
Supplementary Materials 

A. Additional Experiments for Noisy Data 

In addition, the measured uncertainty is correlated with prediction outcomes (correct/wrong) with the 
noisy data as well, as shown in Figure A1. The t-statistic for the uncertainty distributions of correct 
answers and wrong answers is 10.5 with 𝑿 . , which corresponds to a p-value of 10  that 
indicates the proposed uncertainty measure performs properly under the challenging condition. 
Furthermore, the proposed uncertainty measure constantly outperforms the classification loss 
regardless of a. 

  

Figure S1. Comparison between the proposed uncertainty and classification loss in the test set with
different noise parameter: (A) 𝑎 0.1 ; (B) 𝑎 0.2 ; (C) 𝑎 0.3 ; (D) 𝑎 0.4 . Light red indicates the 
distributions of which predictions are correct. Blue indicates the distribution of which predictions are wrong. 



B. Additional Experiments with Interpolation 

In this appendix, cGAN-UC is evaluated with interpolation of samples. The interpolated samples are 
obtained as follows: 

𝑿 , 1 𝑏 ∙ 𝑿 𝑏 ∙ 𝑿 , 

where 𝑏 0, 0.5   is a parameter for the interpolation, i and j are an index for samples, and 
𝑿 ,  indicates an interpolated sample. In this experiment, we assume that the true label for 

𝑿 ,  is same as that of 𝑿 , i.e., 𝒀 𝑿 , 𝒀 𝑿 , since 𝑏 0, 0.5 . As a result, 
cGAN-UC constantly outperforms DenseNet regardless of b. Also, the uncertainty generally 
increases with high values of b. 

  

Figure S2. Results for interpolated data. (A) Prediction accuracy; (B) Uncertainty with regard to b. 



C. Neural Networks Architectures 

C.1 Neural network architectures of ANNs and BNNs 

 

 

 

 

  

Table S1. Architecture of ANN-n. The r indicates dropout rate. FC(k) indicates a fully connected 
layer with k number of nodes. 

Description Layers Num. of blocks 
Input Input layer 1 

Fully connected FC(128)  
Activation ReLU 𝑛 2  
Dropout Dropout(r = 0.2)  
Fully connected FC(128) 

1 
Activation ReLU 
Fully connected FC(1) 1 

  

Table S2. Architecture of BNN-n. VFC(k) indicates a variational fully connected layer with k 
number of nodes. 

Description Layers Num. of blocks 
Input Input layer 1 

Variational 
Fully connected 

VFC(128) 
𝑛 2  

Activation ReLU 
Variational 
Fully connected 

VFC(128) 
1 

Activation ReLU 
Variational 
Fully connected 

VFC(5) 1 

  



C.2 Neural network architectures of DenseNet for CIFAR-10 

 

Table S3. Architecture of DenseNet for CIFAR-10. Conv(k) indicates a convolutional layer 
with k number of filters, and FC(k) indicates a fully connected layer with k number of nodes. 

Description Layers Num. of blocks 
Input Input layer 1 

Convolutional Conv(64, filter size=(5,5), stride=1) 
1 Batch-normalization BN(momentum=0.99) 

Activation ReLU 
Batch-normalization BN(momentum=0.99) 

6 

Activation ReLU 
Convolutional Conv(128, filter size=(1,1), stride=1) 
Batch-normalization BN(momentum=0.99) 
Activation ReLU 
Convolutional Conv(32, filter size=(3,3), stride=1) 
Concatenate Concat(previous, block start) 
Batch-normalization BN(momentum=0.99) 

1 
Activation ReLU 
Convolutional Conv((block start)*0.5, filter size=(1,1), stride=1) 
Average pooling AvgPool(filter size=(2,2), stride=2) 
Batch-normalization BN(momentum=0.99) 

12 

Activation ReLU 
Convolutional Conv(128, filter size=(1,1), stride=1) 
Batch-normalization BN(momentum=0.99) 
Activation ReLU 
Convolutional Conv(32, filter size=(3,3), stride=1) 
Concatenate Concat(previous, block start) 
Batch-normalization BN(momentum=0.99) 

1 
Activation ReLU 
Convolutional Conv((block start)*0.5, filter size=(1,1), stride=1) 
Average pooling AvgPool(filter size=(2,2), stride=2) 
Batch-normalization BN(momentum=0.99) 

24 

Activation ReLU 
Convolutional Conv(128, filter size=(1,1), stride=1) 
Batch-normalization BN(momentum=0.99) 
Activation ReLU 
Convolutional Conv(32, filter size=(3,3), stride=1) 
Concatenate Concat(previous, block start) 
Batch-normalization BN(momentum=0.99) 

1 
Activation ReLU 
Convolutional Conv((block start)*0.5, filter size=(1,1), stride=1) 
Average pooling AvgPool(filter size=(2,2), stride=2) 
Batch-normalization BN(momentum=0.99) 

16 

Activation ReLU 
Convolutional Conv(128, filter size=(1,1), stride=1) 
Batch-normalization BN(momentum=0.99) 
Activation ReLU 
Convolutional Conv(32, filter size=(3,3), stride=1) 
Concatenate Concat(previous, block start) 
Batch-normalization BN(momentum=0.99) 

1 
Activation ReLU 
Global average pooling GlobAvgPool * 

Fully connected FC(10) 
 * The output of the global average pooling is used for the feature network of cGAN-UC 



C.3 Neural network architectures of cGAN-UC for CIFAR-10 

 

 

 

 

 

 

 

  

Table S4. Architecture of the generator of cGAN-UC for CIFAR-10. FC(k) indicates a fully 
connected layer with k number of nodes. 

Description Layers Feature encoding 
Input Input layer(Z~N(0,I(8)))  
Feature input *  Feature input layer(ℳ 𝑿;𝜽 ) 
Fully connected FC(16)    
Feature encoding  FC(16)   
Projection Element-wise multiply 
Fully connected FC(64)    
Activation ReLU    
Feature encoding   FC(64)  
Projection Element-wise multiply 
Fully connected FC(128)    
Activation ReLU    
Feature encoding    FC(128) 
Projection Element-wise multiply 
Fully connected FC(10)    

 * The output of the global average pooling layer of DenseNet is used for the feature input 

Table S5. Architecture of the discriminator of cGAN-UC for CIFAR-10. FC(k) indicates a 
fully connected layer with k number of nodes. 

Description Layers Feature encoding 
Input Input layer(Y)  
Feature input *  Feature input layer(ℳ 𝑿;𝜽 ) 
Fully connected FC(128)    
Feature encoding  FC(128) 
Projection Element-wise multiply 
Fully connected FC(1)    

 * The output of the global average pooling layer of DenseNet is used for the feature input 



C.4 Neural network architectures of cGAN-UC for stock market data 

 

 

 

 

  

Table S6. Architecture of the feature network of cGAN-UC for stock market data. FC(k) 
indicates a fully connected layer with k number of nodes. 

Description Layers Num. of blocks 
Input Input layer 1 
Fully connected FC(128) 

3 
Activation ReLU 
Dropout Dropout(r = 0.2) 
Batch-normalization BN(momentum=0.99) 
Fully connected * FC(128) 1 
Fully connected FC(5) 1 

 * The output is used for the feature network of cGAN-UC 

Table S7. Architecture of the generator of cGAN-UC-n for stock market data. FC(k) indicates 
a fully connected layer with k number of nodes. 

Description Layers Feature encoding Num. of blocks 
Input Input layer(Z~N(0,I(4)))  

1 
Feature input *  Feature input layer(ℳ 𝑿;𝜽 ) 
Fully connected FC(4)  

1 Feature encoding  FC(4) 
Projection Element-wise multiply 
Fully connected FC(128)  

𝑛 1  
Activation ReLU  
Fully connected FC(5)  1 

 * The output of the feature network is used for the feature input 

Table S8. Architecture of the discriminator of cGAN-UC-n for stock market data. FC(k) 
indicates a fully connected layer with k number of nodes. 

Description Layers Feature encoding Num. of blocks 
Input Input layer(Y)  

1 
Feature input *  Feature input layer(ℳ 𝑿;𝜽 ) 
Fully connected FC(128)  

𝑛 1  
Activation ReLU  
Fully connected FC(4)  

1 Feature encoding  FC(4) 
Projection Element-wise multiply 
Fully connected FC(1)  1 

 * The output of the feature network is used for the feature input 



D. The training process for cGAN-UCs 

Conventional training techniques for generative adversarial networks are employed to train cGAN-
UCs. Specifically, the hinge loss for the discriminator and Wasserstein distance [1]. 

Before training cGAN-UCs, the feature networks are trained, and weights of the feature networks are 
fixed during the training of cGAN-UC. The architecture of the feature networks for stock market data 
and CIFAR-10 are provided in Table A3 and A6, respectively. The feature networks aim to estimate 
the labels Y(X), during the training process, then, feature outputs, i.e., the penultimate layer of the 
networks, are used for cGAN-UCs as the feature inputs. The training of the feature networks is 
conducted over 5,000 epochs and 200 epochs for the stock market data and CIFAR-10, respectively. 
The adam optimizer with a learning rate of 0.0001 is used. Batch size is set at 128. 

The training of cGAN-UCs is conducted by the adam optimizer with different learning rates for the 
discriminator and the generator, which are set at 0.0008 and 0.0002, conventional values for GANs 
[2-4]. Batch size is set at 512 and 1,024 for the stock market data and CIFAR-10, respectively. The 
training is conducted over 10,000 epochs for CIFAR-10. 

 

 

  



E. Preprocessing Method for Stock Market Data 

The daily close price data of NASDAQ-100 are preprocessed for the training of regression models 
used for the experiment. Specifically, returns are used for the inputs and the target of the models, 
which are calculated as follows: 

𝑟 ,
𝑝 𝑝
𝑝

, 

where 𝑐 31,… ,𝑛 5 , 𝑛 is the number of price samples in the training set, 𝑝 denotes the price, 
𝑘 𝑐 1, … , 𝑐 30 ∪ 𝑐 5 , and 𝑟 ,  indicates the return data. 

We use 𝑟 ,   in which 𝑘 𝑐 1,… , 𝑐 30   as the inputs and 𝑟 ,   in which 𝑘 𝑐 5  as the 
target for the training of the models, which means the models predict 5-day returns by using a 
sequence of the returns of the past 30 days. 
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