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Abstract: Physical model-based dehazing methods cannot, in general, avoid environmental variables
and undesired artifacts such as non-collected illuminance, halo and saturation since it is difficult to
accurately estimate the amount of the illuminance, light transmission and airlight. Furthermore, the
haze model estimation process requires very high computational complexity. To solve this problem
by directly estimating the radiance of the haze images, we present a novel dehazing and verifying
network (DVNet). In the dehazing procedure, we enhanced the clean images by using a correction
network (CNet), which uses the ground truth to learn the haze network. Haze images are then
restored through a haze network (HNet). Furthermore, a verifying method verifies the error of both
CNet and HNet using a self-supervised learning method. Finally, the proposed complementary
adversarial learning method can produce results more naturally. Note that the proposed discriminator
and generators (HNet & CNet) can be learned via an unpaired dataset. Overall, the proposed
DVNet can generate a better dehazed result than state-of-the-art approaches under various hazy
conditions. Experimental results show that the DVNet outperforms state-of-the-art dehazing methods
in most cases.

Keywords: dehazing; GAN; CNN

1. Introduction

In outdoor environments, acquired images lose important information such as contrast
and salient edges because the particles attenuate the visible light. This degradation is
referred to as hazy degradation, which distorts both spatial and color features and decreases
visibility of the outdoor object. If the hazy degradation is not restored, we cannot expect
a good performance of main image processing or image analysis methods such as object
detection, image matching, and imaging systems [1–4], to name a few. Therefore, the
common goal of dehazing algorithms is to enhance the edge and contrast while suppressing
intensity or color saturation. To the best of the authors’ knowledge, Middleton and Edgar
were the first to employ a physical haze model for the dehazing problem [5].

To generate the haze-free image using the physical model, atmospheric light and the
corresponding transmission should be estimated. However, an accurate estimation of the
atmospheric light and transmission map generally requires additional information, such as
a pair of polarized images, multiple images under different weather conditions, distance
maps, or user interactions [6–9]. For that reason, many state-of-the-art approaches try to
find a better method to estimate the atmospheric light and the transmission map based on
reasonable assumptions [10–13]. He et al. proposed a dark channel prior (DCP)-based haze
removal method [14]. They assumed that pixels in the local patch of a clear image have
at least one dark pixel. The DCP method works well in most regions that satisfy the DCP
assumption, but fails in a white object region. Berman et al. estimated the transmission
map using haze-line prior assumption that the pixel coordinates in the color space tend to
become closer to the atmospheric light in a hazy image [15]. To find the lower bound of a
haze-line, they used the 500 representative colors. While the Berman’s approach enhances
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color contrast, it is impossible to find representative colors in a severely degraded image by
haze or fog. Shin et al. optimized the transmission estimation process using both radiance
and reflectance components [16].

Recently, convolutional neural networks (CNN) are being applied not only to im-
age classification, but also to variety of low-level image processing applications [17–20].
The CNN-based dehazing methods were also proposed in the literature to overcome the
limitation of the transmission map estimation using a single image. Cai et al. estimated
the transmission to restore a haze image using a DehazeNet [21]. Cai’s method falls in
the end-to-end supervised learning approach using synthetic haze and clean patches. To
overcome the limitation of haze feature estimation, Ren et al. presented a multi-scale
CNN [22]. They also proposed a learning method using the pairs of the simulated haze
image and true transmission [23].

To increase the training accuracy, Li et al. combined two CNN modules of the trans-
mission and atmospheric light estimation via all-in-one dehazing network (AODNet) [24].
Zhang et al. proposed a densely connected pyramid dehazing network (DCPDN) opti-
mized by a conditional adversarial learning method [25,26].

The depth information can be incorporated into the transmission estimation process
using a supervised learning method. However, it is hard to reflect other quantities such as
attenuation, atmospheric light, and illuminance at once because it is difficult to collect the
data including the depth, attenuation, airlight, and ideal illuminance maps.

For example, Figure 1a shows a real-haze image provided by [27]. This type of haze
in Figure 1a is different from what we have simulated, and degraded by multiple factors
including the color attenuation, unbalanced light source and scattered light. Therefore,
CNN-based estimation can not adaptively remove this real-haze as shown Figure 1b,c.

(a) Input (b) AODNet

(c) DCPND (d) DVNet

Figure 1. An analysis of limitation of CNN based methods: (a) One of real-haze images, (b) dehazed
result using AODNet, (c) dehazed result using DCPDN, and (d) dehazed result using our DVNet.
Note that the proposed method can restore the most naturally looking image by removing real-haze
based on the direct estimation of the radiance map.

To overcome the dependency, a radiance estimation method can be applied to the
dehazing process. Ren et al. estimated the haze-free radiance by using a mult-scale convolu-
tional neural network and simulated haze dataset [22]. The mult-scale convolutional neural
network can stably remove the simulated haze. Chen et al. estimated a physical haze model-
based radiance image using a dilated convolution [18] and adaptive normalization [28].
It can approximate the DCP or non-local dehazing operators using low computational
complexity. This radiance estimation method can accurately estimate the dehazed result
without additional estimation steps, but it may generate the amplified noise and dehazing
artifacts. To approach fusion method, Ren et al. removed the haze using derived inputs
and gated fusion network [29], Shin et al. proposed the triple convolutional networks
including dehazing, enhancement, and concatenating subnetworks to enhance the contrast
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without dehazing artifacts [30]. However, the separated subnetworks result in increasing
computational complexity. To solve this problem, this paper presents a new dehazing
and verifying network (DVNet). The proposed DVNet does not need the subnetworks
in the prediction procedure. Instead, only correction subnetwork is used for the training
process, and evaluates the dehazing error in the output using a complementary adversarial
learning. Different from the transmission estimation-based method, the proposed DVNet
successfully removed the real-haze without the noise, halo, or other undesired artifacts
with low computational complexity. Since the proposed method can use more enhanced
ground truth images, our DVNet can be effectively learned by using absolute-mean er-
ror and perceptual loss functions. Furthermore, our verifying network simultaneously
estimates and reduces the error of the resulting images via self supervised learning and
least square adversarial network. Therefore, experimental results show that the proposed
DVNet outperforms existing state-of-the-art approaches in the sense of both robustness to
various haze environment and computational efficiency. This paper is organized as follows:
Section 2 summarized related works, and Section 3, respectively, describes the proposed
DVNet and the corresponding training method. After summarizing experimental results
in Section 4, we conclude the paper with some discussions in Section 5.

2. Related Works

A clear image is degraded by the physical haze model as [5]

xC(p) = t(p)JC(p) + {1− t(p)}AC for C ∈ {R, G, B}, (1)

where J represents a haze-free, clean image, x the hazy, degraded version, p the two-
dimensional pixel coordinate, t the light transmission map, and A the spatially-invariant
atmospheric light. Superscripts in x, J, and A represent a color channel, and the trans-
mission t(p) is independent of the color channel. To solve this equation, physical haze
model-based methods estimate the major components such as t and A based on a proper
assumptions. Recently, several deep learning techniques can make this formula solvable
without estimating t or A estimations. Therefore, this section introduces various deep
learning-based dehazing approaches.

2.1. Physical Haze Model-Based Dehazing

He et al. applied the dark channel prior (DCP) to estimate the transmission as [14]

tDCP(p) = 1− min
q∈N (p)

{
min

C∈{R,G,B}

xC(q)
AC

}
, (2)

where q is the 2D pixel coordinate in a local patch region around p, denoted as N (p), in
which the transmission is assumed to be constant. Berman et al. estimated the non-local
(NL) transmission map using the geometric haze feature as [15]

tNL(p) =
‖x(p)− A‖
‖J(p)− A‖ . (3)

To solve for the feature in (3), Berman et al. used 500 representative colors and
approximated the denominator using the k-nearest neighbor (k-NN) algorithm [31]. To
minimize the dehazing artifacts such as noise and halo in the estimated transmission, either
soft matting or weighted least squares [32,33] algorithm can be used as a regularization
function. Shin et al. estimate the transmission by minimizing the radiance-reflectance
combined cost as [16]

arg min
tRRO ,dJ

(∥∥dJtRRO − dI
∥∥2

2

)
, (4)

where dI , dJ are the difference map between the atmospheric light and prior-images such
as input and roughly restored input.
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2.2. Radiance-Based Dehazing

Given N pairs of haze-free and its hazy version patches, CNN-based dehazing meth-
ods commonly train the network by minimizing the loss function as

LCNN(Θ) =
1
N

N

∑
i=1

∥∥∥F (xP
i ; Θ)− JP

i

∥∥∥, (5)

where JP
i and xP

i represent the i-th training patches of the haze-free and hazy images,
respectively. Θ is a set of network parameters including weights and biases, and F (·) is the
output of the network given an input hazy image patch and the set of parameters [28,34].

2.3. Adversarial Learning

To reduce the divergence between the generated and real images, the adversarial loss
can be defined as [26,35–37]

arg min
{GJ}

max
{D}

L
{

1− D(GJ(I))
}
+ L{D(J)}, (6)

where GJ is the haze-free generator, D is a discriminator to discriminate a real or fake class,
and L{·} denotes a sigmoid cross entropy operator. This adversarial learning can generate
a haze-free image that is closer to the clean image.

3. Proposed Method

To remove haze, we present a new dehazing and verifying networks using dilated
convolution layers and generative adversarial network. Deep learning-based dehazing
methods require a serious of procedures including: Generation of dataset, configuration
of a deep learning model, and training the model. In this section, we describe the data
generation method in Section 3.1, the network architecture and learning functions of both
correction and haze nets are given in Sections 3.2 and 3.3. Section 3.4 presents the proposed
training approaches including the verifying network and complementary adversarial
learning.

3.1. Data Generation

To generate the pairs of the haze and clean images, we first generate the initial dehazed
image from the input hazy image using a physical haze model given in (1). Let I(p) be the
input hazy image, and t̂(p) the estimated transmission using either (3) or (4), the initial
clean image is computed as

ID(p) = A +
Iin(p)− A

t̂(p)
. (7)

Since (7) gives an one-step, closed-form estimation, the training pairs of the hazy and
haze-free images can be easily created. In this paper, we used the result of the non-local
dehazing (NL) and radiance-reflectance optimization method (RRO) given in (3) and (4)
to generate the initial dehazed images. In addition, haze simulated images such as NYU-
depth data [23] can also be used to generate ID and Iin pair based on physical haze-model.
Overall, the generated data ID is used to input data of the correction network as shown
in Figure 2. In the dehazing procedure, the input haze images are resoted by the haze
network, which is learned by the corrected images. The verifying network imitates the
natural images using self supervised learning, and the discriminator classifies the real
or fake class between the natural image and generated images to reduce the statistical
divergence.
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Figure 2. The architecture of the proposed DVNet. Note that the blue and black arrows are used for the training the DVNet.
In the prediction procedure, only black arrows are efficiently applied.

3.2. Correction-Network (CNet)

We propose a correction network (CNet) to enhance the initial dehazed images by
correcting both color and intensity values. To restore the missing information, we con-
catenate features of the haze network (HNet) using the dilated convolution and adaptive
normalization [18,28] as

f̂ k
i = g

{
_

A
k
(

_

b
k

i + ∑
j

_

f j

k−1
∗rk

_

h i,j
k
)}

, (8)

where f̂ k
i and bi

k, respectively, represent the i-th feature map and bias in the k-th layer, and
_

h i,j
k

is the kernels to obtain the i-th feature map using the feature maps extracted in the

k− 1st layer,
_

f
k−1

. The operator “∗rk ” represents the dilated convolution using the rate of
the k-th layer, rk. The dilated convolution can quickly perform filtering in a wide receptive
field without changing the scale. g is a leaky rectified linear unit (LReLU) [38] function
defined as

g(x) = max
( x

5
, x
)

. (9)

_

A
k
(·) represents the adaptive normalization (AN) function in the k-th layer as

_

A
k
(x) = _

αkx +
_

βkBN(x), (10)
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where BN(·) denotes the batch normalization function [39], _
αk and

_

βk are the trainable
parameters to control the relative portion of the batch normalization function. The adaptive
normalization approach given in (10) can provide an enhanced restoration results [28].

In (8),
_

f
k−1

is concatenated as

_

f
k−1

= concat
[

f̂ k−1, f k−1
]
, (11)

where concat is a feature concatenation operator [40], f is the feature map in a HNet that
will be described in Section 3.3. This connection plays an important role in coordinating
the learning direction. For example, if the CNet is incorrectly learned without the upward
connections, the HNet is also learned with different images and such erroneous cycles are
repeated. To correctly propagate the learning direction, we concatenate the feature maps
of the HNet to the upward feature maps of the CNet. Top of Figure 2 shows the CNet
and the proposed upward connection scheme. In addition, the parameters of CNet can be
optimized by self-supervised learning using the perceptual loss [41], and it can be defined
by VGG16 network [42] which is pretrained using ImageNet data [43]. The perceptual loss
in the CNet is referred to as correction loss, which is defined as

LC =
1
N

N

∑
i=1

{
‖F(IDi)− F(ICi)‖

2
2 + ‖IDi − ICi‖1 + λ‖∇ICi‖1

}
, (12)

where N represents the batch size, IC the output of the C-Net, and F returns the feature
maps of the VGG16 network model. We used relu1-2, relu2-2, relu3-3 and relu4-3 features
in the VGG16. λ is a parameter to regularize `1-norm of the gradient. This self-supervised
CNet can correct color, intensity, and saturation in real-hazy dataset [27] as shown in
Figure 3.

Haze Images

Initial Dehazed Images

Corrected Images (CNet)

Figure 3. Performance of the proposed CNet. The proposed CNet can adaptively correct the intensity
and contrast via HNet features and adaptive normalization. The HNet uses this corrected data as
ground truth for complementary learning.

3.3. Haze-Network (HNet)

The HNet plays an important role in enhancing the degraded images. In addition, an
efficient design of the H-Net can significantly reduce the processing time. For that reason,
the HNet uses the dilated convolution and adaptive normalization [18,28] as,

fi
k = g

{
Ak

(
bk

i + ∑
j

f j
k−1∗rs hi,j

k

)}
, (13)
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where fi
k is a feature map of the H-Net in the k-th layer. b, h, and Ak(·), respectively,

represent the bias, kernel and adaptive normalization operator. Since the HNet is learned
using the results of the CNet, its result can also be corrected in an adaptive manner. The
HNet can be optimized by minimizing the haze loss as:

LH =
1
N

N

∑
i=1

{
‖F(IDi)− F(IHi)‖2

2 + ‖ICi − IHi‖1 + λ‖∇IHi‖1

}
, (14)

where IHi is the output of the HNet.

3.4. Verifying Network

To make the outputs of the dehazing network (HNet, CNet) look more natural, we
verify the errors, such as noise and halo artifact, using self-supervised learning with clean
data [44]. The verifying loss of the self-supervised learning is defined as

LS =
1
N

N

∑
i=1

{ ∥∥2F(INi)− (F(IV i) + F(IV̂ i))
∥∥2

2
+
∥∥2INi − (IV i + IV̂ i)

∥∥1 + λ
∥∥∇IV i +∇IV̂ i

∥∥
1

}
, (15)

where INi, IV̂ i, and IV i, respectively, represent the clean image, results of the CNet, and
HNet. Note that the self-supervised terms are designed by considering the errors, which
means that the pixels and features in output images of both CNet and HNet are closed to
the real natural images when the input images are ideally clean [30]. If input images are
the clean images, the ideal haze model should generate the same natural images as in the
left-bottom of Figure 2. Therefore this self supervised loss should be separately applied to
optimize the networks as Algorithms 1 and 2. In this context, the self-supervised learning
based on the loss in (15) using a clean image can minimize the dehazing artifacts as shown
in Figure 4d. Futhermore, to reduce the statistical divergence between the generated and
real images, the proposed DVNet can be optimized based on the least square adversarial
cost [36]

min
D

V(D) =

EIN∼PD(IN)

{
(D(IN)− 1)2

}
+ EIin∼PG(Iin)

{
(D(HNet(Iin)))

2
}

+EID∼PG(ID)

{
(D(CNet(ID)))

2
}
+ EIN∼PG(IN)

{
(D(HNet(IN)))

2
}

,

(16)

and
min

G
V(G) = EIin∼PG(Iin)

{
(D(HNet(Iin))− 1)2

}
+EID∼PG(ID)

{
(D(CNet(ID))− 1)2

}
+EIN∼PG(IN)

{
(D(HNet(IN))− 1)2

}
,

(17)

where D is a convolutional neural net based dicriminator as shown in right-bottom of
Figure 2, which returns a probablity value of the input image I∗ using a binary softmax
algorithm. G is the generative networks including HNet and CNet. The input data of the
discriminator is the ideally natural data IN , and the random noise is replaced to real-haze
image Iin, the initial dehazed image ID, and natural image IN to engage our HNet and
CNet.

In this adversarial learning method, the proposed network can be learned to reduce
the probability divergence between the clean image IN and the result of the proposed
network (IH , IC, IV) using unfair images. To implement the adversarial cost, we will
describe about the optimal parameters in Appendix A.

Therefore, the resulting images (IH , IC, IV) can be improved as the visibility is similar
to the clean images (IN). Figure 4e shows the performance of the proposed DVNet. More
specifically, the resulting images in Figure 4 show that our DVNet can better enhance the
hazy images [45] in the sense of both details and contrast without the undesired dehazing
artifacts.
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Algorithm 1: Training procedures of the proposed DVNet

Input: Iin, ID, IN
Output: wd
for iteration from 1 to 15K do
1: [features, IH] = HNet(Iin, wd)
2: IC = CNet(ID, features, wg)
3: IV , IV̂ = VNet(IN , wd, wg)
4: P∗ = Discriminator(IC, IV , IH , IN , wadv)
5: update model by minimizing (14) + (12)
6: update model by minimizing (15)
7: update model by minimizing (16)
8: update model by minimizing (17)

end for

Algorithm 2: Testing procedures of the proposed DVNet

Input: Iin, wd
Output: IH
1: IH = HNet(Iin, wd)

(a) Haze Images

(b) HNet (LH)

(c) DNet (LH + LC)

(d) DVNet (LH + LC + LS)

(e) DVNet (LH + LC + LS + GAN)

Figure 4. Performance of the proposed DVNet using several challenging example of haze images.

3.5. Implementation

For the implementation, we split our method into the training and testing procedures.
The training procedure consists of eight steps: (i) Feature extraction using HNet, (ii) feature
concatenation using the CNet and generation of the corrected clean image, (iii) error
verification using the same network architecture and natural image [44], (iv) differentiation
of the real and fake images using discriminator, (v) minimizing (14) + (12), (vi) minimizing
(15), (vii) maximizing and minimizing adversarial costs V(D) and V(G), (viii) repeat the
above seven steps until the optimal CNN weights are obtained. The test procedure is
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simpler than the training procedure, and applies the optimal HNet to remove haze. Table 1
shows the pseudo-code of training and testing procedures of the proposed method. In
Tables 2 and 3, the parameters of the proposed DVNet and discriminator are given for the
implementation. To optimize the cost functions, we used an adaptive moment estimation
(ADAM) optimization algorithm proposed by [46]. Learning rate values of the DNet and
VNet were, respectively, set to 1× 104 and 4× 104. We used 500 real-haze images from
the dataset provided by [27], which are engaged to the DVNet with high quality images
from NITRE 2017 dataset [44]. Initial clean images were created using the NL, RRO, and
NYU-depth data [15,16,23] using five hundred training images. We trained the proposed
DVNet 10,000 times. Table 1 shows conventions for the important variables and parameters
for the implementation.

Table 1. Conventions of image types.

Iin input haze image
IC result of the C-Net
IH generated dehazed image using H-Net
IN natural images for the VNet
IV output of the VNet
ID inintial dehazed image using NL or RRO or NYU

Table 2. Details of the proposed DVNet, where Conv denotes a convolution operator, K3 is kernel
size of 3 × 3, R is dilation rate, I input channel, O output channel, AN Adaptive normalization, and
lrelu is leaky relu.

HNet CNet

Input Iin, IN Input ID, IN
Conv(K3, R1, I3, O24), AN, lrelu Conv(K3, R1, I3, O24), AN, lrelu

Concat
Conv(K3, R1, I24, O24), AN, lrelu Conv(K3, R1, I48, O24), AN, lrelu

Concat
Conv(K3, R1, I24, O24), AN, lrelu Conv(K3, R1, I48, O24), AN, lrelu

Concat
Conv(K3, R2, I24, O24), AN, lrelu Conv(K3, R2, I48, O24), AN, lrelu

Concat
Conv(K3, R4, I24, O24), AN, lrelu Conv(K3, R4, I48, O24), AN, lrelu

Concat
Conv(K3, R8, I24, O24), AN, lrelu Conv(K3, R8, I48, O24), AN, lrelu

Concat
Conv(K3, R16, I24, O24), AN, lrelu Conv(K3, R16, I48, O24), AN, lrelu

Concat
Conv(K3, R1, I24, O24), AN, lrelu Conv(K3, R1, I48, O24), AN, lrelu

Concat
Conv(K3, R1, I24, O3) Conv(K3, R1, I48, O3)

Output IH , IV Output IC, IV̂

Table 3. Details of the proposed Discriminator, where Conv denotes a convolution operator, K3 is
kernel size of 3 × 3, R is dilation rate, I input channel, O output channel, BN Batch normalization,
and lrelu is leaky relu.

Discriminator

Input IN , IH , IV , IC
Conv (K3, R1, I3, O64), BN, lrelu

Conv (K3, R1, I64, O128), BN, lrelu
Conv (K3, R1, I128, O256), BN, lrelu
Conv (K3, R1, I256, O512), BN, lrelu

FC (I8192, O100), BN, lrelu
FC (I100, O2), Softmax
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4. Experimental Results

For the experiment, we selected three benchmark datasets of size 512 × 512 including
I-Haze, O-Haze, and 100 real hazy images [27,47–49]. Especially for the comparative ex-
periment, we tested existing dehazing methods including: Haze-line prior-based nonlocal
dehazing method (NL), densely connected pyramid dehazing net (DCPDN), radiance-
reflectance optimization based dehazing (RRO), the region-based haze image enhancement
method by using triple convolution network(TCN) [15,16,25,30]. Both NL and RRO were
implemented in Matlab 2016b and tested on i7 CPU equipped with 64 GB of RAM. On
the other hand, DCPDN, TCN and the proposed method were tested using NVIDIA RTX
2080ti graphics processing unit (GPU) and implemented in Python version 3.6 and Tensor-
flow. This section includes similarity evaluation in Section 4.1, visual quality evaluation in
Section 4.2, and ablation study in Section 4.3.

4.1. Similarity Evaluation

For the similarity evaluation, we used three benchmarking datasets including: I-Haze
(30), and O-Haze (45) [47,48].

For the quantitative evaluation, we measured the peak signal to noise ratio (PSNR),
structural similarity index measure (SSIM), and CIE color difference formula 2000
(CIED) [50,51] as shown in Figures 5 and 6 and Table 4, where the best and second best
scores are, respectively, shown with blue and cyan colored text. The proposed DVNet
is trained by non-local dehazing or radiacne-reflectance optimization-based restoration
results or NYU-depth dataset based haze-clean pair.

(a) Input (b) SSIM = 0.85 (c) SSIM = 0.88 (d) SSIM = 0.79 (e) SSIM = 0.90

(f) SSIM = 0.88 (g) SSIM = 0.89 (h) SSIM = 0.86 (i) SSIM = 1

Figure 5. Comparison of dehazed image using I-Haze: (a) Haze input, (b) NL, (c) DCPDN, (d) RRO, (e) TCN, (f) DVNet-NL,
(g) DVNet-RRO, (h) DVNet-NYU, and (i) Ground Truth.

(a) Input (b) SSIM = 0.65 (c) SSIM = 0.54 (d) SSIM = 0.66 (e) SSIM = 0.60

(f) SSIM = 0.66 (g) SSIM = 0.66 (h) SSIM = 0.62 (i) SSIM = 1

Figure 6. Comparison of dehazed image using O-Haze: (a) Haze input, (b) NL, (c) DCPDN, (d) RRO, (e) TCN, (f) DVNet-NL,
(g) DVNet-RRO, (h) DVNet-NYU, and (i) Ground Truth.
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Table 4. Comparison with state-of-the-art dehazing method using various benchmark dataset, where
blue and cyan colored numbers are the best and secondly best scores.

- I-Haze O-Haze

Method PSNR SSIM CIED PSNR SSIM CIED

NL [15] 16.00 0.7686 14.2 16.76 0.7842 16.61
DCPDN [25] 14.76 0.7758 15.76 13.20 0.7449 23.79

RRO [16] 14.96 0.7668 15.51 17.23 0.7813 16.51
TCN [30] 17.15 0.7921 14.04 15.47 0.7629 17.04

DVNet-NL 16.76 0.7985 13.62 15.18 0.7657 16.93
DVNet-RRO 17.08 0.8019 13.67 15.21 0.7707 17.31
DVNet-NYU 16.97 0.7907 13.81 15.03 0.7568 18.16

Both DVNet-RRO and DVNet-NL outperform than state-of-the-art approaches in term
of both SSIM, and CIED in I-Haze dataset, which has the ideal illumination because each
image was acquired in the indoor environment. However, the performance of DVNet-NYU
was slightly lower than TCN-RRO in term of PSNR and SSIM because simulated dataset
can not reflect various environments such as airlight and illuminance. It means that the
DVNet-NYU can generate intensity saturation as shown in Figure 5h.

Since adaptive normalization used in the TCN and our DVNet stretches the intensity,
both DVNet and TCN can change the background color. Therefore, the PSNR of the DVNet-
RRO is similar to that of TCN. Note that the DVNet does not only remove the haze but
also change the illumination. So the resulting image has a different illuminance from the
ground truth image. For that reason, the DVNets and TCN produce a lower similarity in
the O-Haze dataset than the NL and RRO approaches.

However the DVNet-RRO performs better than other CNN-based methods such as
DCPDN and TCN in term of SSIM.

4.2. Visual Qaulity Assessment

To verify the performance of the DVNets in the real haze conditions, we used 100-
FADE test sets provided by [27]. For the objective evaluation, we select no-reference
measures including: Contrast to noise ratio (CNR), natural image quality evaluation
(NIQE), entropy to evaluate amount of information in a single image such as intensity
distribution, and intensity saturation [27,52,53]. A high-quality image has high CNR
and entropy values, whereas it should have a low NIQE and saturation values for stable
enhancement. The average scores of the proposed DVNet-NL are higher than those of state-
of-the-art approaches in terms of the CNR and saturation as shown in Table 5. The ranking
of the DVNet-NYU was the best score in terms of CNR, entropy, and NIQE. However, due
to highly saturated pixels, the color of resultant image of DVNet-NYU can be distorted as
shown in Figure 7h. Note that the DVNet-NL has high score in terms of the NIQE with a
very small difference from the first NL. The DVNet-RRO also has a similar score in term of
NIQE compared with RRO. However, the saturation score of the DVNets are lower than
NL and RRO because our DVNets verifies the errors of the NL, RRO, and NYU-depth
dataset. In summary, the proposed DVNet can successfully remove various types of haze
in various environment [27] as shown in Figures 7 and 8.

Table 5. Visual quality evaluation using CNR, Entropy, NIQE, and saturation, where blue and cyan colored numbers are the
best and secondly best scores.

Method Input NL DCPDN RRO TCN DVNet-NL DVNet-RRO DVNet-NYU

CNR 129.41 149.03 138.27 148.16 148.16 154.29 147.56 151.06
Entropy 7.02 6.95 7.32 7.16 7.44 7.50 7.50 7.62

NIQE 19.31 18.53 18.88 18.63 19.21 18.57 18.69 18.52
Saturation 0.79 8.22% 3.66% 3.02% 1.33% 1.29% 1.84% 2.34%
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(a) Haze image (b) NL (c) DCPDN (d) RRO

(e) TCN (f) DVNet-NL (g) DVNet-RRO (h) DVNet-NYU

Figure 7. Dehazing results using real-world dataset: The red desh-shaped box denotes a zoomed
region in the red box.

(a) Haze image (b) NL (c) DCPDN (d) RRO

(e) TCN (f) DVNet-NL (g) DVNet-RRO (h) DVNet-NYU

Figure 8. Dehazing results using real-world dataset: The red desh-shaped box denotes a zoomed
region in the red box.

4.3. Additional Study

To demonstrate the effect the proposed contributions, we conducted the additional
studies using the I-Haze and O-Haze datasets. We also used version of the DVNet-NL
for the ablation study. In Table 6, HNet and CNet represent the baseline of the proposed
dehazing network, DVNet the optimized version of the proposed method with the natural
image and self-supervised learning, GAN the optimized version of the proposed method
using the proposed adversarial learning method.

Table 6. Ablation Study, where bold numbers are best scores.

Ablation Study I-Haze O-Haze

HNet CNet DVNet GAN PSNR SSIM PSNR SSIM

O X X X 15.91 0.6944 14.97 0.6799
O O X X 16.38 0.6964 15.37 0.6776
O O O X 16.28 0.7904 14.50 0.7519
O O O O 16.76 0.7985 15.18 0.7657

Note that the combined HNet and CNet model without VNet returns only similar
images to those of physical model-based dehazing method, which also imitates the error
such as noise and saturation. Our DNet (HNet + CNet) can reduce the intensity distortion
caused by initial dehazed image ID. The SSIM values the DVNet increased at the cost of a
slight PSNR reduction. This means that our verifying process can prevent the noise and
halo at the cost of slightly reduced dehazing performance. However, since the proposed
adversarial network complements the dehazing performance, the PSNR values outperform
the vanilla DVNet. In addition, Table 7 shows the processing time of the proposed DVNet
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with various image sizes. In evaluation procedure, the proposed DVNets only use a single
network(HNet). Therefore, the DVNets can more reduce the computational time over
5–10 times than the TCN and DCPDN, which have several subnetworks.

Table 7. Processing time (s) according to image size.

Width & Height Size 256 512 768 1024

DVNet (gpu) 0.005 0.018 0.039 0.065
TCN (gpu) 0.01 0.05 0.18 0.74

DCPDN (gpu) - 0.05 - -
RRO (cpu) 0.71 2.42 4.91 8.30
NL (cpu) 3.13 3.71 4.71 6.80

5. Conclusions

To estimate a high-quality, clean radiance image without the dehazing artifacts, we
proposed a novel dehazing network followed by a verifying network, which generates
the radiance images to verify the dehazing errors. To estimate an ideally clean image pair,
we concatenate feature maps using adaptive normalization and upward connections from
the HNet to the CNet. In addition, an unpaired natural image and the discriminator can
help minimizing the noise and dehazing artifacts without the performance degradation.
The DVNet can be adaptively remove the haze without addtional estimation processes.
Therefore, the proposed approach can efficiently remove various types of haze with low
conputational complexity. More specifically, three experiments were conducted to verify
the performance of the DVNet and the effect of the individual contributions. As a result,
the DVNet can provide high-quality dehazing results under various types of haze environ-
ments. However, the DVNet may depend on the based training data. In the future work,
we plan to combine the DVNet with the data augmentation method, and expand it to video
dehazing.
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Appendix A. Optimal Parameters

In proposed method, the least square adversarial cost functions are defined as [36]

maxD V(D) = EIN∼PD(IN)

{
(D(IN)− b)2}+ EIin∼PG(Iin)

{
(D(HNet(Iin))− a)2}

+EID∼PG(ID)

{
(D(CNet(ID))− a)2}

+EIN∼PG(IN)

{
(D(HNet(IN))− a)2},

(A1)
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and
min

G
V(G) = EIin∼PG(Iin)

{
(D(HNet(Iin))− c)2

}
+EID∼PG(ID)

{
(D(CNet(ID))− c)2

}
+EIN∼PG(IN)

{
(D(HNet(IN))− c)2

}
.

(A2)

To expand the adversarial cost, (A2) can be modified as

min
G

V(G) = EIN∼PD(IN)

{
(D(IN)− c)2

}
+ EIin∼PG(Iin)

{
(D(HNet(Iin))− c)2

}
+EID∼PG(ID)

{
(D(CNet(IC))− c)2

}
+EIN∼PG(IN)

{
(D(HNet(IN))− c)2

}
,

(A3)

where D returns the probability values via the discriminator using the soft-max algorithm,
and G represents the proposed generator model including H and CNet. To find the optimal
point of the discriminator, V(D) in (A1) can be expressed as

V(D) = Ex∼PD(IN)

{
(D(x)− b)2

}
+ Ex∼PG(Iin)

{
(D(x)− a)2

}
+Ex∼PG(ID)

{
(D(x)− a)2

}
+ Ex∼PG(IN)

{
(D(x)− a)2

}
= 1

2

∫
x PD(x)(D(x)− b)2 + (3PG(x))(D(x)− a)2.

(A4)

The optimal point of the discriminator D∗ can be obtained when its partial derivative
with respect to D is equal to zero, such as

∂

∂D

{
PD(x)(D(x)− b)2 + (3PG)(D(x)− a)2

}
= 0. (A5)

Therefore, the optimal point D∗ can be defined as

D∗(x) =
bPD(IN) + a3PG

PD(IN) + 3PG
, (A6)

which can be simplified by defining the real and fake distributions, respectively, denoted
as P1 = PD and P2 = 3PG,

D∗(x) =
bP1 + aP2

P1 + P2
, (A7)

(A2) is expressed as

V(G)

= Ex∼P1

[
(D∗(x)− c)2

]
+ Ex∼P2

[
(D∗(x)− c)2

]
,

(A8)

V(G) =

 Ex∼P1

[(
bP2(x)+aP2(x)

P1(x)+P2(x) − c
)2
]

+Ex∼P2

[(
bP1(x)+aP2(x)

P1(x)+P2(x) − c
)2
]
, (A9)

V(G) =


∫
x

P1(x)
(
(b−c)P1(x)+(a−c)P2(x)

P1(x)+P2(x)

)2
dx

+
∫
x

p2(x)
(
(b−c)P1(x)+(a−c)P2(x)

P1(x)+P2(x)

)2
dx

, (A10)

and
V(G)

=
∫
x

(
((b−c)(p1(x)+p2(x))−(b−a)p2(x))2

p1+p2

)
dx. (A11)
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If we set conditions as: b− c = 1, b− a = 4
3 , and P1 ≈ 1

3 P2, then V(G) will converge.
Therefore, (A10) is re-written as

V(G) =
∫
x

(
4
3 P2(x)− (P1(x) + P2(x))

)2

P1 + P2
dx, (A12)

=χ2
P

(
P1 + P2

∥∥∥∥4
3

P2

)
, (A13)

where χ2
P represents Pearson-χ2 divergence [36]. It means that when the above conditions

are satisfied, χ2 divergence can minimize the distance between P1 + P2 and 4
3 P2. So, above

equation can be expressed as

V(G) = χ2
P(PD + 3PG‖4PG ). (A14)

If all conditions are satisfied, then PD = PG. Therefore, the optimal parameters can be
defined as a = 4/3, b = 0, and c = 1. However, since the maximum value of D is equal to
1, the proposed parameters are applied as

max
D

V(D) = EIN∼PD(IN)

{
(D(IN))

2
}
+ EIin∼PG(Iin)

{
(D(HNet(Iin))− 1)2

}
+EID∼PG(ID)

{
(D(CNet(ID))− 1)2

}
+EIN∼PG(IN)

{
(D(HNet(IN))− 1)2

}
,

(A15)

and
min

G
V(G) = EIin∼PG(Iin)

{
(D(HNet(Iin))− 1)2

}
+EID∼PG(ID)

{
(D(CNet(ID))− 1)2

}
+EIN∼PG(IN)

{
(D(HNet(IN))− 1)2

}
.

(A16)

To convert the minimizing problem, (A15) can be rewritted as

min
D

V(D) = EIN∼PD(IN)

{
(D(IN)− 1)2

}
+ EIin∼PG(Iin)

{
(D(HNet(Iin)))

2
}

+EID∼PG(ID)

{
(D(CNet(ID)))

2
}
+ EIN∼PG(IN)

{
(D(HNet(IN)))

2
}

.
(A17)
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