2.2. Activity Recognition

Although the research of using virtual reality technology in product organisation has
been carried out for more than 20 years, the actual industrial application has not been
widely used.

Compared with traditional demonstration methods based on real environments, vir-
tual reality technology has many advantages. Nowadays, the application scenarios of
virtual reality technology are becoming increasingly extensive, and the digital twin tech-
nology in the industrial field constructs an increasingly complete digital copy of the real
environment. It is possible to construct virtual reality scenes and establish task knowledge
with minimal cost. In addition, the virtual reality system can record all demonstration
data of human experts, including direct motion data, operation event data, virtual sensor
observation data and voice command data. These multi-source data provide strong support
for the agent to learn operating skills and can be used for teaching robot. Different from the
research work that uses real scenes for operation demonstrations, virtual reality systems are
flexible, can easily change the environment and task scenes, and provide comprehensive
and accurate motion data and access to underlying physical events. The latter means
that virtual objects are Visibility, status, hierarchical relationships and force contact events
between virtual objects can be read directly from the physics engine.

Activity recognition is the basic problem of the generation of agent skills, and its
ultimate goal is to recognise new actions that it does not have and to have the ability to
learn online. Aksoy et al. [16] proposed an action learning system based on the physical
relationship between objects during operation. The system can extract the general definition
of a specific action and a transformation matrix that describes the relationship between the
actions. Summers-Stay et al. [17] used a simpler detection and segmentation method, but
used a tree structure to describe the actions, which also captured the dependencies between
the actions. The latest work in this field focuses on one-size and zero-sample learning
techniques [18,19], which aims to minimise the number of training data sets and reduce the
dependence on training data sets. The extreme case is the system ability to classify previous
data and to recognise invisible movements without prior training. Cheng et al. proposed a
framework that identifies new action categories based on human-readable semantic terms
describing target activities [20]. However, not all operations can be easily described in text-
based terms. Antol et al. developed a system that can learn from illustrations of required
activities and can later apply the learning results to classify photographic images [21]. Even
in the case of zero shots, many works still maintain a strong distinction between training
and recognition, and may not be able to be learned instantly. Aoki et al. recently proposed
an algorithm for unsupervised online learning of semantic information related to language
terms and physical objects [20], in which robots can learn directly from humans through
long-term interactions without prior training.

The work of Nuactiv [18] and later Cheng et al. [21] solved the problem of recognising
actions related to the overall state of the human body. The work of the latter showed better
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recognition ability by considering the temporal relationship between semantic attributes
used for classification. Aggarwal and Ryoo also considered complex time structures in
order to use a layered approach to perform semantic analysis between human motion and
object attributes to identify high-level activities [22]. Recently, decision trees have been
used with powerful reasoning methods [23] and graphical models [24] to successfully learn
functional object categories to infer human activities from demonstrations. The system of
Dianov et al. [24] not only learns to recognise new activities, but also generates a high-level
representation of the task space explored by the user, which can be used for robot planning.

Haidu and Beetz introduced a virtual reality-based skill learning environment for daily
life operations in [25], which allows users to use Razer Hydra controllers to control virtual
hands. From the many records of humans performing tasks in their environment, they are
able to train (simulated) robotic agents to perform the same tasks. Ramirez-Amaro et al.
also demonstrated advanced action recognition and learning in a virtual environment [26],
which produces skill representations that can be transferred to physical robots. They used
the SIGVerse [27] environment to capture the performance of participants and compared
their results with similar experiments conducted using physics labs and camera-based
tracking [23].

Ramirez-Amaro [28] provides a realistic, messy VR environment for experimental
home tasks, plus a semantic extraction and reasoning system that can use real-time collected
data and apply ontology-based reasoning to learn and classify activities. The system
performs continuous segmentation of the user’s hand movements, and while classifying
known movements, it learns new movements as needed. Then, the system constructs
graphs of all relevant activities in the environment through observation and extracts the
task space used by the observed users in the execution process. Compared with earlier work
in physical and virtual spaces, the action recognition and learning system can maintain a
high degree of accuracy of approximately 92 percent while dealing with more complex and
realistic environments.

Michael Beetz [29] proposed a system that can collect and annotate daily activities
performed by humans and understandable by robots from a virtual environment. Using
off-the-shelf virtual reality equipment with full-body functions and eye-tracking functions,
it is possible to draw human movement diagrams in a simulated world. All interactions in
the virtual world are physically simulated, so movement and its effects are closely related to
the real world. During the execution of the activity, a sub-symbol data recorder is recording
the environment and people’s sight frame by frame, thereby realising the reproduction
and playback of offline scenes. Combined with the physics engine, the online monitor
(symbolic data recorder) is parsing (using various grammars) and recording events, actions
and their effects in the simulated world.

Constantin Uhde [30] introduces a novel learning method for extracting tool depen-
dencies by following the scientific cycle of observation, generating causal hypotheses and
testing through experiments. They use a virtual reality data set containing observations
from human activities to generate hypotheses about causality between actions. It detects
action pairs that appear at the same time in time, and verifies whether one action helps
to perform another action through mental simulation in a virtual reality environment
that represents the mental model of the system. The proposed method can extract all
current tool action dependencies, while significantly reducing the search space for mental
simulation, thereby reducing the calculation time by 6 times.

3. Methodology
3.1. System Overview

In the research of this article, we propose a framework for inferring the semantics of
activities based on virtual reality demonstrations. This framework includes three main
modules: (1) Assembly task demonstration based on virtual reality helmet and unity
physics engine. (2) Semantic activity decomposition of the demonstration task. (3) Semantic
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activity sequences of perception are performed by the robotic arm. Figure 1 describes our
framework and the relationship between these frameworks.

Semantic ruleSemantic ruleSemantic rule

Operation and 

interaction based on VR 

equipment

Operation and 

interaction based on VR 

equipment

Unity virtual simulation 

environment

Unity virtual simulation 

environment

Task goal 

inference

Skill Plan 

Execution

ur5 robotic arm 

simulation environment

Figure 1. System overview.

The first module is the virtual reality task demonstration module. We use the game
physics engine Unity to build a simulation environment for the assembly of workpieces. It
is difficult to simulate a real assembly task in a virtual environment because the objects
in the virtual environment have no real physical properties, such as friction. In order to
imitate the real assembly effect as much as possible, we designed the link method of the
part assembly.

The second module is responsible for the analysis and processing of sensor data in the
virtual environment. The motion state of the hand is segmented from the motion data. In
the virtual assembly environment, we can directly obtain the position information of the
hands and objects in the environment, and the opening and closing states of the hands can
be read from the buttons of the virtual reality device controller. Based on these sensor data,
we set four attribute values for inferring the semantics of single hand activities. We have
designed three additional attributes to define the assembly activities of double hands. For
example, we define the hand-motion attribute to determine whether the hand is moving,
including two attribute values: move and not-move.

The third module is a simulated UR5 robotic arm grasping system. The inferred
activity sequence can be tested on the simulated system.

3.2. Virtual Assembly Environment

We use the game physics engine Unity to build the virtual environment of industrial
assembly. Take truss assembly as the task scene of the experiment. It is very difficult to
simulate the screwing link of two objects in a virtual environment. To this end, this paper
builds a set of software and hardware systems for interactive virtual assembly, as shown in
Figure 2, including a set of VR equipment for human operators to interact with the virtual
environment, and a digital twin environment for industry assembly task scenarios. The
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VR device used in this article is Oculus Quest2, which includes a VR helmet and a pair of
control handles. After the operator is running the system, the operator wearing the VR
helmet can see the assembly process table in the virtual environment from the first-person
perspective, and control handle is responsible for manipulating the virtual hand in the
virtual scene to perform assembly tasks.

Figure 2. Pin in hole assembly activity.

In this paper, interactive assembly simulation is performed in an immersive virtual
environment. Fidelity is the focus of the virtual assembly environment. Therefore, 3DMax
is used to build a virtual assembly environment model to ensure the realistic effects of the
virtual assembly environment. After completing the modelling in 3DMax according to the
dimensions of the real parts of the assembly and the connectors, etc., export the file in Fbx
format to Unity3D. When the model required for assembly is imported into Unity3D, taking
into account that in the process of assembling each sub-assembly into a total assembly, all
parts on the sub-assembly need to move or rotate together, so it is necessary to perform
structure processing for the original model, strictly define the parent–child relationship
between components.

As it is more difficult to perform fine assembly operations in the virtual scene, we
have defined a connector mechanism to help complete the connection of the parts when
completing the assembly connection of the parts. All the parts available for assembly have
dumbbell-shaped geometry. There is a square at each end of the geometry. We define
the dumbbell-shaped geometry as a connector and the cube as a connector-cube. One of
the connector blocks is used for collision detection, called (connector-cube-collide), after
this referred to as CCC, and the other connector block is used for assembly positioning,
called (connector-cube-orientate), after this referred to as CCO. As a part may need to be
assembled and connected with other parts of different quantities and types at the same
time, the number and types of connectors on different parts are not the same.

When performing assembly operations in a virtual environment, if the CCCs of a
pair of parts collide are matched, and the following conditions are met, the connector-
mechanism is executed to complete the connection of the parts and form a combination:

Condition 1: The Euler distance between the geometric centres of two matching
connectors CCC A and CCC B is less than the threshold.

dL2((x, y, z)A, (x, y, z)B) < εd (1)

where (x, y, z)A is the three-dimensional coordinates of the centre of connector A, (x, y, z)B
is the three-dimensional coordinates of the centre of connector B, dL2(()A, ()B) is the Euler
distance between the centre of the connector A and the connector B and εd is the preset
Euler distance threshold.

Condition 2: The cosine distance of the unit axial vector between the geometric centres
of two matching connectors A and connector B is less than the threshold.
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d f orward + dup < εcos

d f orward = 1− VA_ f orward ·VB_ f orward

‖VA_ f orward‖‖VB_ f orward‖
= 1− xA_ f orward∗xB_ f orward+yA_ f orward∗yB_ f orward+zA_ f orward∗zB_ f orward√

x2
A_ f orward+y2

A_ f orward+z2
A_ f orward∗

√
x2

B_ f orward+y2
B_ f orward+z2

B_ f orward

dup = 1− VA_up ·VB_up

‖VA_up‖‖VB_up‖ = 1− xA_up∗xB_up+yA_up∗yB_up+zA_up∗zB_up√
x2

A_up+y2
A_up+z2

A_up∗
√

x2
B_up+y2

B_up+z2
B_up

(2)

where d f orward is the cosine distance between the Z-axis unit vectors of the two vectors’ own
coordinate system, VA_ f orward is the unit vector of the Z-axis of the connector A’s own coor-
dinate system, VB_ f orward is the unit vector of the Z-axis of the connector B’s own coordinate

system,
(

xA_ f orward, yA_ f orward, zA_ f orward

)
is the specific vector coordinates of VA_ f orward

and
(

xB_ f orward, yB_ f orward, zB_ f orward

)
is the specific vector coordinates of VB_ f orward; and

dup is the cosine distance between the Y-axis unit vectors of the two vectors’ own coor-
dinate system, VA_up is the unit vector of the Y-axis of the connector A’s own coordinate
system, VB_up is the unit vector of the Y-axis of the connector B’s own coordinate system,(

xA_up, yA_up, zA_up
)

is the specific vector coordinates of VA_up and
(
xB_up, yB_up, zB_up

)
is

the specific vector coordinates of VB_up. εcos is the preset cosine distance threshold.
Take the assembly of Phillips screws and screw holes as an example. The two circles

marked in yellow in the figure represent the connectors of Phillips screws and screw
holes, respectively. When the difference between the CCC centroid distances of the two
connectors is less than the set threshold and the centre axis (the blue and red lines in the
figure represent the Z axis of its own coordinate system, the Y axis is not drawn in the
same way), the relative difference between the directions is not large ( When the cosine
distance is less than the set threshold), set the status of the Phillips screw and screw hole
to “connectable”. At this time, the connector mechanism can be activated, and the CCO
starts its assembly positioning function and enters the automatic assembly stage. The screw
moves along the Z axis of its own coordinate system until the CCO of the screw and the
CCO of the screw hole are completely overlapped, and the assembly of the screw and the
screw hole is completed.

3.3. Define and Extract Virtual Sensor Information

How to turn the tasks demonstrated by humans into information that robots can
understand is a complex problem. In the virtual demonstration environment, the motion
data of the demonstrator can be directly obtained. We need to process these motion data
to obtain meaningful activity semantic information. We refer to the method proposed by
Ramirez-Amaro [26] and make improvements and enhancements on this basis. Ramirez-
Amaro’s method is to extract spatio-temporal features from video data and then perform
staged action recognition. In addition, Ramirez-Amaro’s method is aimed at human
activities in daily life, and it is difficult to analyse complex industrial assembly operations.

Compared with extracting spatio-temporal features from the video, in the virtual
assembly environment, we can directly obtain more intuitive and accurate motion data,
which has great advantages. For example, we can read the opening and closing status of the
virtual hand through the oculus controller, which is difficult to obtain in video data. For the
three-dimensional demonstration activities in the virtual environment, we can obtain the
continuous position change information of the hand. We define the hand-motion attribute
variable to have two attribute values: move and notmove. Through the Oculus Quest2
controller buttons, we can directly obtain the open and close status of the hand. In addition,
we also need to obtain information about the interaction between the hand and the objects
in the virtual environment. The attributes that can be easily identified from observation
are ObjectActedOn (oa) and ObjectInHand (oh). Define the ObjectInHand property as the
object grabbed by the virtual hand, and ObjectActedOn as the object approached by the
virtual hand. Table 1 lists the four attributes and the corresponding attribute values.
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Table 1. One-handed activity attributes.

Attributes Moving ObjectInHand ObjectActOn HandState

ẋhand > c

∥∥∥xobj − xhand

∥∥∥ =

0

∥∥∥xobj − xhand

∥∥∥→
0

Value Move ObjectName ObjectName Open
NotMove Null Null Close

3.4. Infer the Activity Semantics of the Demonstrator

In this article, the semantics of human behaviour refers to finding a meaningful
relationship between human motion and motion attributes in order to understand the
activities performed by humans. For industrial assembly activities, we define the basic
activities of industrial assembly, including reaching, taking, moving, releasing and other
activities. We want to do continuous motion segmentation for the demonstration of the
virtual environment. Under the refresh rate of unity, the current activity of the demonstrator
can be analysed every frame. Different activities will have different durations. With a high
refresh rate, very short-lived activities can also be sensed, and no activity loss will occur.

Motion segmentation is performed separately for each hand and follows the descrip-
tion of Ramirez-Amaro [26] et al. The attributes in Table 2 describe the activities defined
by hand segmentation. The opening and closing of the hand can be read directly from the
state of the oculus controller.

Table 2. Primitive activity definitions.

Activity Moving ObjectInHand ObjectActOn HandState

Idle NotMove Null Null Open
Reach Move Null Something Open
Take NotMove Something Null Close

Release Move Null Null Open
PutSomethingSomewhere Move Something Null Close

Granular Move Something Something Close

In order to calculate the value of these attributes, we have made some restrictions. For
example, the hand cannot act on the object currently held by the hand.

Human assembly activities generally target two objects. To this end, on the basis of
single-handed activity recognition, we further define two-handed collaborative activities,
as shown in Table 3. First, define three new activity attributes: object distance is used
to describe the distance between the two objects to be assembled, and Connect-flag is
used to indicate whether the two objects to be assembled meet the conditions of assem-
bly. Collide-flag is used to indicate that two objects are colliding but do not meet the
assembly conditions.

Table 3. Double hands activity attributes.

Attributes ObjectDistance Collide-Flag Connect-Flag∥∥∥xobj1 − xobj2

∥∥∥ < α Collision of two objects Meet the assembly
conditions

far True True
close False False

Under the condition that the ObjectInHand of both hands is not empty, we can define
two-handed collaboration activities, as shown in the following Table 4.
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Table 4. Two-handed collaboration activities.

Activity Moving ObjectDistance Collide-flag Connect-flag

Idle NotMove far False False
Approach Move close False False
Revolve Move close True False

Pin-in-Hole Move close True True

3.5. Decision Tree

The decision tree classifier is used to learn the mapping between human motion and
human behaviour based on motion information. In order to train the learned decision tree,
we collect sample data (s, c(s)) for training, such as([

NotMove Something Null Close
]
, Take

)
(3)

where s is a vector that stores the attribute value of the current activity, and c(s) is the
activity corresponding to the current movement state. In order to learn the objective
function from a set of training examples s, we use the C4.5 algorithm to calculate the
decision tree.

The decision tree generated in this study is shown in Figure 3. It consists of two steps:
the first step is to generate a tree, which can determine the basic human hand activities in a
general form (that is, reach, take, putsomethingsomewhere, release and idle). The second
method extends the tree obtained by the tree to identify more complex two-hand assembly
activities. We refer to these types of activities as granular activities, such as approach,
revolve and pin-in-hole, as shown in Figure 4.

hand_motion

object_in_handNot_Move

left_trriger_state

Move

Take
Something

IdleNull

object_in_hand GranularSomething

object_in_hand ReachNull

object_act_on

Something

ReleaseNull

object_act_on Something

PutSomethingSomewhere

Null

Open

Close

Figure 3. Decision tree.
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Take
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left_object_in_hand GranularSomething

left_object_in_hand ReachNull
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Something
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left_object_act_on Something

PutSomethingSomewhere

Null

Open

Close

left_object_in_hand

Close

right_hand_motion

right_object_in_hand

Not_Move

right_trriger_state
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TakeSomething
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Null

right_object_in_hand GranularSomething
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Null

Open

Close
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Close

object_distance

Something

Something
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Close

IdleFar

connector_flagTrue
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False

Pin-in-holeTrue

Revolve
False

Figure 4. Extended decision tree, the red parts are the two-hand assembly activities.



Sensors 2021, 21, 6201 10 of 15

3.6. Transfer the Task to the Robot and Execute

Obtaining the semantics of the activities through the semantic activity inference
module, we also need to perform tasks on the robotic arm. We use Gazebo to build a
ur5 robotic arm simulation system to execute our algorithm. The control system must be
able to perform inferred activities quickly and be free from interference from noise in the
environment. Therefore, transferring the model we obtained to the robot is considered to
be another important contribution of this paper.

The last module integrates data input from multiple sources. These data include:
virtual assembly demonstration, a robotic arm simulation platform. Specifically, we used
gazebo to build a simulation environment for the ur5 collaborative robotic arm, and
integrated the perception and reasoning module into the motion planning of the robotic
arm. In order to achieve this goal, we need to solve several problems. The first is that
the perception and reasoning module needs to work online. Second, the perception
and reasoning module must be as fast and accurate as possible. This requires that the
communication between the perception module and the reasoning module must be real-
time, because these modules work with the motion planning module of the robotic arm.

Figure 5 shows the different components of the robotic arm execution system. The
camera module provides the function of visual localisation, recognises objects in the scene
and determines the location of the objects. The perception and reasoning module parses
the virtual demonstration into activity instructions in real-time, and the skill planning
module stores the motion primitives that should be executed to achieve tasks similar to the
observed tasks. For example, after the robot infers human behaviour (g), it visits the skill
planning module, where a series of primitive sequences are stored. This list of primitives
defines specific tasks. The output of this module includes execution primitives (pn) from
the library in the retrieved plan, where n is the number of executed primitives. For example,
if the inferred activity has arrived, the skill plan will order primitives: p1 = find the desired
object, p2 = approach the object and so on. The control loop performs this control until
the required task is successfully completed. Then, load and execute the next primitive
in the same form. This process continues until the last primitive is generated. Examples
of controls used in this article include: joint space controls using inverse kinematics and
visual positioning controls.

Virtual Assembly 

Module

Perception and 

inference module
Skill Planner

Camera Robot

Virtual sensor 

data
Activity

visual localization

Figure 5. Transfer the demonstration task to the robotic arm for execution.

Two main modules are implemented in the thread loop: online activity inference and
robot execution module.

The online activity inference model divides and interprets the visual demonstration
data from the virtual environment. The box highlighted in red in the figure represents the
new function we have implemented in the robot, which is an explanation of the human
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observation. These abilities will trigger (online) the motion primitives that the robot needs
to execute in order to achieve goals similar to the observed goals.

The robot execution module obtains visual information from the robot’s camera to
detect objects in its work area. This information is mapped to the joint space and used
as feedback for the control loop. It is important to note that the modular architecture of
the framework allows us to replace any module with more complex behaviours obtained.
For example, the vision module can be replaced with a more advanced detection system,
or the control method can be replaced with a more powerful Adaptive control law, for
example [31]. The function converts the observed human behaviour into robot actions, as
shown below.

(1) We define a plan execution library, which has a given goal (g), and primitives (p)
can be selected from the library that must be executed by the robot. For example, if the
inferred goal has been reached, the execution plan will include the following steps: (1) find
the goal (o1), (2) determine the location of o1 and (3) move the hand to o1.

(2) From the execution plan, we obtain the n primitives (p(n)) that the robot needs
to execute. These primitives are retrieved from the primitive database. According to this
example, the first primitive p(1) will trigger the camera’s target detection algorithm. Next,
p(2) will find the object, and the robot controller will retrieve the fixed point. Finally, p(3)
will allow the Cartesian interface of the robot to control the arm in the joint space (q).

(3) Perform these steps until the last step of the execution plan is completed.

4. Results and Discussion
4.1. Semantic Representation of Results

Typical industrial assembly scene tasks can be broken down into some basic activities,
such as approaching, grabbing, moving and releasing. These activities can form an activity
chain diagram of tasks.

This article takes the assembly of space trusses as an application scenario, as shown in
Figure 6. In outer space, robots are required to perform maintenance or assembly tasks on
equipment. The assembly of the truss is mainly the assembly of rods and nodes.

Figure 6. Space trusses scene.
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We invite eight experimenters without VR interaction experience. The participants
in the experiment all got the task command, “Please use the virtual hand to complete the
assembly of the truss.” For the experimenter, the only difficulty in the assembly process is
to adjust the two parts to be assembled to the appropriate position and direction. When the
correct position and orientation are met, let go of the virtual hand, and the two parts to be
assembled can be automatically assembled together. In order to complete the assembly task,
the demonstration activities of the demonstrator are deduced into the following activities,
as shown in Figure 7.

Reach Take Approach

Revolve Pin-in-Hole

Figure 7. Activity inference for the demonstration scenario of the truss assembly task.

By playing back the recorded VR data and manually performing motion segmentation
and activity semantic classification. By simply evaluating each time step in the log, the
basic facts can be evaluated. Any point in time when the detected value and the true value
are inconsistent is regarded as an error.

In order to evaluate the accuracy of activity recognition, we collect first-person demon-
stration images of testers divide them into different segments according to commands
during the tester’s demonstration process. Ground truths for the sessions were constructed
by playing back the recorded VR data and manually performing motion segmentation and
activity classification. Finally, by comparing with these ground-truth data, it is concluded
that the average correct rate based on the activity inference algorithm is 95%. The detailed
accuracy of each activity is shown in the confusion matrix shown in Table 5, where the
main diagonal representation of the form indicates that the judgement of human activity in
most clips is correct.

Table 5. Confusion matrix (expressed in %) obtained from the space truss assembly, and ground-truth
data, where a = Reach, b = Grasp, c = Release, d = Idle, e = Approach, f = Revolve, and g = Pin-in-hole.

Actual Activities Inference Activities
a b c d e f g

a 95.5 4.1 0 0.3 0 0 0
b 20.5 94.3 2.3 3.4 0 0 0
c 0 0 98.6 1.4 0 0 0
d 0 0 8.8 91.2 0 0 0
e 0 0 0 1.2 98.7 0 0
f 0 0 0 0 0 96.4 3.5
g 0 0 0 0 0 3.3 96.7
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4.2. Transfer the Target to the Robot and Execute

Several experiments were carried out in the gazebo simulation environment of the
ur5 robotic arm. Our system comprises two subsystems: (1) activity observation and inter-
pretation of human activities and (2) robotic arms to perform activities. These subsystems
have been implemented in the UR5 control system.

Figure 8 shows some examples of the system results we implemented on UR5. In
this figure, the first row shows that the perception system will grab and place the virtual
presentation to retrieve the recognised high-level motion and object properties. Take the
stacking of wood blocks as an example. In the first row of Figure 8, motion = move and
objectActedOn(oa) = CubaA. Then, immediately infer the human goal. This shows that as
shown in the first line of Figure 8, a branch of the tree obtained from Figure 3 was executed.
In other words, human activity is inferred by the system, in this case activity = Reach is
sent to the robot to be executed. Then, execute the doReach() execution plan, as shown in
the first line of Figure 8.

Similar to the previous example, Figure 8 depicts more activities inferred and per-
formed by UR5 in real-time. For example, the second row of Figure 8 shows the activity of
grabbing an object, and the third row shows the activity of placing something somewhere.
The last line shows the stacking activity; note that this represents a new activity of the
system in this case. This means that the activity is learned on demand. Please note that all
implemented applications and modules in our system are running during execution.

Inferred activity:Reach

Inferred activity:Take

Inferred activity:PutSomethingSomewhere

Inferred activity:Stack

Figure 8. Activity performed by a human and that inferred and executed by the UR5 robot arm.

5. Conclusions

For robots, understanding human demonstration activities is a complex issue. By
building a virtual reality demonstration system for simulating industrial assembly, we can
obtain the demonstration data of the demonstrator in a natural and convenient way and
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use the obtained data to understand the activity of the demonstrator. The activity inference
module decomposes the demonstration data of the demonstrator into task graphs required
to complete the task. The task graph can be used to guide the real robot to reproduce the
task, and can be transmitted in different environments and robots.

The current virtual reality demonstration system is still relatively simple, just simu-
lating the jack task demonstration and activity inference. We hope to further expand our
work in the following aspects. One is to increase the fidelity of the virtual environment,
and the physical effects of the scene should also be considered. How to reflect physical
parameters such as friction and gravity in the virtual environment is a difficult problem.
The second is to add robots to the current virtual demonstration system to realise the virtual
demonstration of human and robot cooperation to complete tasks, which can provide great
help to human–robot safety cooperation.
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