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Abstract: Fingerprinting is the term used to describe a common indoor radio-mapping positioning
technology that tracks moving objects in real time. To use this, a substantial number of measurement
processes and workflows are needed to generate a radio-map. Accordingly, to minimize costs and
increase the usability of such radio-maps, this study proposes an access-point (AP)-centered window
(APCW) radio-map generation network (RGN). The proposed technique extracts parts of a radio-map
in the form of a window based on AP floor plan coordinates to shorten the training time while
enhancing radio-map prediction accuracy. To provide robustness against changes in the location of
the APs and to enhance the utilization of similar structures, the proposed RGN, which employs an
adversarial learning method and uses the APCW as input, learns the indoor space in partitions and
combines the radio-maps of each AP to generate a complete map. By comparing four learning models
that use different data structures as input based on an actual building, the proposed radio-map
learning model (i.e., APCW-based RGN) obtains the highest accuracy among all models tested,
yielding a root-mean-square error value of 4.01 dBm.

Keywords: access-point-centered window; adversarial learning; fingerprinting; radio-map genera-
tion network

1. Introduction

Fingerprinting describes an indoor positioning technique that uses commonly avail-
able wireless area network technologies, such as wireless-fidelity (Wi-Fi), Bluetooth low-
energy, and Zigbee [1–3] models. Numerous Wi-Fi fingerprinting studies have demon-
strated improved transmission distances in indoor environments containing obstacles
while supporting smartphone utilization. The fingerprinting process is normally divided
into two phases: offline, which uses the Wi-Fi received signal strength indicator (RSSI), and
online, which uses an established database to track the relevant positions in a real-time
basis. In the offline phase, several reference points (RPs) are configured at normal intervals
in the indoor area, generally divided into 2 or 3 m sectors that can be used to estimate a
position based on the change of the measured RSSI [4–6]. Subsequently, Wi-Fi RSSI values
for access points (APs) measured at all RPs are collected to build a radio-map database.
Because the online phase attempts to estimate user positions based on similarities between
the radio-map generated in the offline phase and the user’s RSSI values measured in real
time, various probabilistic and deterministic algorithms can be utilized [6,7].

Furthermore, since the combined system can provide better accuracy than individual
sensor systems, Poulose et al. [8] proposed a sensor fusion algorithm combined with
a Pedestrian Dead Reckoning (PDR) system using an inertial sensor. In particular, it
was demonstrated that the Wi-Fi fusion algorithm combining fingerprinting with the
trilateration algorithm shows better positioning accuracy than the individual algorithms.
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Poulose et al. [9] proposed a hybrid deep learning model (HDLM) to improve location
accuracy. The proposed algorithm proved that the combination of a convolutional neural
network and long short-term memory network (CNN-LSTM) has better positional accuracy
than other deep learning models. In particular, in order to solve the problem of RSSI,
which can be easily changed according to indoor channel conditions, the location accuracy
was improved by replacing the RSSI raw value with the RSSI heatmap. As such, the
performance of a deep learning system depends on the quality of the feature representation,
even with the same data. More recently, Ssekidde et al. [10] introduced novel feature
set extractions based on the continuous wavelet transforms (CWT) of the received signal
strength indicator’s (RSSI) data. CWT image-based feature sets have been demonstrated to
improve performance by augmenting them with additive white Gaussian noise.

Such fingerprinting techniques require radio-maps for recognizing user positions, and
the most basic method of generating a radio-map is point-by-point calibration, which mea-
sures the RSSI values of the APs at all RPs several tens of times over a certain period [11].
Doing so, the number of required RPs increases with the building size. In turn, such
approaches require increased time and heavy costs. To address this issue, several studies
have been conducted on walking surveys [12,13], crowd sourcing [14,15], and data augmen-
tation [16,17]. A walking survey [18,19] is the most common RSSI measurement approach,
and it directly measures the receiver strength while moving along a predetermined path.
This method has the advantage of accurate data collection, but it has the disadvantages
of long collection time and high workload. Crowd sourcing [20,21] makes use of random
measurement traces collected by a user carrying a smartphone throughout the localization
area. This has the advantage of easy updates; hence, it is used extensively. However, this
approach is computationally complex and time consuming, and obtaining high accuracy is
challenging. Data augmentation [22–24] is mainly used to address the measured RSSI data
sparsity issue, which often limits the performance of neural-network classifiers.

Because RSSI is determined by complex indoor environmental factors, such as geomet-
ric (optical-based) propagation characteristics, some approaches to generating radio-maps
using the physical dimension of a floor plan are underway to minimize the time-cost
and workloads required [25]. There are two essential components of the database re-
quired for radio-map generation: the floor plan (location of the obstacle and AP) and the
corresponding radio-map. Information related to the thickness or material of the obsta-
cle is an additional condition needed to improve the accuracy of radio-map generation.
Ali et al. [25] generated radio-maps by integrating path losses over certain trajectories
with the floor plan/wall attenuation factor to make selections based on the thickness and
material properties of the walls and obstructions. Zineb et al. [26] proposed a multi-wall
and multi-frequency indoor path-loss prediction model using artificial neural networks
to solve problems of model calibration and tuning using real measurements collected in a
given environment at a set frequency. Mendoza-Silva et al. [27] proposed a new approach
to handle sample collection using support vector regression for data enrichments.

On the other hand, research on how to construct a radio-map based on a generative
adversarial network (GAN), which uses unsupervised learning, is being studied. A GAN
has the capability to provide excellent results in the field of image generation. Given
enough training data, it is possible to emulate the data distribution in almost any image
domain. This outstanding performance of GANs has been extended not only to the image
generation field but also to other research fields. For example, Zhao et al. [28] proposed
a GAN-based vehicle trajectory prediction method for urban roads. The discriminant
network of a GAN consists of two independent networks, each receiving input and output
data from the generated network to achieve better prediction accuracy.

Zou et al. [29] proposed a radio-map construction method that converges SLAM and a
GPR-based GAN through a mobile robot to construct a detailed radio-map to estimate RSS
values from new coordinates. This approach generates a precise radio-map by dividing the
indoor space into a free space and a constrained space. Free space refers to an open space
that mobile robots can easily access, such as a hallway or public space, and a constrained
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space refers to a closed space such as a private space or cubicle. Therefore, in free space,
both floor plans and radio-maps are constructed using simultaneous localization and
mapping (SLAM) based on data acquired by LIDAR and a Kinect Camera installed in the
mobile robots. Constrained space cannot semantically collect RSSI values with the SLAM.
Therefore, in the constrained space, information on a specific location is input into the
GPR model trained with the RSSI values actually measured in the free space. The RSSI
value in the constrained space can be estimated by inputting the output value of the GPR
model to the generator of the GAN along with the noise. Therefore, in order to construct
a precise radio-map, the performance of a GPR model trained with RSSI values collected
through a mobile robot in free space is important. Seong et al. [30] used an unsupervised
dual radio-mapping algorithm to generate a radio-map of an entire building based on the
measured radio-map of one reference floor. Liu et al. [31] generated a desirable radio-map
using an adversarial learning-based network from the accumulated indoor radio designed
by human experts.

Most approaches to radio-map generation using floor plans have low versatility, owing
to the size of the radio-map that can be generated based on the floor plan. Furthermore,
datasets comprising various raw floor plans and radio-maps are required. A radio-map
generation model trained on the basis of a floor plan must calculate not only the locations
that can receive signals from the installed AP, but it also must anticipate locations that will
not receive the signals. Finally, to represent obstacles as morphological two-dimensional
(2D) images, they are converted into binary or gray scale. However, the binary scale
cannot provide information about the propagation attenuation coefficient according to the
obstacle’s material, and a gray-scale image requires additional propagation measurements
and analyses for each material type as designed by experienced radio engineers.

Therefore, in this study, we propose an access-point centered window (APCW)-based
radio-map generation network (RGN) to minimize costs and increase usability. The pro-
posed model extracts the corresponding floor plan and radio-map information using the
APCW, which is a window divided into the center of the AP location; thus, the radio-
map generation accuracy improves by reducing the generation condition according to
the location of the AP. The obstacles represented on the floor plan are converted into a
one-hot vector to extract semantic features without additional propagation measurements
or analyses, depending on the type of the material. The major contributions of this work
are summarized as follows:

• The proposed APCW can reduce the size of the neural network model and improve
the radio-map generation performance by dividing the collected floor plan and radio-
map-based datasets into AP-based floor plan-based datasets.

• The proposed representation of obstacles using one-hot vectors can automatically
infer the influence of the attenuation coefficients of materials without additional
measurements.

• Unlike the floor plan-based RGN model, the input data structure is learned from the
vector with the same location of the AP because it learns by dividing it into a certain
window centered on the AP. Thus, the weight vectors of the layer, which were learned
in the form of the existing floor plan, are learned in the form of radiation, as with the
propagation model. The APCW-based RGN model is highly versatile because it can
generate a radio-map regardless of the size of the floor plan.

The rest of this paper is organized as follows. Section 2 provides an overview and
theoretical background, and Section 3 describes the proposed APCW-based RGN. Section 4
provides details of the experimental design and discusses the performance evaluation and
comparison results of radio-map and localization. We present the conclusions and scope
for future work in Section 5.

2. Materials and Methods

This section mainly outlines the relevant methods for fingerprinting and CGANs. The
purpose of this section is to point out the functions of radio-maps used in fingerprinting
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to aid in the analysis and validation of the proposed algorithm. In addition, the overall
structure and learning method of CGANs are discussed to explain the deep learning
technique used in the proposed algorithm.

2.1. Fingerprinting

We describe the theory and approaches of a typical fingerprinting technique to high-
light the importance of radio-map construction. Figure 1 illustrates a typical fingerprinting
technique consisting of offline and online phases, as discussed. During the offline phase,
a radio-map is generated by collecting the RSSI values of the visible APs at each RP. The
service-set identifier represents the unique identifier of each AP. RSSI measurement is
repeatedly performed at each RP for a sufficient number of repetitions to obtain a repre-
sentative fingerprint value (e.g., via averaging [23]). The values are heavily influenced by
relative distances and obstacle materials. However, with the increase of differences between
the AP-measured RSSI values per RP, the accuracy of the position prediction increases.
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Figure 1. Structure of a typical fingerprint.

The matrix of Equation (1) represents the structure of a typical radio-map. The x-
axis denotes RPs; the y-axis represents the APs; and RSSISSID(i)RP(j) represents the RSSI
emitted from the ith AP measured at the jth RP.

Radiomap =


RSSISSID1(RP1) RSSISSID1(RP2) · · · RSSISSID1(RPn)
RSSISSID2(RP1) RSSISSID2(RP2) · · · RSSISSID2(RPn)

...
...

. . .
...

RSSISSIDn(RP1) RSSISSIDn(RP2) · · · RSSISSIDn(RPn)

 (1)

During the online phase, the offline-generated radio-map is compared to the RSSI
values of the APs measured from the user’s Wi-Fi receiver to predict their positions in
real-time. Online, the RP having the highest similarity between the RSSI distribution
collected in real-time and that of the constructed radio-map is used to estimate the mobile
user’s position. Probabilistic or deterministic algorithms are utilized, because the position
is estimated based on similarity [32,33]. For deterministic algorithms, the general form of
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position estimation is achieved by selecting RPs whose fingerprints are the closest match to
the online RSSI measurements:

P = argmin
j=1,...,N

∑M
i=1 d

(
RSSIij, RSSIreal

)
, (2)

where RSSIij is the representative fingerprint value for SSID i and RP j, and d(RSSIij, RSSIreal)
defines the typical distance metric. For time averaging, the representative value is the time-
averaged fingerprint. Euclidean distance is a well-known distance metric for Equation (2),
defined as

d
(

RSSIij, RSSIreal
)
= ‖RSSIij − RSSIreal‖2, i = 1, . . . , M. (3)

A solution that finds the RP having the minimum Euclidean distance among measure-
ments is known as the nearest-neighbor (NN) method. There are also various deterministic
algorithms, such as k-NN [34], median filtering [35], and weighted k-NN [36], which can
improve localization accuracy [37]. Moreover, there are various distance metrics, such
as cosine similarity [38], Sorensen [39], and log-Gaussian [40], which can determine the
accurate similarity between RSSIij and RSSIreal . Localization performance is based on the
premise that the radio-map contains representative values for each RP. Thus, radio-maps
used for fingerprinting require considerable time and effort to produce representative
values for each RP. Furthermore, increases in the size and complexity of building structures
in recent years have significantly increased the amount of time and effort required to
construct the radio-maps. Therefore, finding a method to reduce the amount of work and
time is crucial.

2.2. Conditional GAN (CGAN)

A CGAN learns the distribution of real data that are difficult to predict using only
modeling techniques, and it generates data that imitate the learned distribution [19,20].
Figure 2 illustrates the architecture of a CGAN comprising a generator and a discriminator.
In the architecture, real data are ground-truth values that the CGAN attempts to imitate
and generate using latent variables and labels. The latent variables denote the random
variables that follow a normal distribution having a mean of zero and a standard deviation
of one; this is used for training. The generator output data are considered predictions. The
label represents a condition for generating real data and expresses auxiliary information
(e.g., class). The CGAN adjusts the label as needed.
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The generator’s training process comprises three steps, as follows. First, the generator
receives a latent variable and a label as input to generate the predicted data. Second, the dis-
criminator attempts to distinguish real from predicted data and determine their similarity.
If the predicted data are sufficiently similar to the real ones, the discriminator yields “True”
(T); otherwise, it yields “False” (F). “True” indicates that the generator’s data generation
performance is higher than the discriminator’s classification performance, whereas “False”
indicates the opposite. Lastly, the generator and discriminator are trained according to the
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classification performance of the discriminator. The loss functions of the generator and
discriminator for training are extrapolated, respectively, as Equations (4) and (5):

LG(x) = E[log(D(G(v)|y))], (4)

LD(x) = E[log(D(x|y))] + E[log(1− D(G(v)|y))], (5)

where v represents the latent variable; G and D denote the outputs of the generator and
discriminator, respectively; x denotes the ground-truth value; and y represents the label.
The key purpose of the CGAN is to generate a radio-map having an accuracy level that
is indistinguishable from the real data. Training is carried out by minimizing the loss
function of the generator, LG, while maximizing the loss function of the discriminator,
LD. In the case of generating predicted data that are similar to real data using the trained
generator, there is no need for a discriminator to evaluate the performance of the generator,
because the main purpose is generation. Accordingly, during the generating phase, the
discriminator that evaluates the generator’s performance is discarded, and the predicted
data are generated using only the trained generator.

3. Radio-Map Generation Network
3.1. Proposed RGN

Figure 3 displays the architecture of the proposed APCW-based RGN. As with the
CGAN, the proposed RGN comprises training and generating phases. During the training
phase, the proposed APCW-RGN is divided into generator and discriminator networks.
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The generator network produces a radio-map by inputting a latent variable (i.e.,
a random variable following a normal distribution having a mean of zero and standard
deviation of one) and the proposed APCW (i.e., label). The discriminator network calculates
the probability of whether the input data is a real radio-map or a predicted (generated)
radio-map under the APCW condition. Using this process, the generator network is
trained iteratively using operation-loss functions (i.e., Equations (4) and (5)). During the
generating phase, the discriminator network used in the training phase is removed, and
only the generator network is used. Therefore, a radio-map is generated by repeatedly
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inputting the latent variable and APCW enough times to match the number of APs in the
learned generator network. The following subsections introduce the APCW structural
details reflecting the indoor environment and the RGN that predicts the RSSI values.
Table 1 introduces the terms used in this work.

Table 1. Variables used in the APCW-RGN.

Variables Definitions

L localization domain
S Spatial information

S(x,y) Index values according to material types at x and y coordinates of L
Si

x,y One-hot vector according to index values at x and y coordinates of L
Lone−hot localization domain encoded by one-hot vector
APCWj Access-point-centered window

d Distance partitioned around the AP
W Window size

RSSI(x, y) Normalization of RSSI(x,y)
z Latent variable
LG Loss function of generator in RGN
LD Loss function of discriminator in RGN

3.2. Access Point Centered Window

For RGN generation, it is necessary to reflect the physical environment (e.g., indoor
layout and transmission distances) and the input structure of the label for training. To
do this, we convert the indoor spaces into data to build the partitioned APCW centered
around the AP. Figure 4 displays the localization domain after converting the entire floor
plan into 2D data. Here, X and Y axes denote spatial distances, and the localization domain,
L, comprises a set of cells that indicate certain spaces. Each cell is configured to a 1 × 1 m2

square in consideration of computing power and obstacle sizes that affect RSSI values
within 3 m (a typical distance interval of Wi-Fi RPs). Accordingly, one cell is designed to
contain spatial information S of one space, and localization domain L can be expressed by
Equation (6):

L =
{

S(1,1), S(2,1), . . . , S(X,Y)

}
, (6)

where spatial information S is given one index value according to an obstacle existing at
arbitrary X and Y coordinates of L.
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Table 2 summarizes the index values of S according to material types. Index 0 is
arranged to express inaccessible spaces for measuring the AP signal or spaces outside
the building. Based on the L generation, the 2D indoor space can be converted into
computer-processable data.
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Table 2. Cell properties designed for obstacle Material.

Cell

Index i Object Material One-Hot Vector Si

0 Inaccessible Space - {0, 0, 0, 0, 0, 1}
1 Free Space Vacuum {0, 0, 0, 0, 1, 0}
2 Glass Wall Glass {0, 0, 0, 1, 0, 0}
3 Concrete Wall with Window Concrete, Glass {0, 0, 1, 0, 0, 0}
4 Concrete Wall Concrete {0, 1, 0, 0, 0, 0}
5 Concrete Wall with Iron Door Concrete, Iron {1, 0, 0, 0, 0, 0}

However, the input structure allows one cell to have two or more index values de-
pending on the obstacle type, whereas the number of weights connected to the network is
one. Thus, precise physical coefficients representing the material characteristics of different
propagation media cannot be trained individually. To address this, each cell is vectorized
by one-hot coding to enable one index to be connected to one weight. Equation (7) displays
Lone−hot and the vectorized L:

Lone−hot =
{

Si1
(1,1), Si2

(2,1) , . . . , SiX×Y
(X,Y)

}
, Si

x,y =



0, 0, 0, 0, 0, 1 if i = 0
0, 0, 0, 0, 1, 0 if i = 1
0, 0, 0, 1, 0, 0 if i = 2
0, 0, 1, 0, 0, 0 if i = 3
0, 1, 0, 0, 0, 0 if i = 4
1, 0, 0, 0, 0, 0 if i = 5

(7)

Vector information Si
x,y is assigned a one-hot vector according to the index, i, of S,

which exists. Additionally, information on the thickness of the obstacle is very important
because it can have a great influence on significant propagation loss. Therefore, the
thickness can be added to each cell by combining it with a one-hot vector on a gray scale.
However, assuming that the thickness is constant for each material, the characteristics of the
thickness can be semantically included in the one-hot vector. This enables the generation
of a basic label structure that includes the building’s floor plan and position information
affecting the RSSI. However, this approach does not enable partitioning L into useful parts,
because it employs the 2D conversion of the entire building. This approach can generate
radio-maps only in buildings having the same structural and obstacle characteristics.
Furthermore, there are drawbacks of unnecessary computations within networks, which
yield high RSSI prediction errors, because the radio-shadow areas where the AP’s RSSI
values cannot be measured are also used as training input.

Owing to the path loss [41], the RSSI increases with locations near the AP, and it
gradually decreases as the distance increases. Because RSSI has a small value at a location
far from the AP, it is difficult to distinguish the cause of the attenuation effect of distances
and obstacles. The floor plan-based RGN [27,30] consists of distance-feature extraction from
AP and receiver locations according to the input floor plan and that of the environmental
influence feature for conversion into RSSI. Hence, it is difficult to directly convey the
environmental influence feature that determines the RSSI because a calculation process for
implicitly extracting the distance feature is added.

The APCW converts the L of the floor plan using a window centered on the AP, so
that each position of the input vector comprising the APCW includes distance information
between the AP and the receiver. Therefore, the APCW-based RGN provides a clear
generation condition for an obstacle or distance, because it is possible to directly infer a
semantic correlation coefficient for an obstacle or distance than the floor plan-based RGN.
Figure 5 illustrates the APCWs centered around the APs of two locations in Lone−hot:

APCWj =
{

Si
(kx_1,ky_1)

, Si
(kx_1+1,ky_1)

, · · · , Si
(kx_W ,ky_W )

}
, (8)
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where kx_1 = x(j) − d, ky_1 = y(j) − d, and kx_W = x(j) + d, ky_W = y(j) + d. x(j)
represents the x-axis coordinate of the jth AP; y(j) represents the y-axis coordinate of the
same AP; d is the distance partitioned around the AP; kx_1 and ky_1 represent the first X
and Y coordinates of APCWj, respectively; and kx_W and ky_W represent the last X and Y
coordinates of APCWj, respectively. Thus, the generated APCWj is composed of W ×W
cells, and it can obtain obstacle information of a space that is d distance away from an AP.
Here, because APCWj is generated based on the AP, location information of the AP is not
used in the input. Furthermore, the size of network input data is W ×W × in, which is the
product of the APCW size, W ×W, and the number of indices, in. Because the transmission
distance at which the RSSI value is measured is generally determined centered around
AP, the center of the window is configured as the AP’s location based on the root mean-
square error (RMSE) between the predicted radio-map according to the APCW size and the
real radio-map. The RMSE value represents the average difference between components
constituting different data. The RMSE decreases as the distribution of the two data gets
closer. Then, the highest RGN radio-map generation accuracy is obtained when the RMSE
value between the predicted radio-map generated from the RGN and the real radio-map is
the smallest.
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Therefore, this study uses the RMSE value to determine the size of the partitioned
squares optimized for an indoor environment. As such, although the RGN computational
complexity is proportional to the number of indices, the proposed method of generating
APCW centered around the APs can reduce the computational complexity of the network,
because it does not involve adding indices to indicate the AP location information. An
APCWj generated this way is used as a label in the generator to prevent overfitting for the
entire building structure by reflecting the structural characteristics and obstacle material
types while generating a desired region around the APs.

3.3. Radio-Map Generation Network Architecture

The RGN generator and discriminator were designed based on the CGAN. The gen-
erator provides labels for generating radio-maps using APCW-based input and output
structures. Figure 6 illustrates an RGN structure comprising a fully connected (FC) layer-
based generator and discriminator.

The input of the generator uses the latent variable, z, and the APCW for learning
the distribution of the real radio-map. The CGAN generator uses a static-size transposed
convolution. However, this is implausible in this case, because the measurable distance
of the RSSI values distorted by surrounding obstacles centered around all APs in L is
inconsistent. Accordingly, z and the APCW are used as input to the three FC layers
having rectified linear units (ReLUs) as activation functions [42]. During this process, the
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ReLU activation function addresses the vanishing gradient problem of the generator and
discriminator, which comprise three layers apiece.
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Table 3 shows details of the generator’s layer type, its activation function, and its input
and output sizes. In the table, z represents the latent variable size; W2 represents the APCW
size; and in represents the number of indices needed to generate the APCWs. For CGAN
network execution, the input and output sizes of the generator and discriminator should be
accurately configured. Therefore, the input size of the generator is set as z+W2× i: the sum
of the sizes of z and the APCW. The FC layer has inferior feature extraction performance
compared with a convolution layer. Thus, the size of the first layer of the generator is
configured as 2×W2, which is larger than the APCW. This enables the extraction of as
many APCW structural features as possible. Furthermore, the second and third layers
are configured to have gradual decreases in size with W2 ÷ 3 and W2 ÷ 9, respectively,
to predict RSSI values based on the features extracted from the first layer. Here, each
component output size generated from the generator is set to 3× 3 m, which is the typical
interval used for measuring RSSI in fingerprinting. Because one component of the APCW
expresses a 1× 1 m space, the length and width of the radio-map output from APCW and
the generator have a size ratio of 3:1. Accordingly, the length and width of the APCW
should be set to at least 3 m. The radio-map generated by the generator after receiving
APCWj as input is defined as Predicted Radiomapj.

Table 3. Detail of Generator.

Network Layer Activation Function Input Size Output Size

Generator
FC ReLU z + W2 × in 2×W2

FC ReLU 2×W2 W2 ÷ 3
FC ReLU W2 ÷ 3 W2 ÷ 9

Figure 7 displays its structure generated using APCWj and z as inputs. W denotes
the diagonal entry size of the APCW. Each cell constituting Predicted Radiomapj is de-
signed to predict an RSSI value of 3× 3 m from the ACPW input to the generator. Thus,
Predicted Radiomapj is composed of W

3 ×
W
3 cells (i.e., 1

9 of the APCW). The generator
uses the APCW as its input and is trained to output results that are like actual RSSI
values. Therefore, Real Radiomapj, which acts as ground truth for training, is a crucial
factor for generator accuracy. The structure of Real Radiomapj is configured to be same as
Predicted Radiomapj for an accurate comparison of RSSI values, and considering that RSSIs
below −100 dBm are usually undetectable by most devices, we consider this value to be
the lower limit of the accepted strength-value range [43,44]. To standardize the data, APs
that are missing in a set of RSSI measurements will have their signal strengths = −100 dBm.
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Furthermore, the generated Real Radiomap is normalized to the range [0, 1] to increase the
training speed of the network. Equation (9) expresses the normalization process:

RSSI(x, y) =

{RSSI(x,y) − RSSImin

RSSImax − RSSImin
, (9)

where RSSI(x,y) represents a value converted via the normalization of RSSI(x,y) (i.e., RSSI
value measured at certain arbitrary X and Y coordinates). Additionally, RSSImin denotes
the minimum RSSI value (i.e., −100 dBm) in Real Radiomapj, whereas RSSImax denotes
the maximum collected RSSI value. As the normalized value decreases, the signal strength
increases. If the generator is trained with a sufficient normalized dataset, RSSI, it yields
an output value between zero and one. The final generated Real Radiomapj is provided as
input for the discriminator alongside APCWj.
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The discriminator also comprises three FC layers that use ReLU as their activation
functions to connect all components in the input layer. Table 4 shows details of the
discriminator’s layer type, activation function, and input and output sizes. In the table,
W2 denotes the APCW size, and in represents the number of indices used to generate the
APCWs. The discriminator uses Predicted Radiomapj, and APCWj (i.e., the label) are its
input values. Thus, the input size of the discriminator’s first layer is set as the sum of the
two input variables: W2 ÷ 9 + W2 × in. Unlike the generator, the discriminator does not
require layer scaling for feature extraction, because its main objective is to distinguish data.
Accordingly, the discriminator’s layers are configured to have a gradual decrease in their
output sizes with W2 ÷ 9, W2 ÷ 27, and 1, respectively.

Table 4. Detail of Discriminator.

Network Layer Activation Function Input Size Output Size

Discriminator
FC ReLU W2 ÷ 9 + W2 × in W2 ÷ 9
FC ReLU W2 ÷ 9 W2 ÷ 27
FC ReLU W2 ÷ 27 1

The output of the discriminator is either T or F because it determines whether
Predicted Radiomapj is identical to Real Radiomapj. Hence, the final output size of the
discriminator is set to one. The proposed RGN outputs predicticted Radiomapj of an ar-
bitrary AP, and the discriminator compares predicticted Radiomapj to Real Radiomapj to
output their similarity. Subsequently, the CGAN-based network is trained using the dis-
criminator’s output of similarity. Equations (10) and (11) are the loss functions applied to
the generator and discriminator, respectively, for adversarial learning:

LG

(
z, Lj

)
= E

[
log
(

D
(

G(z)
∣∣∣Lj
))]

, (10)
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D
(

Rj
∣∣∣Lj
))]
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log
(

1− D
(

G(z)
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))]

, (11)

where z represents the latent variable; G and D represent the output of the generator and
discriminator, respectively; and Rj represents the real radio-map of the jth AP. Addition-
ally, Lj denotes the APCW of the jth AP. The proposed network is designed to generate
a radio-map having an accuracy level indistinguishable from actual data. Hence, the
training process is conducted by minimizing the loss function, LG, of the generator while
maximizing the loss function, LD, of the discriminator. The discriminator learns to max-
imize both the first and second terms in order to maximize Equation (11). That is, since
D
(

Rj
∣∣Lj) is the probability of classifying as a real radio-map, this output value should

be as close to 1 as possible. Since D
(
G(v)

∣∣Lj) is the predicted probability of classifying
the radiomap, this output value should be as close to 0 as possible. Therefore, as the
discriminator learns to maximize the value of the loss function, the discriminator learns to
improve the performance of classifying whether the input radio-map is real or fake accord-
ing to the given APCW condition. If the generator distribution is able to match the real
data distribution perfectly, then the discriminator will be maximally confused, predicting
0.5 for all inputs. Based on the iteration of this training process, the generator’s output,
predicticted Radiomapj, gradually becomes identical to Real Radiomapj. Subsequently, the
generator can generate a radio-map of an AP using one operation when establishing radio-
maps using the trained generator. Therefore, during the generating phase, one radio-map
is generated for each AP.

Finally, the generated radio-maps are combined to construe a single radio-map as
shown Figure 8. In the figure, APn represents the number of APs, and RPm represents the
number of RPs. The output of generator is a value between zero and one. However, the unit
of RSSI values measured in the online phase is in dBm units. Thus, the generator output is
scaled via denormalization and input to the radio-map. The radio-map comprises a 2D
matrix according to the AP and RP. Therefore, the predicted RSSI, which is a component of
the predicted radio-map, is sequentially inserted by searching for the corresponding RP in
the entire RP set. In other RPs, the minimum value of RSSI is inserted by assuming that
the RSSI has a small value or that the location is not received. By repeating this process as
many times as the number of APs, the entire radio-map of a 2D structure is constructed.
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4. Experimental and Results

The radio-map generation accuracy of the RGN depends on the size of the APCW.
Thus, an experiment was conducted to compare the radio-maps generated using various
APCW sizes and to analyze the optimal APCW size. Additionally, four models using labels
of different input structures were designed to analyze the effects of the proposed APCW on
the RGN’s radio-map generation accuracy. The performance of the proposed APCW was
verified by comparing the radio-map generation accuracy of each model. Subsequently,
the characteristics of the networks trained with the proposed APCW were analyzed. To
collect the Wi-Fi signals needed for the verification process, the experiment was conducted
in a typical building environment, as illustrated in Figure 9.



Sensors 2021, 21, 6107 13 of 26

Sensors 2021, 21, 6107 13 of 25 
 

 

Subsequently, the characteristics of the networks trained with the proposed APCW were 
analyzed. To collect the Wi-Fi signals needed for the verification process, the experiment 
was conducted in a typical building environment, as illustrated in Figure 9. 

 
Figure 9. Experimental setup. 

4.1. Experimental Setup 
In this study, to verify the validity of the proposed APCW-based RGN, we trained 

and validated the network using RSSI data collected in a real environment. For data col-
lection, RSSI was measured on the 3rd and 4th floors of the Korea Maritime University’s 
Mieum Campus (84 × 32 m ). Figure 9 illustrate structures of the experimental space for 
each floor, including AP and Wi-Fi receiver installations. The RP consists of 222 APs total. 
There were 112 on the 3rd floor and 110 in the 4th floor with a measuring interval of about 
3 m. 

To build a sufficient dataset, the diversity of training data was increased by arranging 
APs for each RP and collecting RSSIs using the same AP (N3-i ipTIME N102-E) and Wi-Fi 
receiver (LG V20 smartphones) for signal uniformity. Because the CGAN used in the pro-
posed network can include latent variables during the learning process, the RSSI meas-
urement results can be used as training data. However, the RSSI average of all measure-
ments per location was used to minimize uncontrolled and uncertain noise caused by ex-
tensive collection. Furthermore, the purpose of this study was to generate a radio-map of 
a similar area not measured through learning. Therefore, if a dataset includes various 
structural building characteristics, it will be possible to generate a radio-map for a space 
having structural similarity. 

A desktop computer was used for verification of the proposed method and was 
equipped with Intel® Core™ CPU i5-9400F, 32-GB memory, Geforce RTX 2070, 500-GB 
solid-state drives, and 2-TB hard disk drives. All proposed network learning was fixed at 
1000 epochs to sufficiently converge and had a learning rate of 0.0001. 

4.2. Effect of APCW Size on Network Performance 
The proposed APCW was generated by partitioning 𝐿  to a certain distance 

based on the AP location. During this process, if the distance being partitioned was shorter 
than the propagation distance of the AP, the RGN’s radio-map generation accuracy de-
creased. However, if the distance being partitioned was longer than the propagation dis-
tance of the AP, the RGN’s radio-map generation accuracy increased, because there was 
sufficient information provided. However, this resulted in increased time spent during 
RGN training. 

In turn, the RGN’s radio-map generation accuracies according to APCW sizes were 
compared to derive the optimal partitioning distance. APCWs of different sizes were first 
generated at the same AP location. Subsequently, the generated APCWs were used as 
input to the RGN to compare the training times for each APCW size. Figure 10 illustrates 
the training times required per RGN epoch. The results were obtained by increasing the 
APCW size from 9 × 9 m  to 69 × 69 m . In the figure, the X-axis represents the size of 
the APCW, and the Y-axis represents the associated training time per epoch. The sizes of 

Figure 9. Experimental setup.

4.1. Experimental Setup

In this study, to verify the validity of the proposed APCW-based RGN, we trained and
validated the network using RSSI data collected in a real environment. For data collection,
RSSI was measured on the 3rd and 4th floors of the Korea Maritime University’s Mieum
Campus (84× 32 m2). Figure 9 illustrate structures of the experimental space for each floor,
including AP and Wi-Fi receiver installations. The RP consists of 222 APs total. There were
112 on the 3rd floor and 110 in the 4th floor with a measuring interval of about 3 m.

To build a sufficient dataset, the diversity of training data was increased by arranging
APs for each RP and collecting RSSIs using the same AP (N3-i ipTIME N102-E) and
Wi-Fi receiver (LG V20 smartphones) for signal uniformity. Because the CGAN used
in the proposed network can include latent variables during the learning process, the
RSSI measurement results can be used as training data. However, the RSSI average of
all measurements per location was used to minimize uncontrolled and uncertain noise
caused by extensive collection. Furthermore, the purpose of this study was to generate a
radio-map of a similar area not measured through learning. Therefore, if a dataset includes
various structural building characteristics, it will be possible to generate a radio-map for a
space having structural similarity.

A desktop computer was used for verification of the proposed method and was
equipped with Intel® Core™ CPU i5-9400F, 32-GB memory, Geforce RTX 2070, 500-GB
solid-state drives, and 2-TB hard disk drives. All proposed network learning was fixed at
1000 epochs to sufficiently converge and had a learning rate of 0.0001.

4.2. Effect of APCW Size on Network Performance

The proposed APCW was generated by partitioning Lone−hot to a certain distance
based on the AP location. During this process, if the distance being partitioned was
shorter than the propagation distance of the AP, the RGN’s radio-map generation accuracy
decreased. However, if the distance being partitioned was longer than the propagation
distance of the AP, the RGN’s radio-map generation accuracy increased, because there was
sufficient information provided. However, this resulted in increased time spent during
RGN training.

In turn, the RGN’s radio-map generation accuracies according to APCW sizes were
compared to derive the optimal partitioning distance. APCWs of different sizes were first
generated at the same AP location. Subsequently, the generated APCWs were used as
input to the RGN to compare the training times for each APCW size. Figure 10 illustrates
the training times required per RGN epoch. The results were obtained by increasing the
APCW size from 9× 9 m2 to 69× 69 m2. In the figure, the X-axis represents the size of the
APCW, and the Y-axis represents the associated training time per epoch. The sizes of the
APCWs used as input of the RGN were configured as multiples of 3 m, because each cell
of the radio-map generated from the RGN expressed an RSSI of 3× 3 m2. Hence, the size
of APCW was set to (1 + 2n)3 m× (1 + 2n)3 m. As shown in Figure 10, the training time
of the RGN increased in proportion to the square of the APCW size. The training time
increased significantly with the size of the collected database. Although both the RGN’s
training time and the computational complexity decreased with smaller APCW size, the



Sensors 2021, 21, 6107 14 of 26

radio-map generation accuracy also decreased. Thus, it was necessary to consider both
the RGN training time and radio-map generation accuracy when selecting the optimal
APCW size.
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In this study, the RMSE values were calculated using the predicted radio-maps gen-
erated from the RGN after using different sizes of APCW and real radio-maps. Then, the
RGN’s radio-map generation accuracy was compared according to the size of the APCW.
Figure 11 illustrates the distribution of RMSE values in comparison with the predicted and
real radio-maps obtained by increasing the APCW size from 9× 9 m2 to 69× 69 m2. In the
figure, the X-axis represents the APCW size, and the Y-axis represents the RMSE value. To
statistically analyze the RGN radio-map generation accuracy, the Y-axis includes RMSE
values of the predicted and real radio-maps calculated based on the AP locations. In the
boxplot, a larger box representing the interquartile range (IQR) indicates a lower stability
of radio-maps generated by the RGN due to the higher distribution of the RMSE. As the
APCW size increased from 9× 9 m2 to 33× 33 m2, the median RMSE value decreased;
additionally, the change in the latter was insignificant when the APCW size was larger than
33× 33 m2. A smaller RMSE value indicates that the predicted radio-map generated by the
RGN resembled the real radio-map more closely. An area of 33× 33 m2 was considered
optimal because the median was the smallest among other APCW sizes. However, because
the IQR and maximum RMSE were low, an area of 39× 39 m2 was the most stable RMSE.
Additionally, during fingerprinting, the positioning accuracy decreased as the difference
between the RSSI distribution collected in real time and the RSSI distribution stored in the
radio-map increased. Changes in the RSSI distribution around the AP significantly reduced
the positioning accuracy. Therefore, although the lowest median RMSE was obtained when
the APCW size was 33× 33 m2, 39× 39 m2 was designated as the optimal APCW size
when considering the IQR and maximum RMSE.
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4.3. Generation Accuracy and Analysis

The proposed APCW was generated considering the obstacle types and materials
of the indoor space and by removing the radio-shadow areas. Hence, the RGN using
the proposed APCW generated accurate radio-maps. Four models using different labels
as input were used to analyze the RGN’s radio-map generation accuracy according to
the APCW.

Table 5 summarizes the descriptions, layer (activation function) types, and input and
output sizes of the four models designed for the experiment. Model 1 is a basic RGN
designed to compare its radio-map generation accuracy to that of the proposed APCW-
based RGN, and it uses a label that reflects only the presence of obstacles as input, such
as in [27,30]. Model 2 is an RGN model that uses a label reflecting only the material
of obstacles as input. Model 3 uses a label based on the AP location while reflecting
the presence of obstacles. Model 4 is the proposed APCW-based RGN that uses labels
generated based on the AP location while reflecting the obstacle materials.

In the table, z denotes the latent variable; X denotes the size of the building along the X-
axis; Y denotes the size of the building along the Y-axis; W2 denotes the size of APCW; and
in denotes the number of indices. The generator was designed to receive a latent variable
and a 1× 1 m2 label while generating a 3× 3 m2 predicted radio-map. Additionally, the
discriminator receives the predicted radio-map generated by the generator alongside the
label to determine whether the received predicted radio-map is identical to the real one.
Because the input and output sizes of the generator and discriminator comprising each
model were determined based on the size of the label, the input and output shapes of
Table 4 are as follows. The label size of X×Y used as the input to Models 1 and 2 was set
as 82× 32 m2 in accordance with the shape and size of the building. Furthermore, the label
size of W ×W used as the input of Models 3 and 4 was set as 39× 39 m2, which provides
the optimal RGN radio-map generation accuracy according to the experiment results from
Section 4.2. Meanwhile, the vanishing gradient problem can still be experienced because
the generator and discriminator of each model comprise three layers each. To address this
problem, ReLU was used as the activation function [42].
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Table 5. Network Definition and Architecture.

Model Description Network Layer Input Size Output Size

1 Floor plan without considering
the material of the obstacle

Generator FC(ReLU) z + X×Y X×Y÷ 9
Discriminator FC(ReLU) X×Y÷ 9 + X×Y 1

2 Floor plan considering the
material of the obstacle

Generator FC(ReLU) z + (X×Y)× in X×Y÷ 9
Discriminator FC(ReLU) X×Y÷ 9 + (X×Y)× in 1

3 APCW without considering the
material of the obstacle

Generator FC(ReLU) z + W2 W2 ÷ 9
Discriminator FC(ReLU) W2 + W2 ÷ 9 1

4 APCW considering the material
of the obstacle

Generator FC(ReLU) z + W2 × in W2 ÷ 9
Discriminator FC(ReLU) W2 ÷ 9 + W2 × in 1

The Table 6 shows the network sizes of generators and discriminators according to
each model. the size of the model changes according to the input structure of each model.
When comparing Models 2 and 4, the size of the models shows a significant difference of
about three times. When generating a radio-map, as the distance from the AP is increased,
the distribution of the RSSI signal needs to be learned even in a space where the signal-to-
noise ratio increases, so the radio-map generation accuracy can be reduced. In addition,
floor plan-based RGN predicts not only the location that can receive the signal from the
installed AP, but also the location where it will not receive the signal, so unnecessary
computation is increased. On the other hand, since APCW-based RGN divides the radio-
map prediction space into constant windows centering on the AP, it is possible to reduce
the amount of unnecessary computation in the radio-map.

Table 6. The Sizes of The RGN Models 1 to 4.

Model Network Layer Size

1
Generator

FC(ReLU)
28,712,051

Discriminator 79,138

2
Generator

FC(ReLU)
97,565,811

Discriminator 79,138

3
Generator

FC(ReLU)
9,819,745

Discriminator 38,307

4
Generator

FC(ReLU)
32,954,155

Discriminator 38,307

Figure 12 illustrates each model’s radio-maps generated by predicting the signals
emitted from one AP. Figure 12a displays region maps to compare the generation accuracy
of each model. In Figure 12a, red cells indicate the AP location; white cells indicate free
space; and black cells indicate inaccessible space. Images in Figure 12b–e display the
radio-map generation results obtained by Models 1, 2, 3, and 4. Models 1 and 2 generated
27× 81 m2 sized radio-maps using a label that converted an entire building map into
data, whereas Models 3 and 4 generated 39× 39 m2 sized radio-maps. Hence, the size of
the region-map used to compare the radio-map generation accuracy of each model was
configured to 39× 39 m2, as with the output size of Models 3 and 4.

When comparing the results obtained by Models 1 and 2 and Models 3 and 4, it can
be seen that the radio-map generation accuracy significantly increased when the obstacle
materials were considered. This indicates that Models 2 and 4 learned that the degree of
RSSI signal reduction from the AP differed according to the materials of obstacles (e.g., steel
frame and concrete). In turn, the models predicted accurate radio-maps. Furthermore, as
shown from the results of Model 4, which reflects both obstacle material and AP location,
a high accuracy of radio-map generation was obtained at the center area adjacent to the
AP. Accurate prediction of the radio-map of the area adjacent to the AP is important when
maintaining the stable positioning accuracy of fingerprinting. As such, the advantages
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of Model 4 can be maximized, because it enables accurate prediction of the radio-map of
the area adjacent to the AP. Images of Figure 12 represent radio-maps generated for one
AP location point, and the accuracy can vary depending on the AP location. Therefore, to
quantitively evaluate the radio-map generation accuracy of each model, radio-maps were
generated for 110 different AP install locations, and RMSE values were derived.
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Table 7 displays the average, maximum, and minimum RMSE values obtained. As
shown from the results of Models 1 and 3, the average RMSE value improved from 28.84 to
14.98 dBm when the label reflecting the AP location was used. Generally, a Wi-Fi signal has
a standard deviation of ~0–5 dBm [45]. Accordingly, the radio-maps generated by Model 3
cannot be applied to fingerprinting, because the positioning accuracy is lower, owing to
outliers. Thus, Model 3, which considers only the AP location, is unsuitable. Therefore, the
radio-map generated by Model 3 considering only the location of the AP showed higher
performance than did Model 1, because it learned the pattern of radio waves radiated to the
AP location. When comparing the results of Models 1 and 2, the average RMSE significantly
improved from 28.84 to 5.48 dBm when the label reflecting only the obstacle material was
used. Thus, it can be inferred that the accuracy of RGN’s radio-map generation can be
significantly improved, even when considering only the obstacle materials.

Table 7. Accuracy of Radio-map Generation for Each Model.

Network
RMSE (dBm)

Average Max Min

Model 1 28.84 37.84 22.71
Model 2 5.48 7.06 4.1
Model 3 14.98 24.4 6.35
Model 4 4.01 6.43 2.26

Lastly, when comparing the results of Models 2 and 4, the accuracy of the RGN radio-
map generation improved from 5.48 to 4.01 dBm when both the obstacle material and AP
location were considered. As described in Table 5, Model 1 and Model 2 use the entire
floor plan without dividing the window through APCW. The reason for this is that the
loss function is learned not only in the close range of the AP, but also in the range that is
difficult to predict, so the radio-map generation performance is comparatively lower than
that of Models 3 and 4. Therefore, performance is improved by limiting the range away
from the AP through APCW. Accordingly, highest radio-map generation accuracy was
obtained when the proposed APCW was used as input to the RGN, and the average RMSE
value was ~4 dBm, showing stable performance. As a result, Model 4 is the optimal RGN.

The radio-map generation accuracy was enhanced when the label reflected both
obstacle material and AP location rather than only the material. The weight vectors
constituting the input layers of Models 1 to 4 were compared to analyze the factors affecting
radio-map generation accuracy. Figure 13 displays the weight vectors constituting the
input layers of Models 1 to 4. In Figure 13a,b, X and Y axes represent X and Y coordinates
of the weights constituting the weight vectors of Model 1 and 2. Here, the size and
shape of the label were configured to be same as the size of the building. Additionally,
in Figure 13c,d, X and Y axes represent X and Y coordinates of the weights constituting
the weight vectors of Model 3 and 4. Here, the size and shape of the APCW were set
as 39× 39 m2 (i.e., the size yielding the most stable radio-map generation accuracy of
RGN based on the experiment results from earlier section). When data were entered
into a typical network, each component constituting the data and the weight vector of
the input layer were multiplied. Then, all multiplied values were added and sent to the
subsequent layer. Thus, the weights for each location in the weight vector indicate the ratio
of components used at the corresponding location in the input data to derive output results
for the network.

As shown in the results of Model 1 and 2 in Figure 13a,b, the weight vectors were
learned using the shape of the building as input, and the weights had similar values
regardless of location, except for inaccessible spaces. Based on this, Model 1 and 2 used
each component constituting the label similarly regardless of the distance between the
component and the AP location when generating a radio-map. The signal strength emitted
from the AP decreased as the distance from the AP increased, owing to path loss. This
results in a radio-shadow area. However, Model 1 and 2, which show similar weights
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regardless of location, do not reflect a radio-shadow area. Thus, they cannot generate an
accurate radio-map.

On the other hand, as shown in the results of Model 3 and 4 in Figure 13c,d, the
weight vectors had the highest values at the center, which gradually decreased as the
distance increased from the center. For signals, propagation phenomena (e.g., reflection
and diffraction) occurred with obstacles, including walls, and the radio-map distribution
changed, owing to the propagation phenomenon becoming smaller as the signal strength
decreased. Accordingly, the radio-map distribution change became smaller with the
increase of the distance between the AP and the obstacle.

Although the experimental environment does not resemble a perfect propagation
pattern, because it used an indoor environment with various obstacles, Model 4 can more
accurately learn these propagation characteristics than Model 3. Therefore, Model 4,
which uses an APCW-based RGN to reflect both radio-shadow areas and propagation
characteristics, enables the generation of accurate radio-maps.
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To analyze whether the RGN that learned the indoor structural patterns generated
accurate radio-maps, an experiment was conducted to compare the RGN accuracy per AP
location. Figure 14 displays radio-map generation accuracies obtained from different AP
locations on the 3rd and 4th floors using the RGN trained with data collected from the
4th floor. In Figure 14a,c, RMSE values between the predicted radio-map generated by
the RGN when the AP were located at arbitrary X and Y coordinates in L, and the real
radio-map of the corresponding AP location was displayed. Here, X and Y axes represent
the coordinates of the AP location. Each cell shows the result of the RMSE of real vs.
predicted RSSI in RPs according to the location of the AP, and the darker the color of each
cell, the lower the error of predicted RSSI at the coordinates of the AP location.

Figure 14b,d each show histograms of Figure 14a,c, respectively. A histogram expresses
the size of components comprising the data and the frequency distribution of such sizes.
Because there was difficulty checking results of individual cases, owing to the substantial
number of APs and RPs in the experiments, histograms were used to statistically analyze
the results. A smaller RMSE value indicates a higher radio-map generation accuracy.
Thus, having a higher distribution on the left side of the RMSE histogram indicates higher
radio-map generation accuracy. In the histogram, the X-axis represents the RMSE value
between the predicted and real radio-maps, whereas the Y-axis represents the frequency
of the values. As shown in the results of Figure 14a,b, the RGN generated an accurate
radio-map regardless of the AP location on the 4th floor. This indicates that the RGN
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generated the radio-map after learning the structural patterns of the APCWs, which change
per AP location and the radio-map distributions of the corresponding structures. For the
results of Figure 14c,d, the RGN’s radio-map generation accuracy decreased on the 3rd
floor compared with 4th floor when the AP was positioned at the center. This can be
attributed to the structural difference at the center and the lower-left parts of the floors.
Extant methods were limited to specific buildings used for training, but the proposed
APCW-based RGN enables radio-map generation without measuring Wi-Fi signals, even
when applied to new buildings. Thus, radio-maps were generated that learn all 3rd and
4th floor structures. Figure 15 displays the radio-map generation accuracy for the 3rd
and 4th floors obtained using the RGN trained with data collected from 3rd and 4th floor
dataset. where X and Y axes in the images of Figure 15a–d were the same as in the images
of Figure 14a–d. As shown in Figure 15c,d, the RGN trained using data from both floors
generated a more accurate radio-map compared with the RGN trained with data of only
the 4th floor. This indicates that the APCW-based RGN learned patterns of new structures
and generated a good radio-map.

We compared the localization accuracy using the radio-map generated by the proposed
RGN and that measured by the walking survey. We used a radio-map constructed by
randomly arranging APs to compare the localization accuracy according to the number of
APs. The number of APs used was divided into 8, 12, 16, and 20 parts in consideration of
the building environment.
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Figure 15. Generation accuracy of predicted (a,b) 4th and (c,d) 3rd floor radio-map using the RGN
trained with 3rd and 4th floor dataset.

We divided the region map into sectors according to the number of APs to enable
localization of all RPs. Figure 16 shows the sectors placed divided according to the number
of APs in the region map of the localization experiment environment. We randomly
selected one AP for each sector to compare and analyze localization performance. As for
the experimental RSSI data, the RSSI data measured 200 times for each AP in RP were
randomly sampled and converted to 250 for each RP, and the total number used in the
experiment was 27,500.

Figure 17 shows the result of localization errors based on the radio-map constructed
using the walking survey and the RGN in the cumulative distribution function (CDF)
graph. There was a difference in performance according to the number of APs. As the
number of installed APs increased from 8 to 20, the localization error decreased from 2.13
to 1.23 m in the walking survey and from 4.79 to 3.34 m in the proposed RGN. In the CDF
graph, it can be seen that the walking survey using eight APs and the RGN performance
using 20 APs were slightly different.
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Figure 17. Comparison of CDF positioning errors between the proposed RGN and walking survey
for varying numbers of installed AP.

Figure 18 shows the error distribution of real and predicted locations using walking
survey and proposed RGN-based localization. The x-axis and y-axis represent the error
location of each axis, and the z-axis represents the frequency according to the error of each
predicted location. In this experiment, localization was performed 27,500 times using the
experimental data randomly sampled 250 times among the RSSI data measured 200 times
per AP at 110 locations in the environment shown in Figure 15d. The distribution of
localization errors based on the walking survey shows that the maximum frequency was
2550 at the point where the y-axis was 3 m apart, which is biased compared with other
points. The distribution of the proposed RGN-based localization errors was the maximum
frequency of 1967, which showed a balanced form according to the direction. The two
approaches had significant differences in localization performance, but the radio-map
generated using the proposed RGN only required information on the floor plan, and the
radio-map constructed using the walking survey required RSSI of each AP collected with
200 repetitions per RP. In other words, by implicitly inferring radio-map using the proposed
RGN, there was an advantage of reducing collection times and workloads.
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5. Conclusions

In this study, we proposed an APCW-based RGN to reduce the time and cost required
to generate radio-maps and to enable the utilization of existing databases for fingerprinting.
Conventional approaches required a person to collect RSSI or construct a radio-map using
methods such as SLAM using a mobile robot. On the other hand, an APCW-based RGN
can minimize labor and time because it can generate a radio-map without direct RSSI
collection process through a human or mobile robot when there is data on the floor plan
and radio-map of various structures. APCWs contained information needed for generating
a radio-map, because they were created by converting obstacles present in the indoor space
into data according to their materials and by partitioning them based on the AP location.
The proposed RGN enabled significant reductions in the cost required to collect Wi-Fi
signals of multiple buildings by generating radio-maps using an extant database. As a
result of conducting radio-map generation experiments using an APCW-based RGN, an
accuracy of 4.01 dBm was obtained when the size of the APCW was set to 39× 39 m2.
This indicates that the proposed APCW-based RGN accurately generated a good radio-
map, because the standard deviation of typical Wi-Fi signals fell within 5 dBm [45]. As
a result of analyzing the weight vectors of the network trained using APCW, it was
confirmed that the RGN successfully learned the propagation characteristics required for
the accurate prediction of radio-maps. From these experiments, it was revealed that the
RGN learned the configuration changes according to the indoor structural patterns and
generated appropriate radio-maps. Since the experiment was performed by constructing a
radio-map dataset in one building, the performance of the proposed APCW-based RGN
when applied to other similar buildings is unknown. However, in the future, radio-maps
are expected to be built on a floor plan composed of various structures because current
technologies focus on research on how to collect RSSI data. In other words, by utilizing
the sufficient training dataset of the previously constructed floor plan and radio-map, a
radio-map can be generated without a direct RSSI collection process through a person or
a mobile robot in a space constructed with a similar obstacle structure. Therefore, it is
expected that the cost of generating radio-maps for fingerprint recognition technology in
all buildings will be significantly reduced.
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