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Abstract: It is shown that the models of gear pair vibration, proposed in literature, are particular
cases of the bi-periodically correlated random processes (BPCRPs), which describe its stochastic
recurrence with two periods. The possibility of vibration and analysis within the framework of
BPCRP approximation, in the form of periodically correlated random processes (PCRPs), is grounded
and the implementation of vibration processing procedures using PCRP techniques, which are
worked out by the authors, is given. Searching for hidden periodicities of the first and the second
orders was considered as the main issue of this approach. The estimation of the non-stationary period
(basic frequency) allowed us to carry out a detailed analysis of the deterministic part, the covariance
structure of the stochastic part, and to form, using their parameters, the sensitive indicators for fault
detection. The results of the processing of the wind turbine gearbox vibration signals are presented.
The amplitude spectra of the deterministic oscillations and the time changes of the stochastic part
power for different fault stages are analyzed. The most efficient indicators, which are formed using
the amplitude spectra for practical applications, are proposed. The presented approach was compared
with known in literature cyclostationary analysis and envelope techniques, and its advantages are
shown.

Keywords: vibration signal; wind turbine gearbox; periodically correlated random processes; estimation
techniques; amplitude spectrum; fault detection indicators

1. Introduction

The vibration signals of rotating machinery are characterized by their rhythmic variety,
whose key features are cyclic recurrence and stochasticity. Non-linear effects occur in
machinery behavior as faults appear and, consequently, the interaction of these features is
observed in vibration signal properties. This interaction is quantitatively characterized by
the parameters describing the periodical or almost periodical time variation of the moment
functions of the first and the second order of the cyclostationary random processes [1–4].
These processes are also called periodically or almost periodically correlated random
processes [5–9]. Therefore, it is advisable to choose these parameters for the construction
of the indicators for fault detection [10–17]. Gear pair vibration is excited by two main
factors, namely, the periodic variation of teeth stiffness, due to the meshing phase, and
manufacturing errors. The manufacturing errors include constant and variable step errors
of the teeth. The periodic variation of the mesh stiffness causes the appearance of the
harmonic components of the mesh frequency fm = r f1 = n f2 and its multiples. Here
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f1 and f2 are the rotation frequencies of the wheels and r and n are natural numbers.
The variable error of the meshing step and the misalignment of the axes and shafts are
manifested by the occurrence of harmonics with rotation frequencies k f1 and l f2, and also
combination frequencies p fm + k f1, p fm + l f2, where p, k, and l are integer numbers. In
addition, the direct spectra of vibration signal can include the components that belong
to some frequency band around the resonance frequency of the gear pair in the case of a
vibro-impact regime occurring.

The techniques proposed in [12,18] for gear pair vibration analysis were based on the
transmission error model that was considered in [19]:

x(θ) = xe(θ)[W + xm(θ) + x1(θ) + x2(θ)] (1)

where W is a constant load and θ = θ(t) is an angular position of the gear. The terms
xm(θ) and xe(θ) describe the contact properties of the gears, while terms x1(θ) and x2(θ)
are caused by manufacturing error. It is supposed that in each term xi(θ), i = 1, 2 is
periodic with a rotation period Pi = 1/ fi of the corresponding gear. There are three
periodic terms in (1), namely xe(θ)[W + xm(θ)], xe(θ)x1(θ), and xe(θ)x2(θ), which are
periodic functions with the period Pm = 1/ fm, P1, and P2. The model in the form of
the cyclostationary process proposed in [12,18] was obtained by introducing a random
variable modeling for the fluctuations of the angular position of the gears. The mean
function of this random process includes the harmonic components of frequencies fm, f1
and f2. The covariance function includes three kinds of harmonics, namely, the harmonics
with frequencies that are a linear combination of the rotation frequencies k f1 + l f2, the
harmonics of the mesh frequency n fm, and the harmonics with frequencies that are a linear
combination of the mesh frequency and the rotation frequencies, i.e., n fm + k fi. The first
and the second order non-stationarities were substantiated by the processing of vibration
signals, measured on the gear systems [12,18], and the quantities that describe the structure
of the cyclostationarity, estimated by means of synchronous averaging, were proposed for
use in fault detection.

In [20–22], after applying the synchronous averaging with the period P1 or P2, the
vibration signal was expressed as:

g(t) =
M

∑
l=1

Al [1 + al(t)] cos(2π flt + bl(t) + ϕl) (2)

where M is the number of gear mesh harmonics, and Al and ϕl are the amplitude and
the phase of the lth harmonic, respectively. The modulation effects are described by the
functions 1 + al(t) and bl(t), which are periodic with the considered rotation period. These
functions are closely approximated to the signal deterministic component corresponding to
one revolution of the selected gear. Proceeding from (2), some techniques were proposed
in the literature [20–22] for the improvement of the analysis effectiveness. One of these
consisted of the elimination from (2) of the harmonics with the tooth meshing frequency and
its multiples. The residual signal often shows an evidence of faults more clearly than (2).
The effective technique for the detection of local faults, such as a fractured tooth, is a
filtration of (2) around the lth gear mesh harmonic and the analysis of its amplitude and
phase modulation function [20–22].

In [19,23] the gear vibration signal was modeled as:

x(θ) = x1(θ) + x2(θ) + x1,2(θ) + xc(θ) + n(θ) (3)

where x1(θ) and x2(θ) describe the deterministic periodic oscillations generated by the
rotation of the output and input wheels, respectively, x1,2(θ) is a periodic component with
common period P12 = r1P1 + r2P2, xc(θ) is the second order cyclostationary process with
period P12, and n(θ) is a fluctuation component. The deterministic part of the signal (3) can
be extracted by means of synchronous averaging with the common period P12 of the shafts
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as far as it is possible [19]. The results of the experimental data processing conducted by
the authors supported their assumption that the power of the random component was
negligible in comparison with the power of the deterministic component.

The models for gearbox vibration proposed in the literature can be considered as
particular cases of its representation in the form of BPCRPs [9,24–26]. The mean and the
covariance functions of these processes are bi-periodic time functions. The mean function
describes the modulation interaction of the deterministic oscillations, and the covariance
function describes the interaction of the stochastic components. The Fourier series of the
mean and covariance functions consist of the harmonics of the wheels rotation frequencies
and their multiples and combinations. The harmonics of the mesh frequencies are the
individual harmonics of the BPCRP representation. The concrete harmonics compositions
of the deterministic and the stochastic oscillations depend on the degree of the development
of a fault and its location.

The estimation of the whole complex of BPCRP characteristics of the first and second
order on the basis of experimental data may be laborious and time-consuming, so it is
advisable, when possible, to mitigate the issues associated with fault detection using the
parameters of the BPCRP approaches. In the present paper, we show that, in the case of
the appearance of a fault developed on only one of the wheels, the PCRP approach can be
used. The efficiency of the PCRP technique for early fault detection and the analysis of fault
growth are illustrated by the results of processing experimental data acquired at different
faulty stages of a wind turbine gearbox. This work is based on the original results obtained
by authors concerning the discovery and analysis of the hidden periodicities described by
PCRP and their generalizations [24–41].

The main sources of novelty in this paper are as follows:

• The properties of the gearbox vibration model, in the form of BPCRPs, are analyzed,
and the possibility of using PCRP approximation for fault diagnosis is explored;

• Methods of searching for hidden periodicities of the first and the second order are
used for gearbox vibration analysis;

• The efficiency of the least square (LS) method for the estimation of the period for the
vibration deterministic component and the time variation of the stochastic part power
is shown;

• The main steps of an algorithm for gearbox vibration analysis using PCRP for fault
diagnosis are given;

• The amplitude spectra of deterministic oscillations and the time variation power of
the stochastic component are given as the characteristic features for fault stages;

• The most sensitive indicator for fault detection is based on the results of natural data
processing.

The paper consists of the introduction, three sections divided into subsections, and
the conclusions. The mathematical model of the vibration of coupled gears in the form of
BPCRP and its harmonic series representation are considered in Section 2.1. The particular
cases of the BPCRP model, which follow from its harmonic representation, are given in
Section 2.2. The opportunity to analyze the BPCRP properties within the PCRP approxi-
mation framework is analyzed in Section 3. The peculiarities of the PCRP analysis of the
vibration are considered and the main stages of this approach are briefly characterized:
namely, the analysis in the stationary approximation, the detection and the analysis of the
hidden periodicities of the first and the second orders, and the estimation of the covariance
and spectral functions. The indicators for the detection of a fault, formed on the basis
of the mean function and the variance amplitude spectrum, are determined. The results
of the natural data processing are given in Section 4. For the different stages of the fault
evolution, the search for the hidden periodicities using the statistics of the first and the
second order was carried out. The main features of the amplitude and the power spectra of
the vibration are analyzed, and the numeric values of the indicator formed on their basis
for the growing fault are given. A comparison of the sensitivities of the indicators of the
first and the second order was conducted. The dependences of the Fourier coefficients of
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the covariance function, the so-called covariance components, on time lag are considered.
In the discussion section, the different techniques of the vibration analysis are compared.

2. BPCRP as a Model of Gear Pair Vibration Signal
2.1. Covariance and Spectral Functions

The efficiency of cyclostationarity signal processing techniques in machinery condition
monitoring can be explained generally by their ability to reveal modulations caused by
the occurrence of faults. The modulation effects in the vibration model in the form of the
periodically correlated random processes (PCRP), which describe the stochastic recurrence
with one period, are characterized by the jointly stationary random processes ξk(t) in their
harmonic representation [8,9,27]:

ξ(t) = ∑
k∈Z

ξk(t)e
ik 2π

P1
t

where Z is a set of integer numbers and P1 is a non-stationarity period (the rotation
period for one of the wheels). Generalizing this representation, we may conclude that
the modulation of two stochastic rhythms, induced by the rotation of two wheels, can be
modeled as:

ξ(t) = ∑
k∈Z

ξ
(P2)
k (t)eik 2π

P1
t (4)

where the harmonic of frequency 2π
P1

and its multiples are modulated by PCRP with period P2:

ξ
(P2)
k (t) = ∑

l∈Z
ξkl(t)e

il 2π
P2

t

Then, for the random process (4), we have:

ξ(t) = ∑
k,l∈Z

ξkl(t)eiΛkl t (5)

where ξkl(t) are jointly stationary random processes and Λkl = k(2π/P1) + l(2π/P2). As
can be seen, process (5) is a sum of the amplitude and phase modulated harmonics in which
frequencies Λkl are the linear combination of the two main frequencies Λ10 = k2π/P1 and
Λ01 = l2π/P2. The mathematical expectations of the modulating processes mkl = Eξkl(t)
are the Fourier coefficients of the mean function:

m(t) = Eξ(t) = ∑
k,l∈Z

mkleiΛkl t (6)

For the covariance function R(t, τ) = E
◦
ξ(t)

◦
ξ(t + τ),

◦
ξ(t) = ξ(t)−m(t), we have:

R(t, τ) = ∑
k,l∈Z

Rkl(τ)eiΛkl t (7)

where,
Rkl(τ) = ∑

p,q∈Z
rp−k,q−l,p,qeiΛpqτ (8)

and rpqkl(τ) = E
◦

ξpq(t)
◦

ξkl(t + τ),
◦

ξpq(t) = ξpq(t)−mpq are the cross-covariance functions
of the modulating processes, and the “¯” signifies complex conjugation. Thus, the Fourier
coefficients of the covariance function (7) are defined by the cross-covariance functions
of the modulating processes in which the numbers are shifted by k and l, respectively.

It follows from (8) that cross-correlations of modulating processes
◦
ξkl(t) of the different

numbers lead to the bi-periodical non-stationarity of the second order. The consequence
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of these correlations is the further correlation of the corresponding spectral components,
which are quantitatively characterized by the Fourier transformation of expression (8):

fkl(ω) =
1

2π

∞∫
−∞

Rkl(τ)e−iωτdτ (9)

It follows from (8) that:

fkl(ω) = ∑
p,q∈Z

fp−k,q−l,p,q
(
ω−Λpq

)
where

fpqkl(ω) =
1

2π

∞∫
−∞

rpqkl(τ)e−iωτdτ

are the cross-spectral densities of the modulating processes ξpq(t). The Equations (8) and (9)
are called the covariance and spectral components [9,24,25], respectively.

The zeroth covariance component R00(τ) is determined by auto-covariance functions

rpq(τ) = E
◦

ξpq(t)
◦

ξpq(t + τ):

R00(τ) = ∑
p,q∈Z

rpq(τ)e−iΛpqτ

This is an averaged in time covariance function of random process (5), i.e., the covari-
ance function of its the stationary approximation.

The zeroth spectral component

f00(ω) = ∑
p,q∈Z

fpq
(
ω−Λpq

)
(10)

is a power spectral density of the stationary approximation for (5). It defines the spectral
decomposition of the averaged in time instantaneous power R(0, t) for the oscillations.
The random processes, the mean, and the covariance functions, which are bi-periodical
functions and can be represented by series (6) and (7), are called BPCRP.

The Fourier coefficients of the covariance function and spectral density are the total
characteristics of the amplitude and the phase modulation of the BPCRP carrier harmonics.
The zeroth spectral component, as can be seen from (10), is a sum of the power of the spectral
densities of the modulating processes ξpq(t) shifted by Λpq. The spectral component
fkl(ω) (9) is a sum of the shifted cross-spectral densities for modulating processes, the
numbers of which differ by numbers k and l, respectively. Proceeding from the above-
mentioned assertions, we may conclude that the zeroth spectral function f00(ω) describes
the spectral composition of the oscillations and the non-zeroth functions fkl(ω) describe the
correlations of the harmonics of this composition in which the frequencies are shifted by
Λkl = k(2π/P1) + l(2π/P2). These correlations do not equal zero only if the modulating
processes of the corresponding numbers are mutually correlated.

2.2. The Simplest Particular Cases

Proceeding from (5), we can quite easily obtain some particular cases of the bi-rhythmic
hidden periodicity:

(a) If ξkl(t) = ckl + ηkl(t), where ηkl(t) are uncorrelated stationary random processes
and ckl are some complex numbers, we have an additive model:

ξ(t) = ∑
k,l∈Z

ckleiΛkl t + ∑
k,l∈Z

ηkleiΛkl t = s(t) + η(t)
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where s(t) is a bi-periodical function and η(t) is a stationary random process with the
covariance function:

R(τ) = ∑
k,l∈Z

r(η)kl (τ)eiΛkl τ

where r(η)kl (τ) = E
◦

ηk(t)
◦
ηl(t + τ). If ckl = 0, ∀k 6= 0, and ∀l 6= 0, then s(t) is a sum of two

periodic functions:

s(t) = ∑
k∈Z

ck0eik 2π
P1

t
+ ∑

l∈Z
c0le

il 2π
P2

t

(b) If we put ξkl(t) = cklη(t), where η(t) is a stationary random process, then we
obtain a multiplicative model:

ξ(t) = η(t) ∑
k,l∈Z

ckleiΛkl t = η(t)s(t) (11)

The mean function of (11), m(t) = mηs(t), mη = Eη(t), and the covariance function:

R(t, τ) = Rη(τ)s(t)s(t + τ)

where Rη(τ) = E
◦
η(t)

◦
η(t + τ), varies bi-periodically in time.

(c) In the case of ξkl(t) = ckl + ηk0(t) + η0l(t), where ηk0(t) and η0l(t) are jointly
stationary random processes, the additive model is in the form of a sum of the bi-periodical
function and two PCRPs with periods P1 and P2:

ξ(t) = s(t) + ∑
k∈Z

ξk0(t)e
ik 2π

P1
t
+ ∑

l∈Z
ξ0l(t)e

il 2π
P2

t
= s(t) + ξ1(t) + ξ2(t)

(d) For ξkl(t) = ck0ξ0l(t), we obtain a model of the amplitude modulation of the
deterministic carrier by PCRP;

(e) We obtain the model in the form of a product of two PCRPs with different periods
P1 and P2 in the case of ξkl(t) = ξk0(t)ξ0l(t):

ξ(t) = ∑
k∈Z

ξk0(t)e
ik 2π

P1
t ∑
l∈Z

ξ0l(t)e
il 2π

P2
t
= ξ1(t)ξ2(t)

(f) If the stationary random processes ξl(t) are mutually uncorrelated, then we have
the product of stationary random process:

η(t) = ∑
l∈Z

ξl(t)e
il 2π

P2
t

and PCRP:
ξ(t) = η(t)ξ1(t)

(g) The last considered model is the quadrature model or Rice representation. We
obtain it in the case when ξkl(t) = 0 and ∀k, l 6= −1, 1. Assuming that:

ξ1,1(t) =
1
2
[
ξc

1,1(t)− iξs
1,1(t)

]
, ξ1,−1(t) =

1
2
[
ξc

1,−1(t)− iξs
1,1(t)

]
, and ξ−1,−1(t) = ξ1,1(t), ξ−1,1(t) = ξ1,−1(t)

Then,

ξ(t) = ξc
1,1(t) cos(2π( f1 + f2)t) + ξs

1,1(t) sin(2π( f1 + f2)t) + ξc
1,−1(t) cos(2π( f1 − f2)t) + ξs

1,−1(t) sin(2π( f1 − f2)t) (12)

Introducing the random process

ξc(t) =
[
ξc

1,1(t) + ξc
1,−1(t)

]
cos(2π f1t) +

[
ξs

1,1(t)− ξs
1,−1(t)

]
sin(2π f1t)
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ξs(t) =
[
ξs

1,1(t) + ξs
1,−1(t)

]
cos(2π f2t) +

[
ξc

1,1(t)− ξc
1,−1(t)

]
sin(2π f2t)

we can re-write equation (12) in the form:

ξ(t) = ξc(t) cos(2π f1t) + ξs(t) sin(2π f1t)

The quadrature components of the Rice representation are jointly PCRP.
Now, we compare the BPCRP representation (5) and the particular cases given above

with the models of gear pair vibration considered in the introduction. It was mentioned
previously that the deterministic part of the vibration consists of the harmonics of the mesh
frequency and their multiples, linear combinations of the rotation frequencies, and the
linear combination of each rotation frequency and mesh frequency. Since fm = r f1 = n f2,
then all these frequencies belong to the set {k f1 + l f2 : k, l ∈ Z}. The Fourier coefficients
of the BPCRP mean function, which describe the deterministic part of the vibration, define
the complex amplitude of the corresponding harmonics. The coefficients ml0 and m0n are
the amplitudes of the harmonics for the additive components s1(t) and s2(t) with periods
P1 and P2:

s1(t) = ∑
k∈Z

mk0eik 2π
P1 , s2(t) = ∑

l∈Z
m0le

il 2π
P2

Herewith, mlk,0 is the sum of the amplitudes for the rth mesh harmonic and the
amplitude of the (rk)th input wheel rotation harmonic and the amplitude for the (nl)th

output wheel rotation harmonic. Note that the sum s(t) = s1(t) + s2(t) has the common
period P = rP1 = nP2, and can be represented in the Fourier series form. However, the
harmonics of this series have only a formal mathematical interpretation. The frequencies
for some of them, as it follows from k f = k/rP1 = k/nP2, may coincide with the rotation
frequencies only in the case when the ratios k/r and k/n are the natural numbers.

The modulation interactions of the deterministic components are defined by ampli-
tudes mlk.

Proceeding from the above consideration, we should represent the mean and the
covariance function of the gear pair vibration signal in the form of the general series (6)
and (7). The covariance components Rk0(τ) and R0l(τ) are the Fourier coefficients of the
additive covariance terms. The covariance components Rlk(τ) characterize the modulation
covariance interactions. The series (6) and (7) can be specified if the experimental data
measured on the concrete gears system are analyzed by means of adequate processing
techniques developed on the basis of the general model (5). It is evident that the analysis
results can be employed for the verification of the particular cases described above.

The BPCRP mean and covariance function can be calculated on the basis of exper-
imental data using the coherent (synchronous averaging) and component methods and
also the LS method. Using the synchronous averaging, we can separate and analyze only
the deterministic or the stochastic components of one of the two periods. The coherent
methods, in many cases, cannot be used for the processing of the raw data, since the
non-stationary periods, as a rule, are not an integer number and the interpolation of the
data is required. Therefore, it is advisable to use the component and the LS techniques for
data processing as they do not require an interpolation procedure.

The component and the LS estimators are formed as trigonometric polynomials, the
coefficients of which are calculated on the basis of Fourier transforms, represented in the
form of the integral sums. The period values in these transforms can be arbitrary, and only
the sampling interval must satisfy some inequalities to avoid aliasing errors.

3. Gear Fault Detection as PCRP Estimation Issue

The calculation of all the parameters that characterize the structure of the additive and
multiplicative components of the BPCRP mean and covariance function may be relatively
laborious, especially in the case when the value of one period is appreciably in excess of the
other. A similar situation also occurs when the fault detection problem can be solved on
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the basis of a smaller number of parameters. Let us consider the case when we can reduce
this issue to PCRP estimation.

It was mentioned above that the BPCRP spectral composition is defined by the zeroth

spectral component (10). Assume that Λ10 ≥ sΛ01, where s is some natural number.
Making to pass the BPCRP signal through the linear filter with the transfer function,

H(ω) =


1, ω ∈

[
Λ

0L(2)
1

, 1.9ωm

]
,

0, ω /∈
[

Λ
0L(2)

1
, 1.9ωm

]
,

we exclude from the spectrum the harmonics with one of the rotation frequencies and mesh
frequency harmonics. Let us assume also that one of the teeth of the wheel gear is defective
and the power of the stochastic modulation of the pinion gear harmonics is negligible. As
a result of the foregoing assumptions, we can carry out the analysis of the filtered signal
within the framework of the PCRP model:

ξ1(t) = ∑
k∈Z

ξk0(t)e
ik 2π

P1
t. (13)

The mean and covariance function of (13) are represented in Fourier series form:

m(t) = ∑
k∈Z

mkeiΛk0t = m0 + ∑
k∈N

[mc
k cos kΛk0t + ms

k sin kΛk0t] (14)

R(t, τ) = ∑
k∈Z

Rk(τ)eiΛk0t = R0(τ) + ∑
k∈N

[Rc
k(τ) cos kΛk0t + Rs

k(τ) sin kΛk0t] (15)

where mk = Eξk0(t), Rk(τ) = ∑
p∈Z

rp−k,p(τ)e
iΛp0τ ,

rpq(τ) = E
◦
ξq0(t)ξp0(t + τ) (16)

mk = 1
2
(
mc

k − ims
k
)
, and Rk(τ) =

[
Rc

k(τ)− iRs
k(τ)

]
. Modeling the real data, we must

suppose that the Fourier series (13)–(15) is finite. The number of the highest harmonic can
be obtained on the basis of preliminary processing of the data.

It follows from (16) that the zeroth covariance component is determined by the sum
of the auto-covariance functions of modulating processes ξk0(t). Thus, the time-averaged
power of the signal R0(0) is equal to the sum of the modulation powers rpp(0):

R0(0) =
L1

∑
p=−L1

rpp(0)

The non-zeroth components Rk(τ) characterize the summary cross-correlations of the
modulating processes, whose numbers differ by k. Consequently, we obtain the correlations
of the spectrum components of frequencies shifted by values Λk0. These correlations are
described by the spectral components:

fk(ω) =
1

2π

∞∫
−∞

Rk(τ)e−iωτdτ (17)

The values of the covariance components at the point τ = 0 are their total characteris-
tics in the time domain:

Rk(0) =
∞∫
−∞

fk(ω)dω (18)
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The methodology for the vibration signal processing, developed in our investiga-
tions [10,17,28], has some specific content. It involves the sequential employment of the
methods for the covariance and spectral analysis of the stationary random processes, the
methods of searching for hidden periodicities of the first and the second order [29–32], their
separation and individual analysis, empirical harmonic analysis on the basis of Fourier
series and Fourier transformations, and the methods of PCRP covariance and spectral
analysis [4,8,9,34–36]. The PCRP harmonic representation is used for the substitution of
some techniques and for the interpretation of the processing results. Now, we detail briefly
the main stages of the PCRP covariance analysis.

3.1. The Stationary Analysis

In order to study the general properties of the vibration signals, the estimators of the
covariance function and of the power spectral density of PCRP stationary approximation
are calculated in the initial stage:

R̂(jh) =
1
K

K−1

∑
n=0

[ξ(nh)− m̂][ξ((n + j)h)− m̂], m̂ =
1
K

K−1

∑
n=0

ξ(nh) (19)

f̂ (ω) =
h

2π

L

∑
n=−L

k(nh)R̂(nh) cos ωnh (20)

Here h = T/K is the sampling interval, j is the integer number, T is the realization
length, K is the sample size, L = τm/h is some natural number, τm is the point of correlo-
gram cutoff, and k(nh) is the covariance window. The analysis of the calculation results
allow us to detect the presence of the deterministic component and to determine the rela-
tionship between the powers of the deterministic and stochastic oscillations to clarify the
spectral composition of the raw signal.

3.2. The Detection and the Analysis of the Hidden Periodicities of the First Order

The estimator of the power spectral density, as a rule, includes continuous and discrete
components. The latter are caused by deterministic oscillations. In order to estimate the
period of these oscillations, the coherent, the component, and the least squares methods can
be applied [9,10,17,29–32]. The values of the estimated period, apart from rare cases, are not
multiples of the sampling interval and, therefore, the interpolation of the raw experimental
data is required if the coherent technique is used. This causes additional processing error.
The dependence of the processing results from the time reference point is a drawback of
this approach as well. With this in mind, the component and the least squares (LS) methods
are recommended for periodicity detection and for the estimation of the periods.

The LS statistics has the form:

F1(θ) =
1

2K + 1

K

∑
n=−K

m̂2(θ, nh) (21)

where

m̂(θ, nh) =
L1

∑
k=1

[
m̂c

k(θ) cos k
2π

θ
nh + m̂s

k(θ) sin k
2π

θ
nh
]

(22)

{
m̂c

k(θ)
m̂s

k(θ)

}
=

2
2K + 1

K

∑
n=−K

ξ(nh)
{

cos k 2π
θ nh

sin k 2π
θ nh

}
(23)

and θ is the so-called test period. The error caused by the aliasing effects of the first
and the second kinds can be avoided if the sampling step h in (22) and (23) satisfies the
inequalities [30,37]:

h ≤ P1

2L1 + 1
, h ≤ P1

2L2 + 1
(24)
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where L1 and L2 are the numbers of the highest harmonics of the mean and covariance
function, respectively. It should be noted that the values of the test period θ in (21) and (22)
may be arbitrary and independent of the sampling step h.

The maximum values of (23) are close to the amplitudes of the individual harmonics
of the mean function. The efficiency of the LS period estimator (21) is higher than the
component estimator (23) efficiency because other harmonics of the amplitude spectrum
are considered while processing the data. The functional (22), at the point of maximum
θ = P̂1, reaches a value close to the time-averaged power of the deterministic oscillations:

Qd =
1
2

L

∑
k=0

[[
m̂c

k
(

P̂1
)]2

+
[
m̂s

k
(

P̂1
)]2]

This quantity can exceed the amplitudes of the individual harmonics significantly.
Therefore, it is advisable to use the functional (21) for the detection of low-power oscilla-
tions.

Knowing the period estimator value, we can form the component estimator [37,38] of
the mean function:

m̂(t) = m̂0 +
L1

∑
k=1

[
m̂c

k
(

P̂1
)

cos k
2π

P̂1
t + m̂s

k sin k
2π

P̂1
t
]

(25)

where m̂0 = m̂. If conditions (24) are satisfied, relation (25) determines the mean function
for all t ∈

[
0, P̂1

]
[37].

For the estimators of the amplitude and phase spectrum of the deterministic oscilla-
tions, we have:

Â
(

k
2π

P̂1

)
=

√[
mc

k
(

P̂1
)]2

+
[
ms

k
(

P̂1
)]2, ϕ̂

(
k

2π

P̂1

)
= arctg

ms
k
(

P̂1
)

mc
k
(

P̂1
) , k = 1, L1 (26)

It is reasonable to assume that the amplitudes of some harmonics increase as a gear
fault develops. Therefore, for the quantitative evaluation of the gear condition we can use
the aggregate amplitude:

ÂΣ =
L1

∑
k=1

Â
(

k
2π

P̂1

)
(27)

or aggregate power of harmonics:

Q̂d =
1
2

L1

∑
k=1

Â2
(

k
2π

P̂1

)
(28)

The change of the gear condition can be analyzed using the indicators defined by the
ratios of the quantities

I1 =
Â(c)

Σ

Â(i)
Σ

, I2 =
Q̂(c)

d

Q̂(i)
d

(29)

calculated for the initial and the current states.

3.3. The Analysis of the Hidden Periodicities of the Second Order

For the detection of the hidden periodicities of the second order, a formula similar to
the one described above has to be applied. The LS functional of the covariance function
has the form:

F2(jh, θ) =
1

2K + 1

K

∑
n=−K

R̂2(nh, jh, θ) (30)
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where

R̂(nh, jh, θ) =
L2

∑
k=1

[
R̂c

k(jh, θ) cos k
2π

θ
nh + R̂s

k(jh, θ) sin k
2π

θ
nh
]

(31)

{
R̂c

k(jh, θ)
R̂s

k(jh, θ)

}
=

2
2K + 1

K

∑
n=−K

[ξ(nh)− m̂(nh)][ξ((n + j)h)− m̂((n + j)h)]
{

cos k 2π
θ nh

sin k 2π
θ nh

}
(32)

The estimator of the covariance function period is found as the point of the maximum
of the statistics (30) with respect to test period θ. The aliasing effects of the first and the
second kinds are absent if the sampling step satisfies the inequality:

h ≤ P1

4L2 + 1
(33)

At the point θ = P̂1, the quantity (30) is close to the average value of time variation of
the covariance function power for lag τ = jh:

F2
(

jh, P̂1
)
=

1
2

L2

∑
k=1

[[
Rc

k
(

jh, P̂1
)]2

+
[
Rs

k
(

jh, P̂1
)]2]

To calculate the covariance function, the statistics

R̂
(
t, jh, P̂1

)
= R̂0(jh) +

L2

∑
k=1

[
Rc

k
(

jh, P̂1
)

cos k
2π

P̂1
t + Rs

k
(

jh, P̂1
)

sin k
2π

P̂1
t
]

(34)

should be used. Here,

R̂0(jh) =
1

2K + 1

K

∑
n=−K

[ξ(nh)− m̂(nh)][ξ((n + j)h)− m̂((n + j)h)] (35)

If condition (33) is satisfied, Equation (34) is an interpolation formula that allows us to
calculate the covariance function values for all t ∈

[
0, P̂1

]
[37].

The estimator for variance R̂
(
t, 0, P̂1

)
defines the time variations of the power of the

vibration stochastic component and the estimator of the zeroth covariance component at
the point j = 0, i.e., a time-averaged value of this power. The quantities

V̂
(

k
2π

P̂1

)
=

√[
Rc

k
(
0, P̂1

)]2
+
[
Rs

k
(
0, P̂1

)]2 and ψ

(
k

2π

P̂1

)
= arctg

Rs
k
(
0, P̂1

)
Rc

k
(
0, P̂1

) , k = 1, L2 (36)

can be considered as the amplitude and phase spectrum of the power time variations,
respectively.

As follows from the investigations already carried out [10–18,28], the vibration signal
generated by a rotating machine acquires the properties of the periodical non-stationarity
of the second order as the fault initiates. This means that the time variations of the variance
and the covariance function estimators are the test indication of machine damage. Thus,
indicators formed on the basis of covariance components are sensitive to the appearance
of a fault. Such an indicator is determined by the ratio of the aggregate amplitude of the
variance harmonics and the zeroth covariance component:

I3 =

L2
∑

k=1
V̂
(

k 2π
P̂1

)
R̂0(0)

(37)

The accelerated growth of this indicator is evidence of the rapid deterioration of the
mechanism properties.
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4. The Analysis of the Natural Data

We consider below the results of the analysis of vibrations generated by a wind turbine
gearbox (Figure 1) whose condition was monitored during the year. The position of the
accelerometer mounted on the gearbox housing is marked with an arrow in Figure 1b.
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different amplitudes and bandwidths. The estimator takes the peak values at the points, 
which coincide with the mesh frequency and its multiples, the pinion gear rotation frequency 
and its multiples, and their combinations. We also highlight the frequency bands that corre-
spond to powerful resonances, i.e., [ ], 1.8m mf f  and [ ]2.2 , 3m mf f . The powers of the spec-
tral components that correspond to wheel rotation (approximately 6.4 Hz ) and its multiples 
are negligible. Hence, we can assume that the deterministic and the stochastic modulations, 

Figure 1. Schematic (a) and general (b) view of the WTG gearbox.

The number of pinion gear teeth was 25 and, for the wheel, it equaled 94. The duration
of the raw signal was 3.35 s (8192 samples). The vibration segments, which correspond to
different stages of gear tooth failure, are shown in Figure 2. The speeds of the high-speed
shaft (HSS) rotation were measured by means of a tachometer and for each stage were,
respectively, 1451.55 rpm, 1442.85 rpm, and 1404.75 rpm. It can be seen from Figure 2 that
for the second (Figure 2b) and the third (Figure 2c) cases, the raw signals include clear
impacts caused by the presence of the evolutionary fault. The time intervals between the
impacts are close to the period of pinion gear rotation.
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Figure 2. The segments of vibration realizations for three (a–c) stages of tooth failure.

4.1. The Stationary Approximation Properties

To ascertain the spectral composition of the vibration, the estimators of the spectral
density for the signal stationary approximation were calculated using Formulaes (19) and (20).
The Hamming window

k(τ) =
{

0.54 + 0.46 cos πτ
τm

, |τ| ≤ τm,
0, |τ| > τm,

where τm is a point of the correlogram cutoff, was used for the calculations. It follows
from the results obtained (Figure 3), that the spectrum of vibration was located within the
frequency range of 0...10 kHz (Figure 3a), but the dominant power portion belonged to the
band limited by 3 kHz. The chart of the spectral density estimator for this frequency domain
is shown in Figure 3b. The graphs on this chart have the form of a comb with different
amplitudes and bandwidths. The estimator takes the peak values at the points, which
coincide with the mesh frequency and its multiples, the pinion gear rotation frequency
and its multiples, and their combinations. We also highlight the frequency bands that
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correspond to powerful resonances, i.e., [ fm, 1.8 fm] and [2.2 fm, 3 fm]. The powers of the
spectral components that correspond to wheel rotation (approximately 6.4 Hz) and its
multiples are negligible. Hence, we can assume that the deterministic and the stochastic
modulations, caused by PCRP oscillations of the input rotation period, are negligible
too, and formally analyze the present data as a segment of the PCRP realization of the
output period.
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Figure 3. The estimators of the power spectral densities of the stationary approximation for the raw signal: (a) original and
(b) zoomed.

Further, we concentrated on the analysis of the signal properties at frequencies less
than 1.8 fm. Estimators of the covariance function and of the spectral density for the
stationary approximation of the filtered signals corresponding to the three stages of the
pinion tooth failure are given in Figures 4 and 5.
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Figure 4. The covariance function estimators for the filtered signals corresponding to the first (a), second (b), and third
(c) stages of the gear tooth failure.
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The undamped tail is a distinctive feature of the covariance function estimators. As it
follows from the covariance function of the PCRP stationary approximation,

R(τ) = R0(τ) +
1
2

L1

∑
k=1
|mk|2 cos k

2π

P
τ (38)

the undamped tail includes cosine oscillations with amplitudes corresponding to the power
of each deterministic harmonic. At the point τ = 0, expression (38) defines an aggregate
power of the deterministic and the stochastic oscillations. At the point τr = rP, where
r is a natural number for which R0(rP) ≈ 0, we obtain the value of the power of the
deterministic oscillations. For the three stages of gear tooth degradation considered, the
summary power of vibration was equal to 0.95G2, 5.84G2 and 7.73G2 and the power of the
deterministic oscillations was 0.72G2, 5.12G2 and 6.73G2, respectively. It is evident that the
part of stochastic oscillation power decreases as the fault grows. If, for the initial stage,
this part is equal to 0.3, then for the last stage it equals only 0.14. Note that the undamped
tail has a group structure. The time interval between the individual groups is close to the
period of the output shaft rotation. Each group consists of seven–eight waves, so we can
predict that the seventh–eighth rotation harmonics have the largest power. The presence of
the undamped tail in the covariance function estimator induces the discrete components
of the spectral density estimator, which are represented by the peaks at some frequencies
(Figure 5). The detected peaks can also be the result of the narrow-band feature of the
stochastic components. Thus, the mixed spectra obtained make it difficult to interpret the
spectral estimation results and their quantitative analysis. We can only conclude that the
time-averaged power of the vibration increases with the fault growth and, herewith, both
the spectrum width increases and a new spectrum lines appear alongside an increase in
their heights. As was noted above, it follows from Figure 4 that the time-averaged power
of the stochastic part increases more slowly than power of the deterministic oscillations.

Proceeding from (19), (20) and (38) for the discrete spectrum estimator, we obtain

f̂d(ω) =

∞∫
−∞

fd(ω1)λ(ω−ω1)dω1

where

fd(ω) =
1
2

L1

∑
k=1
|mk|2 f (ω− kω0)

and

λ(ω) =
1

2π

∞∫
−∞

k(τ)e−iωτdτ

Hence,

f̂d(ω) =
1
2

L1

∑
k=1
|mk|2λ(ω− kω0)

Since λ(0) ≤ τm, the peak values are not equal to the individual harmonic power and
they change if the values of τm change. Therefore, the separation of the continuous and
discrete components, and their individual analysis by means of adequate techniques, are
required. In particular, this is important for the monitoring issue, since the discrete and
continuous components can be caused by different faults.

4.2. Analysis of the Deterministic Oscillations

The estimation of the period is the initial issue of the separation and analysis of the
deterministic oscillations of the vibration. Note that the accuracy of the period estimation
must be relatively high to reach the minimal displacement of the initial point of the
averaging. For example, if the period estimation error δP is equal to 0.01P, then, after
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the synchronous averaging of the realization of the T = 100P length, this displacement
is equal to period value P. It is obvious that such displacement is undesirable, therefore,
it is necessary to carry out the period estimation and the following calculation of the
harmonic amplitude on the basis of the analyzed realization, and to use formulae whose
extreme values simultaneously provide the extremes of the formulae for the estimation of
the corresponding signal parameters. The least squares method was applied to the period
estimation since, in this case, we can consider the aggregate power of the chosen harmonics
of the deterministic parts, which clearly increased the estimation efficiency. Note that
the systematic error of the period least squares estimators has the order O

(
T−2) and the

mean-square one, O
(

T−
3
2

)
[30,31].

The charts of the dependence of the square functional (29) on the test frequency
f = 1/θ for the three stages of gear failure are shown in Figure 6. These were calculated on
the basis of Formula (22) for k = 5, 12. The points of the functional maximum for each of the
considered stages, with an accuracy of up to three digits after the comma, correspond to the
basic frequency estimator and are equal to f̂0 = 1

P̂1
= 24.206 Hz (Figure 6a), f̂0 = 24.055 Hz

(Figure 6b), and f̂0 = 23.423 Hz (Figure 6c). The estimated values of the basic frequency
of the deterministic oscillations were very close to the values provided by the tachometer
measurements, namely 24.192 Hz, 24.047 Hz and 23.412 Hz.
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Proceeding from the estimated basic frequency values, the harmonic amplitudes were
calculated on the basis of expressions (23) and (26). The amplitude spectra of the vibration
deterministic part are represented in the form of diagrams in Figure 7 and the harmonic
amplitude values Â

(
k f̂0

)
are provided in Table 1.
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Table 1. Amplitudes of the deterministic oscillations harmonics.

Stage 1 Stage 2 Stage 3

Orders Frequency, Hz Â(kf̂0) Orders Frequency, Hz Â(kf̂0) Orders Frequency, Hz Â(kf̂0)

0 0 0.000 0 0.00 0.000 0 0.00 0.000

1 24.20 0.045 1 24.05 0.039 1 23.41 0.080

2 48.40 0.020 2 48.10 0.011 2 46.82 0.004

3 72.60 0.002 3 72.15 0.003 3 70.23 0.008

4 96.80 0.007 4 96.20 0.029 4 93.64 0.047

5 121.00 0.041 5 120.25 0.198 5 117.05 0.132

6 145.20 0.079 6 144.30 0.330 6 140.46 0.447

7 169.40 0.240 7 168.35 1.062 7 163.87 1.278

8 193.60 0.409 8 192.40 1.654 8 187.28 1.677

9 217.80 0.115 9 216.45 0.546 9 210.69 0.679

10 242.00 0.038 10 240.50 0.162 10 234.10 0.049

11 266.20 0.065 11 264.55 0.265 11 257.51 0.335

12 290.40 0.005 12 288.60 0.141 12 280.92 0.275

13 314.60 0.116 13 312.65 0.270 13 304.33 0.193

14 338.80 0.231 14 336.70 0.382 14 327.74 0.518

15 363.00 0.191 15 360.75 0.405 15 351.15 0.286

16 387.20 0.165 16 384.80 0.345 16 374.56 0.486

17 411.40 0.143 17 408.85 0.260 17 397.97 0.319

18 435.60 0.064 18 432.90 0.163 18 421.38 0.333

19 459.80 0.030 19 456.95 0.068 19 444.79 0.122

20 484.00 0.010 20 481.00 0.018 20 468.20 0.070

21 508.20 0.010 21 505.05 0.019 21 491.61 0.060

22 532.40 0.029 22 529.10 0.029 22 515.02 0.048

23 556.60 0.030 23 553.15 0.045 23 538.43 0.050

24 580.80 0.014 24 577.20 0.020 24 561.84 0.036

25 605.00 0.519 25 601.25 0.230 25 585.25 0.339

26 629.20 0.005 26 625.30 0.023 26 608.66 0.062

27 653.40 0.014 27 649.35 0.010 27 632.07 0.040

28 677.60 0.006 28 673.40 0.021 28 655.48 0.027

29 701.80 0.018 29 697.45 0.012 29 678.89 0.038

30 726.00 0.038 30 721.50 0.023 30 702.30 0.062

31 750.20 0.062 31 745.55 0.039 31 725.71 0.171

32 774.40 0.063 32 769.60 0.032 32 749.12 0.156

33 798.60 0.040 33 793.65 0.020 33 772.53 0.095

34 822.80 0.053 34 817.70 0.018 34 795.94 0.077

35 847.00 0.089 35 841.75 0.006 35 819.35 0.147

36 871.20 0.048 36 865.80 0.016 36 842.76 0.240

37 895.40 0.062 37 889.85 0.034 37 866.17 0.183

38 919.60 0.055 38 913.90 0.039 38 889.58 0.182

39 943.80 0.047 39 937.95 0.039 39 912.99 0.170

40 968.00 0.080 40 962.00 0.084 40 936.40 0.182
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Table 1. Cont.

Stage 1 Stage 2 Stage 3

Orders Frequency, Hz Â(kf̂0) Orders Frequency, Hz Â(kf̂0) Orders Frequency, Hz Â(kf̂0)

41 992.20 0.061 41 986.05 0.078 41 959.81 0.246

42 1016.40 0.028 42 1010.10 0.061 42 983.22 0.216

43 1040.60 0.032 43 1034.15 0.050 43 1006.63 0.129

44 1064.80 0.010 44 1058.20 0.058 44 1030.04 0.110

45 1089.00 0.015 45 1082.25 0.028 45 1053.45 0.058

46 1113.20 0.021 46 1106.30 0.021 46 1076.86 0.047

47 1137.40 0.017 47 1130.35 0.020 47 1100.27 0.037

48 1161.60 0.010 48 1154.40 0.005 48 1123.68 0.019

49 1185.80 0.009 49 1178.45 0.022 49 1147.09 0.031

50 1210.00 0.005 50 1202.50 0.010 50 1170.50 0.010

The first harmonics of the deterministic part spectra can be interpreted as the order
harmonics of the shaft rotation frequency; the twenty-fifth harmonic corresponds to the
first harmonic of the mesh frequency, and the frequencies of the higher harmonics are linear
combinations of the mesh and rotation frequencies. In the first stage, the amplitude of the
mesh frequency harmonic is the largest.

As the fault grows, the harmonics of the 6th–9th orders become dominant, while the
general form of the amplitude spectra remains similar. The aggregate amplitudes of the
harmonics ÂΣ (27) for each stage are, respectively, equal to 3.47, 7.44 and 10.50, while
the aggregate harmonic powers (28) are 0.36, 3.52 and 4.63. The indicator I1 (38) changed
in the following way: I1 = 2.14, 3.03, while the indicator I2 (29) changed to I2 = 9.78,
12.86. On the basis of the sine and cosine Fourier coefficients (23) using the interpolation
Formula (25), the PCRP mean function can be calculated for all t ∈

[
0, P̂1

]
(Figure 8).
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Proceeding from [32,36], and taking into consideration the values of the covariance
function calculated below, we can conclude that, for the given realization length, the stan-
dard deviation of the mean function estimator σ[m̂(t)] is smaller than 0.01. As was expected,
the deterministic oscillations had a group structure. The time intervals between the groups
were close to the period of shaft rotation and each group consisted of approximately eight
waves.

4.3. Analysis of the Stochastic Oscillations

The further analysis of the gearbox conditions was conducted on the basis of the
vibration residues obtained by means of the centering of the raw signals on the estimator

of the PCRP mean function, i.e.,
◦
ξ(t) = ξ(t)− m̂(t). The graphs of the covariance function

and the spectral density estimators of the vibration residuals are given in Figures 9–11. The
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covariance function estimators had the form of slowly damped groups following one after
the other over the rotation period. These groups became clearly observable for the second
(Figure 9b) and the third (Figure 9c) stages. As the lag increased, the estimators decayed
to low-power fluctuations, so we concluded that the deterministic oscillations were fully
extracted from the vibration signal. Thus, the spectral densities of the vibration residuals
include only the continuous parts (Figures 10 and 11). The comb-like forms of the spectral
densities estimators indicated a narrow-band modulation of the PCRP carrier harmonics
of both the low- and high-frequency range. This means that the modulating processes
can be represented in the form of the sum of the low- and high-frequency narrow-band
components. These components can be modeled as respective Rice representations [39–43].
Conclusions about the correlations, or lack of correlations, between these components
within the low- and high-frequency domains can be drawn only on the basis of the results
of a PCRP analysis. The detection of the periodic time variation of the vibration residual
variance is the first test procedure of this approach. The detection was carried out using
statistics (30) and (31) for k = 1, 9.
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Figure 10. The estimators of the spectral densities of the vibration of stochastic parts in the low-frequency domain for the
first (a), the second (b) and the third (c) stages.

For each stage of gear tooth failure, the graph of the functional dependence on test
frequency 1/θ includes a clearly defined peak (Figure 12) at the point to be considered as
an estimator of the variance period or basic frequency. For each case, the estimated values
of the basic frequency are f0 = 1/P̂1 = 24.196 Hz, 24.075 Hz and 23.423 Hz.

These values differ only insignificantly from the basic frequency estimators of the
vibration mean functions. The clearly defined peak on the graph in Figure 12a corresponds
to the early stage of the fault initiation. Considering the powers of the peaks in Figure 12b,c,
we concluded that a defect had developed.

The quantitative appraisal of the gear pair condition is given below.
Knowing the values of f̂0, on the basis of expressions (32) and (36), we calculated

the Fourier coefficients for the variance and the amplitude spectrum of the variance time
variation, which are represented in the form of the diagrams in Figure 13. As can be seen,
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for the first stage harmonic amplitude V̂
(

k f̂0

)
, k 6= 0 were negligible. For the rest stages,

the amplitude spectrum slowly decayed as the frequency increased. The rate of decay
decreased within the frequency range 54–145 Hz and it was a feature of both stages. The
amplitudes for k > 15 were negligible. Then, it follows from (17), that the correlations of
the spectrum components, the frequency interval between which is greater than 350 Hz,
were weakly correlated. Thus, we concluded that the low-frequency and high-frequency
modulations were non-correlated. This means that the variance Fourier coefficients are
determined by the correlation of the narrow-band components separately in low-frequency
and high-frequency domains. The first coefficient is determined by the correlations of
narrow-band components shifted by f̂0, while the second coefficient is shifted by 2 f̂0, etc.
Since the bandwidth for the correlated components is limited, the number of the possible
correlations decreases as the coefficient numbers increases. The harmonic amplitudes
decrease too. In the considered case, ≤ 350 Hz, therefore, the number of the significant
variance harmonics L2 could not be larger than 15. As can be seen, this inference was
confirmed by processing results.
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As was noted above, at the first stage, the covariance components, except for the zeroth,
were insignificant; however, it follows from Figure 12a that we cannot ignore the features
of the newly appeared second order non-stationarity. This indicates the initiation of a local
fault caused by parallel misalignment detected by further maintenance. We should note
that the damage was detected using LS statistics, the extreme value of which is determined
by the sum of the time-averaged powers of all possible variance harmonics with non-zero
amplitudes. Using the component statistics (32) is not efficient for the discovering of
hidden periodicities on the basis of realizations acquired in the early stages. In Figure 14,
the graphs of statistics
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∣∣R̂k(0, θ)
∣∣ = [[Rc

k(0, θ)]2 + [Rs
k(0, θ)]2

] 1
2

with the maximum values (Figure 13 and Table 2) are presented. As can be seen, it is
difficult to make any inference from these charts because the revealed extreme values are
very small and the frequency dependences are similar to chaotic oscillations.

Sensors 2021, 21, x FOR PEER REVIEW 20 of 32 
 

 

   
(a) (b) (c) 

Figure 12. The dependences of the second order square functional (38) on the test period for the first (a), the second (b) 
and the third (c) stages. 

These values differ only insignificantly from the basic frequency estimators of the 
vibration mean functions. The clearly defined peak on the graph in Figure 12a corre-
sponds to the early stage of the fault initiation. Considering the powers of the peaks in 
Figure 12b,c, we concluded that a defect had developed. 

The quantitative appraisal of the gear pair condition is given below. 
Knowing the values of 0̂f , on the basis of expressions (32) and (36), we calculated 

the Fourier coefficients for the variance and the amplitude spectrum of the variance time 
variation, which are represented in the form of the diagrams in Figure 13. As can be seen, 
for the first stage harmonic amplitude ( )0̂V̂ kf , 0≠k were negligible. For the rest stages, 

the amplitude spectrum slowly decayed as the frequency increased. The rate of decay 
decreased within the frequency range 54 145 Hz−  and it was a feature of both stages. 
The amplitudes for 15>k  were negligible. Then, it follows from (17), that the correla-
tions of the spectrum components, the frequency interval between which is greater than 
350 Hz , were weakly correlated. Thus, we concluded that the low-frequency and 
high-frequency modulations were non-correlated. This means that the variance Fourier 
coefficients are determined by the correlation of the narrow-band components separate-
ly in low-frequency and high-frequency domains. The first coefficient is determined by 
the correlations of narrow-band components shifted by 0̂f , while the second coefficient 

is shifted by 02 f̂ , etc. Since the bandwidth Ω  for the correlated components is limited, 
the number of the possible correlations decreases as the coefficient numbers increases. 
The harmonic amplitudes decrease too. In the considered case, 350 Hz≤Ω , therefore, 
the number of the significant variance harmonics 2L  could not be larger than 15 . As 
can be seen, this inference was confirmed by processing results. 

 
Figure 13. The amplitude spectrum of the variance periodical variation. 

As was noted above, at the first stage, the covariance components, except for the 
zeroth, were insignificant; however, it follows from Figure 12a that we cannot ignore the 

Figure 13. The amplitude spectrum of the variance periodical variation.

Sensors 2021, 21, x FOR PEER REVIEW 21 of 32 
 

 

features of the newly appeared second order non-stationarity. This indicates the initia-
tion of a local fault caused by parallel misalignment detected by further maintenance. We 
should note that the damage was detected using LS statistics, the extreme value of which 
is determined by the sum of the time-averaged powers of all possible variance harmonics 
with non-zero amplitudes. Using the component statistics (32) is not efficient for the 
discovering of hidden periodicities on the basis of realizations acquired in the early 
stages. In Figure 14, the graphs of statistics 

( ) ( ) ( )
1

2 2 2ˆ 0, 0, 0,θ θ θ    = +     
c s

k k kR R R  

with the maximum values (Figure 13 and Table 2) are presented. As can be seen, it is dif-
ficult to make any inference from these charts because the revealed extreme values are 
very small and the frequency dependences are similar to chaotic oscillations. 

  
(a) (b) 

Figure 14. The first (a) and the second (b) component variance functionals for the first stage. 

The values of the harmonic amplitudes are given in Table 2. We should note that the 
values of the variance Fourier coefficients cannot exceed the value of the zeroth coeffi-
cient. This fact follows from the PCRP harmonic representation (13), namely from rela-
tion (16): 

( ) ( ) ( ) ( ), 00 0 0τ −
∈ ∈

≤ ≤ = k p k p pp
p Z p Z

R r r R . 

Table 2. Amplitudes of the variances time variety. 

Stage 1 Stage 2 Stage 3 

Orders Frequency, Hz ( )0̂V̂ kf  Orders Frequency, Hz ( )0̂V̂ kf  Orders Frequency, Hz ( )0̂V̂ kf  

0 0 0.223 0 0.00 0.721 0 0.00 0.991 
1 24.20 0.036 1 24.05 0.541 1 23.41 0.949 
2 48.40 0.024 2 48.10 0.435 2 46.82 0.702 
3 72.60 0.027 3 72.15 0.419 3 70.23 0.617 
4 96.80 0.016 4 96.20 0.402 4 93.64 0.605 
5 121.00 0.011 5 120.25 0.389 5 117.05 0.600 
6 145.20 0.015 6 144.30 0.364 6 140.46 0.544 
7 169.40 0.016 7 168.35 0.290 7 163.87 0.421 
8 193.60 0.023 8 192.40 0.236 8 187.28 0.288 
9 217.80 0.017 9 216.45 0.162 9 210.69 0.301 
10 242.00 0.012 10 240.50 0.113 10 234.10 0.224 
11 266.20 0.007 11 264.55 0.096 11 257.51 0.180 
12 290.40 0.004 12 288.60 0.104 12 280.92 0.149 
13 314.60 0.008 13 312.65 0.062 13 304.33 0.089 

Figure 14. The first (a) and the second (b) component variance functionals for the first stage.

Table 2. Amplitudes of the variances time variety.

Stage 1 Stage 2 Stage 3

Orders Frequency, Hz V̂(kf̂0) Orders Frequency, Hz V̂(kf̂0) Orders Frequency, Hz V̂(kf̂0)
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1 24.20 0.036 1 24.05 0.541 1 23.41 0.949

2 48.40 0.024 2 48.10 0.435 2 46.82 0.702

3 72.60 0.027 3 72.15 0.419 3 70.23 0.617

4 96.80 0.016 4 96.20 0.402 4 93.64 0.605

5 121.00 0.011 5 120.25 0.389 5 117.05 0.600

6 145.20 0.015 6 144.30 0.364 6 140.46 0.544

7 169.40 0.016 7 168.35 0.290 7 163.87 0.421

8 193.60 0.023 8 192.40 0.236 8 187.28 0.288

9 217.80 0.017 9 216.45 0.162 9 210.69 0.301

10 242.00 0.012 10 240.50 0.113 10 234.10 0.224

11 266.20 0.007 11 264.55 0.096 11 257.51 0.180

12 290.40 0.004 12 288.60 0.104 12 280.92 0.149

13 314.60 0.008 13 312.65 0.062 13 304.33 0.089

14 338.80 0.013 14 336.70 0.034 14 327.74 0.108

15 363.00 0.002 15 360.75 0.051 15 351.15 0.083
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The values of the harmonic amplitudes are given in Table 2. We should note that the
values of the variance Fourier coefficients cannot exceed the value of the zeroth coefficient.
This fact follows from the PCRP harmonic representation (13), namely from relation (16):

|Rk(τ)| ≤ ∑
p∈Z

rp−k,p(0) ≤ ∑
p∈Z

rpp(0) = R0(0)

The values of the indicator I3 (37) for each stage of the failure were: 1.29, 5.15 and
6.13. As we can see from Table 2, it follows that the time-averaged power of the vibration

R0(0) =
∞∫
−∞

f (ω)dω also increased as the fault grew. The ratio of the current value of

the zeroth covariance component R(c)
0 (0) and the initial R(i)

0 (0) component for the second
stage was equal to 3.23, and, for the third stage, was equal to 4.44. To take this feature into
account, we form the indicator

I4 =

∆R̂0(0) +
L2
∑

k=1
V̂
(

k f̂0

)
R̂(i)

0 (0)
,

where ∆R̂0(0) = R̂c
0(0)− R̂(i)

0 (0). For the indicator I4, we accordingly have the following
values: 1.29, 13.82, and 30.72. The significant increase of the indicator I4 demonstrates
its high sensitivity to the changes of gear conditions in spite of the small values of the
variance Fourier coefficients in comparison with the amplitudes of the harmonics of the
deterministic oscillations.

The indicators for the fault detection formed on the basis of the mean and the variance
spectrum were also proposed in other works [7,12,44,45]. They have the forms of so-called
indicators of the cyclostationarity. However, it was assumed that the values of the cyclic
frequency are known, as the corresponding amplitudes were calculated on the basis of the
experimental data. These values were determined proceeding from the given technical
parameters of the rotating machine units. Since these parameters change during machine
operations, the chosen frequency value can differ from the real value. In this case, the
processing results could be, essentially, distorted. Therefore, the estimation of the cyclic
frequencies on the basis of the given realization is the first issue of the practical vibration
analysis.

Note that the indicators used in the paper differ from the indicators of cyclostationarity.
The gear state is described by the ratio of the power of the time-changing of the mean or the
variance to the initial values of these quantities, but not to the time-averaged variance for
each state. The latter essentially changes with the fault growth. Therefore, it is advisable to
take into consideration these changes, as was done above.

The charts of the variance time changes obtained on the basis of interpolation Formula (15)
are shown in Figure 15. In the time interval equal to a period of non-stationarity, these
changes included a significant impact caused by the faulty gear interaction. The impacts
were especially powerful for the last cases when the tooth defect was well developed and
close to breakage.

The pinion tooth breakage was confirmed by the site team after the borescope in-
spection of the gearbox parallel stage was performed (Figure 16). Calculating the relative
standard deviation of the covariance function estimation σr

[
R̂(t, 0)

]
using the formulae

obtained in [33,38], we concluded that for the given realization length it was smaller
than 0.04.
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Figure 16. The liberated tooth of the pinion gear at gearbox parallel stage.

The time changes of the variance can be visually demonstrated by involuting its time
dependence on the plane X0Y, forming the plot of a closed central curve, the coordinates
of which are determined by the equations:

x(t) = R̂(0, t) cos
(
2πt/P̂1

)
y(t) = R̂(0, t) sin

(
2πt/P̂1

)
In the case of the incipient fault, the curve chart has a form close to a circle, the

radius of which is defined by the variance of the vibration of the stochastic part. If the
fault grows, the curve loses its central symmetry and acquires an asymmetric form, which
characterizes the damage. The charts of these curves obtained for the estimators of the
vibration stochastic part variance for the different stages of the gear tooth breakage are
given in Figure 17. As can be seen from the charts, the curve form visually represents the
changes of the gear conditions of operations. The loss of symmetry was already visible at
the first stage. For the rest stages, the curves were lengthened in the same direction that
testifies to the localization of the fault. In our opinion, this chart representation makes the
observation of mechanism condition easier.

The specific features of the fault can also be established on the basis of the analysis
of the covariance components on the time lag. The graphs of covariance components
dependences on the time lag are given in Figures 18 and 19. The charts of these quantities
for large lags have the form of damping groups (Figure 20), as for the zeroth component
(Figure 9).
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In the considered case, the cosine covariance components values were dominant;
therefore, only their plots are shown in Figures 19 and 20. The established group structures
of the covariance components are, according to their general representation (13), if it
is assumed that modulations are described by the high-frequency narrow-band jointly
stationary random processes.

In this case, the modulating random processes can be represented in the form:

ξk0(t) = uk(t)eiλ0t + νk(t)eiλ0t (39)

where λ0 is the gear pair resonant frequency, and uk(t) and νk(t) are non-correlated sta-
tionary random processes. For the auto- and cross-covariance functions of (39), we have:

rkk(τ) = r(u)kk (τ)eiλ0τ + r(ν)kk (τ)e−iλ0τ

rkl(τ) = r(u)kl (τ)eiλ0τ + r(ν)kl (τ)e−iλ0τ

where r(u)kl (τ) = Euk(t)ul(t + τ) and r(ν)kl (τ) = Eνk(t)νl(t + τ). Then, the zeroth covariance
component

R0(τ) =
15

∑
l=−15

[
r(u)ll eiλ0τ + r(ν)ll (τ)e−iλ0τ

]
eilω0τ

and the non-zeroth components

Rk(τ) =
Lk

∑
l=−Lk

[
r(u)l−k,le

iλ0τ + r(ν)l−k,l(τ)e
−iλ0τ

]
eilω0τ

where Lk are the numbers of the correlated components, which are determined by super-
position of decaying harmonics with frequencies λ0 ± kω0. Since the item frequencies are
closed, these superpositions have group structures. The differences between the frequen-
cies are equal to kω0; therefore, the time intervals between groups are close to the rotation
period. In Figure 20, we can distinctly see more then twelve groups. Thus, the vanishing



Sensors 2021, 21, 6138 24 of 31

interval of correlation for the stochastic oscillations considerably exceeded the rotation
period. Such covariance structure causes a comb-like form of the spectral density. To
specify the modulation properties, the band-pass filtration and the Hilbert transformation
were applied [39–42].
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5. Discussions

The techniques of vibration PCRP analysis proposed in [10,17,33] for early fault detec-
tion differ from the techniques for so-called cyclostationary analysis that are traditionally
employed in the literature [13–15,46–50]. In Figure 21, the main stages of both approaches
are shown for comparison.

The cyclostationary analysis involves the calculation of the cyclic auto-correlation
function, depending on time and lag, and its two-dimensional Fourier transforms, which
includes the search for correlated harmonics, the calculation of coherence functions, and
their integrating, and the search for informative frequency band, using the various proce-
dures [51–62], etc.

The PCRP analysis was provided in the time-frequency domain without transition
into the dual-frequency domain. The time structure of the vibration signal was investigated
by decomposition of the first and the second order moment functions into Fourier series.
The amplitude spectra of the vibration deterministic component and time variations power
for the stochastic part were used to describe the machinery state. The stationary analysis
was carried out to ascertain the general properties of the vibration spectral composition
and to determine the frequency interval for the discovery of hidden periodicities.
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The effective techniques for discovering hidden periodicities of the first and second
order, developed in [9,34–37], provide the period for the deterministic oscillations and the
time variation of the moment functions of the second order for each individual realization
with the required accuracy. It enables the estimation of the respective amplitude spectra,
which can be used as a basis for assessing machinery conditions. The variance amplitude
spectrum is defined by the modulus of the covariance components (cyclic functions) at the
point τ = 0:

|Rk(0)| =
∞∫
−∞

fk(ω)dω, k = 1, L2

The amplitude of the individual harmonics for order k is the total characteristic for
the correlations of the spectral harmonics whose frequencies are shifted by kω0. These
quantities are complex; therefore, they cannot be called the cyclic power spectrum. The
phase spectrum

ϕk(0) = arctg
Rs

k(0)
Rc

k(0)
, k = 1, L2

can also be used to characterize the variance time variations.
Summarizing the amplitudes of all the numbers, we obtained the total characteristic

for all possible correlations of the spectral harmonics for stochastic vibrations, although
the analysis was carried out only in the cyclic frequency domain within the framework of
the Fourier series harmonic analysis.

The time-averaged power of stochastic oscillations, which was determined by R0(0),
increased as the fault grew; this motivated the involvement of the increment ∆R0(0) in the
formula for the fault detection indicator. Thus, we expected that the indicator I4, formed
on the basis of all variance Fourier coefficients, would be as sensitive as possible to changes
in the gear pair conditions.

It follows from (18) that the variance time variations in general are not localized in
the frequency domain. The maximum frequency distance between correlated harmonics is
determined by the highest number of the variance harmonic L2 and is equal to L2ω0. This
means that the bandwidth for the filtering of the raw signal cannot be narrower that L2ω0
and must be carried out over the whole signal frequency band. If these conditions are not
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fulfilled, the filtering results in the decrease of both amplitudes for variance harmonics and
also their number. These vibration non-stationarity properties must be considered when
the so-called informative frequency band is selected.

Comparing the cyclostationary and PCRP analyses, we can consider the so-called “en-
velope” (“high-resonance”) analysis devised in [63], which was widely used [14,15,46,48].
The envelope analysis typically consists of high-frequency band-pass filtering around some
resonance frequency and of constructing the analytic signal ζ(t) = ξ(t) + iη(t), where

η(t) is Hilbert transform for ξ(t) and the envelope µ(t) =
[
ξ2(t) + η2(t)

] 1
2 , and also the

Fourier transform of the envelope. For many years, the envelope spectrum was recognized
as one of most effective diagnostic tools for rotary machines [48,50]. At present, the square
envelope spectrum is seen as preferable [64,65].

The envelope analysis was devised as an empirical technique [65–68]. It has to be
applied to a purely random part of the signal; therefore, the deterministic components
must be extracted. It is said that the modulus of the analytic signal is a low-frequency
deterministic function describing the signal envelope [50,60]. However, theoretical analysis
of the Hilbert transform of PCRP as a vibration model and the corresponding analytic
signal show that this judgment is incorrect [39–43]. In fact, such an envelope does not
exist [43,46,50]. The sum of squares of the accordingly filtered signal and its Hilbert
transform is not a low-frequency deterministic function describing the squared envelope.
On the contrary, it is the pure stochastic high-frequency random signal. The mathematical
expectation of this signal is equal to the variance of the analytic signal. This variance is a
function that is periodic in time, and its Fourier coefficients are determined by [43]:

B(ξ)
k (0) = 2

 ∞∫
−∞

fk(ω)dω−
kω0∫
0

fk(ω)dω

 (40)

From this formula, it follows that, for the high-frequency modulation, when fk(ω) 6= 0
only for ω /∈ [0, kω0], the quantity (40) is equal to the doubled signal covariance component.
This means that the signal variance and the variance of its Hilbert transform are the same.
Thus, the envelope analysis techniques are not the demodulating procedures; they cannot
yield new results if they are compared to the analysis of raw signal variance. Consequently,
it is advisable to use PCRP techniques to search for hidden periodicities in this virtual
“square envelope”. The Fourier transform is not an applicable procedure in this case, and
its results are not consistent. The use of PCRP techniques is more direct, and it is the more
effective method for early fault detection.

It should be noted that the variance of the cyclic statistics, which is used in the
“square envelope” analysis, has an order O

(
T−1), while the variance of the basic frequency

estimator has an order O
(
T−3), and LS estimation provides the essentially greater SNR

(signal-to-noise ratio). Since the modulus of non-zeroth covariance components |Rk(0)|
is always smaller than R0(0), i.e., |Rk(0)| ≤ R0(0) and ∀ k = 1, L2, LS estimation has an
evident advantage in search of hidden periodicities.

For a known basic frequency, the cyclic (component) estimation can be considered
as filtration with a transfer function in the form of a comb, reaching the peaks at points
f = k f̂0 and ∀ k = 1, L2. These peaks become sharper as the realization length increases.
This approach allows us to increase the processing accuracy and to avoid the laborious
procedures that are usually used to improve traditional techniques based on the discrete
Fourier transform (see, for example, [50,51]).

The amplitude spectrum of the deterministic oscillations and, most of all, the am-
plitude spectrum of the time variations of the stochastic vibration power, characterize
the fault features. The indicators formed on the basis of these spectra can be efficiently
used for the analysis of machinery conditions. The greatest sensitivity of the indicator
I4 to the changes of the mechanism state is explained by both increase of the time aver-
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aged power for the stochastic oscillations R0(0) =
∞∫
−∞

f0(ω)dω and also the correlations

of the spectrum components, which are determined by the variance Fourier coefficients

Rk(0) =
∞∫
−∞

fk(ω)dω. As noted above that, relative change of the time averaged power for

the second stage was equal to 3.23 and, for the third stage, was equal to 4.43. The indicator
I3, which is determined by the quantities Rk(0) and k 6= 0, was equal, accordingly, to 5.15
and 6.13, while the total indicator I4 was equal to 13.82 and 30.72, i.e., its sensitivity is
the highest. Proceeding from the numerical results of the processing of numerous time
series for the vibration of a wind turbine gearbox, we can outline some stages of fault
development (Table 3). We should note that the emergency stage of the development of a
fault is characterized by the rapid increase of both indicators. We recommend applying
these indicators in practice. Note that the indicators’ numerical values are obtained on the
basis of signal analysis in the frequency range of up to 1 kHz.

Table 3. Degrees of fault development.

Degree Initial Small Moderate High Emergency

I2 <0.5 ≥0.5
<2.0

≥2.0
<4.0

≥4.0
<10.0 ≥10.0

I4 <2.0 ≥2.0
<10.0

≥10.0
<20.0

≥20.0
<25.0 ≥25.0

6. Conclusions

A model in the form of the BPCRP was proposed in this paper for the analysis of
the vibrations of a damaged gear pair. The interaction of the deterministic oscillations of
the two wheels was characterized by the BPCRP mean function and the interaction of the
stochastic oscillations by the BPCRP covariance function. The Fourier series of the mean
and covariance function consisted of the harmonics of the wheels’ rotation frequencies, their
multiples, and combinations. The concrete harmonic compositions of the deterministic and
the stochastic oscillations depend on the degree of the fault development and its location.

It was shown that the simpler stochastic models for gear pair vibration used in the
literature are particular cases of the BPCRP stochastic series representation.

The PCRP approach was used in this paper to analyze the vibration of a wind turbine
gearbox. It showed that the first and the second order PCRP parameters of the vibration at
the frequency band [0, 1.8 fm], where fm is the mesh frequency, are sufficiently sensitive to
state change, and they provided, to the full extent, the successful detection of the fault and
monitoring of its development.

It was established that the mean function LS statistics for the period estimation had
sharp peaks for all the analyzed stages. This result proved that powerful deterministic
oscillations existed in the vibration structure. Determining the maximum point to an
accuracy of three decimal places was accepted for the period estimators and, using their
values, the amplitude of each harmonic was calculated and the amplitude spectrum
was obtained. The spectrum forms for all stages differed insignificantly and its width
covered practically the whole of the investigated frequency band. The low-frequency
harmonics could be interpreted as order harmonics of the rotation frequency, the twenty-
fifth harmonic was the first mesh-frequency harmonic and the frequencies of the higher
harmonics were linear combinations of the mesh and the rotation frequencies. If, for the
first stage, the amplitude of the mesh-frequency harmonic is dominant, then for the other
stages the amplitudes of the 6th–9th order harmonics are the largest. The summary power
of the harmonic rapidly increased as the fault grew. For the last stage, the power of the
deterministic oscillations was more than nine times its value for the first stage. Using the
interpolated component statistics, the mean function was calculated for all t ∈ [0, P] and
the deterministic and the stochastic oscillations were divided.
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The LS functional was employed for discovering the hidden periodicities of the second
order. Its dependences on the test period had sharp peaks at the points that were accepted
as the periods of the variance time changing. The availability of such growth peaks was
evidence that a local fault had occurred and was developing.

On the basis of the period estimator, the variance Fourier coefficients were calculated
and variance amplitude spectrum was formed. This spectrum characterizes the time
periodic variations of the stochastic oscillation power. The power periodic variations are
test features for the local fault detection. The amplitude of the individual harmonic order k
is the total characteristic of the correlation of the spectral component whose frequencies are
shifted by kω0.

The summary amplitude of the variance harmonics was chosen for the comparison
of the different states. The values of amplitudes for harmonics whose order is larger than
twelve are negligible. This means that the spectral components, the frequency intervals
between which are greater than 280 Hz, are weakly correlated. Thus, we concluded that
low-frequency and high-frequency modulations are non-correlated.

Time variations of the variance do not occur if the fault is absent, thus it is advisable
to choose, for the quantitative characterization of the state change, an initial value of the
zeroth covariance component R0(0), which determines the average power of the stochastic
oscillations. The average power increases as the fault grows, because this increase is
advisable to be included to the formula for the diagnostic indicator. It is shown that the
change of this indicator considerably exceeds the change of the deterministic indicator that
is defined by the power of the deterministic vibrations, while the power of the latter is
considerably larger than the power of the stochastic vibrations. The results obtained give
grounds to recommend the stochastic power indicator for the monitoring of wind turbine
gearboxes.
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