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Abstract: Matching local feature points is an important but crucial step for various optical image
processing applications, such as image registration, image mosaicking, and structure-from-motion
(SfM). Three significant issues associated with this subject have been the focus for years, including
the robustness of the image features detected, the number of matches obtained, and the efficiency
of the data processing. This paper proposes a systematic algorithm that incorporates the synthetic-
colored enhanced accelerated binary robust invariant scalar keypoints (SC-EABRISK) method and
the affine transformation with bounding box (ATBB) procedure to address these three issues. The
SC-EABRISK approach selects the most representative feature points from an image and rearranges
their descriptors by adding color information for more precise image matching. The ATBB procedure,
meanwhile, is an outreach that implements geometric mapping to retrieve more matches from the
feature points ignored during SC-EABRISK processing. The experimental results obtained using
benchmark imagery datasets, close-range photos (CRPs), and aerial and satellite images indicate
that the developed algorithm can perform up to 20 times faster than the previous EABRISK method,
achieve thousands of matches, and improve the matching precision by more than 90%. Consequently,
SC-EABRISK with the ATBB algorithm can address image matching efficiently and precisely.

Keywords: image matching; BRISK; color space; geometric mapping

1. Introduction

Digital image matching is a technique that searches for homologous feature points, also
named matches or correspondences, between two or more images. The generation of spatial
products and the wide variety of environmental applications using remote sensing images
require such a technique to achieve their goals. For example, image registration [1–4], object
detection and change detection [5], three-dimensional (3D) reconstruction [6,7], mapping
tasks [8], and structure-from-motion (SfM) algorithms [9,10] all require a digital image
matching stage. Unlike earlier handcrafted operation, advances in technology now allow
semi- or fully automatic digital image matching by incorporating computer vision methods,
saving both time and labor costs. In addition, several photogrammetric techniques, such as
bundle adjustment and image connection, can be carried out more effectively.

Classic automatic image matching techniques can be classified into three categories:
area-based matching techniques (ABMs), feature-based matching techniques (FBMs),
and hybrid methods [11]. ABMs, also known as template matching, use a window template
as a feature point with pixel intensities to compute the feature similarities or resemblances.
The typical procedure defines a window template in a master image and moves it across a
target image to search for the most similar correspondence. Well-known examples of ABMs
include normalize cross-correlation coefficient (NCC), zero-mean NCC [12], least-squares
matching (LSM, [13]), and mutual information [14]. Although ABMs can achieve high posi-
tional accuracy, e.g., 1/50 pixels according to [15], they may suffer from image occlusions,
uniform textures, image distortions, and illumination changes [11]. FBMs extract image fea-
ture points of interest, also known as keypoints (e.g., points, lines, and areas), and compute
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their similarities in different images by using feature descriptors [16,17]. Scale invariant
feature transform (SIFT) [18] may be the most representative algorithm in the FBM family.
Most FBMs can achieve scale- and rotation-invariant feature descriptors that increase the
distinctiveness and robustness among different keypoints; thus, the image matching results
can be more precise than those of ABMs [11,19]. However, Sedaghat et al. [11] indicated
that FBMs are less accurate than ABMs, and eliminating mismatches/outliers is usually
required. Finally, hybrid methods can address the individual limitations of the above two
families by combining ABMs and FBMs; otherwise, adding ancillary data such as wavelet
information for image matching is also feasible [20]. However, hybrid methods usually
require prior knowledge before data processing, so they are not utilized frequently.

More recently, deep learning (DL)-based approaches developed in the field of artificial
intelligence (AI) have had great impacts on image matching [21–29]. The development
of deep features—pre-trained convolutional neural network (CNN) features—is one of
the breakthroughs in this study field. However, Refs. [30,31] found that pre-trained CNN
features perform similarly or even worse than FBMs. Long et al. [32] tested the capabilities
of deep features for semantic alignment and compared the results derived from SIFT and
pre-trained CNN features. They concluded that pre-trained CNN features only perform
slightly better than the SIFT algorithm. Ufer and Ommer [33] further incorporated a
semantic matching algorithm with an object guiding technique into pre-trained CNN
features, improving the capacity for deep feature matching. However, pre-trained CNN
features mainly concentrate on the salient objects with bounding boxes to constrain the
specific regions for matching [23,24,33,34].

Although DL-based methods can achieve very precise results, their requirements,
i.e., a large amount of training data and an extensive period for data training, are critical
concerns. For example, prior knowledge, such as ground truth and pre-trained CNN
features, must be available to implement data training [33,35–37]. DL-based methods
cannot perform with the lack of such supporting data or when the number of required
datasets is inadequate. Revaud et al. [38] proposed the DeepMatching (DM) algorithm
and compared its performance with the SIFT method. In terms of memory usage, they
reported that the DM algorithm consumed approximately 100 times more than the SIFT
method when utilizing the MPI-Sintel dataset and the KITTI dataset (9.9 GB versus 0.2 GB).
As for the matching time, the DM algorithm spent 8.1 min, while the SIFT method required
only 1.4 s when using the Mikolajczky dataset. After investigating the performance among
classical approaches and the LF-Net with SuperPoint models [23,24], Bojanić et al. [39]
concluded that their DL-based model indeed does not significantly improve the image
matching results compared to classic approaches. Bhowmik et al. [40] also indicated that the
high precision is caused by matching low-level features rather than improving the image
matching performance itself. In addition, the applicability of the prediction map generated
by a specific training dataset is limited to the related imagery data only, and their high
computational complexity also inhibits the practical application of DL-based methods [41].
Indeed, classic image matching approaches are still favorable in terms of their universality
and practicality [42,43], particularly FBMs.

Image matching exploiting FBMs, also known as local feature matching, undergoes
three steps: feature detection, feature description, and feature matching [44]. The feature
character using FBMs can be further divided into two types: vector-based features and
binary-based features. Matching vector-based features utilizes Euclidean distance and a
ratio test to determine the resemblance between two keypoints [18]. In addition to SIFT,
several variations, such as principal component analysis SIFT (PCA-SIFT) [45], gradient
location-orientation histogram (GLOH) [46], speed up robust features (SURF) [47], affine
SIFT (ASIFT) [48], uniform robust SIFT (UR-SIFT) [11], and adaptive-binning SIFT (AB-
SIFT) [44], are also included in the family of vector-based features. These methods either
enhance the feature distinctiveness or reduce the dimensions of the feature descriptors to
improve the performance of SIFT-like image matching. On the other hand, binary-based
features employ the Hamming distance [49], an XOR operation, to evaluate the similarity
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between two keypoints. Approaches in this category include binary robust independent el-
ementary features (BRIEF) [50], orientation FAST and rotated BRIEF (ORB) [51], and binary
robust invariant scalable keypoints (BRISK) [52]. As the ORB technique lacks the trait of
scale invariance [53], the BRISK technique can be considered the most powerful method in
the family of binary-based features because it is scale- and rotation-invariant. Based on
this technique, Liu et al. [54] fused the depth information into the BRISK feature descriptor
to enhance the scale invariance using a specific camera for capturing depth information
with optical images simultaneously, leading to the BRISK-D algorithm. One of the most
significant advantages of this approach is that it can perform image matching properly
under illumination changes. However, they observed that the precision of the image
matching results decreases when the image has a large-scale change, and the algorithm
may be unstable when using blur images. Additional modifications, such as the accelerated
BRISK (ABRISK) [4] and enhanced ABRISK (EABRISK) [55] algorithms, further improve
the performance of image matching using BRISK in terms of the data processing time and
the number of matches.

Tsai and Lin [4] compared the capacities among the SIFT, SURF, and ABRISK algo-
rithms, discovering that the ABRISK method can perform 312 times and 202 times faster
than the SIFT and SURF methods, respectively, when using the image size of 4000 × 4000.
They concluded that vector-based features provide more robust results, but they consume
more time for data processing; on the contrary, binary-based features take less time for
image matching, and the outcomes are acceptable. Their results also indicated that the
number of matches becomes sparser, implying the inability to obtain redundant correspon-
dences for more rigorous geometric computation when performing spatial tasks such as
image registration and SfM. Similarly, Kamel et al. [53] compared the results by utilizing
hybrid features with the airport dataset and found that ORB-BRISK requires 0.238 s for
37 matches and SURF-SFIT consumes 3.518 s for 161 matches, respectively. Shao et al. [56]
also utilized a hybrid method by integrating SIFT and ASIFT to improve the accuracy
of the image matching results for land monitoring. Cheng and Matsuoka [55] further
improved the ABRISK by incorporating the human retina mechanism and showed that the
EABRISK reduces the data processing time by approximately 10%. In addition, EABRISK
can achieve approximately 1.732 times more matches than ABRISK when applying drone
image pairs.They also explored the performances of the AB-SIFT and EABRISK methods,
showing that these two algorithms almost have a comparable data processing time and
number of matches obtained. For several practical cases, EABRISK can provide better
image matching results than AB-SIFT.

Currently, most image matching algorithms convert an optical image into a grayscale
image and utilize pixel intensities to match different images; color information, namely the
red, green, and blue frequency bands, is not involved. A few methods, such as the colored
SIFT (CSIFT) [57] and colored BRISK (CBRISK) [58] techniques, use a spectrum model to
normalize color spaces to generate color-invariant images and thus avoid the influences of
different illumination conditions caused by radiometric changes. However, both techniques
may alter the true electromagnetic information stored in the original imagery data, thus
leading to some mismatches with unknown causes. Alitappeh et al. [59] indicated that
such color-invariant techniques are only suitable for specific cases. The color-based retina
keypoints (CREAK) method [60], based on the fast retina keypoint (FREAK) technique [61],
performs feature detection and assesses descriptor changes in the red, green, and blue
(R-G-B) color spaces. These three color spaces have distinct impacts on feature detection
and descriptor formation and therefore should be treated separately in image matching.

For stereomatching that has two images only, the DL-based approaches may not be
suitable to address the issue because the ground truth is not known and the number of
training datasets is not sufficient. In most past studies, FBMs are crucial in solving this
issue. To further improve the performance of stereomatching, this paper develops an
integrated approach with two steps to achieve substantial precise matches and balance the
image matching efficiency. The first step exploits the EABRISK method as the fundamental
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by considering its data processing efficiency and the matching result obtained. Different
from the EABRISK method using the grayscale image, this research further adds color
information into the feature descriptors to increase the distinctiveness and robustness for
image matching. Instead of applying the spectrum model to normalize color spaces, this
study utilizes R-G-B images and simulates the human retina mechanism to achieve the
purpose. The second phase aims to increase the number of matches for stereomatching by
geometric mapping since FBMs can usually yield sparse results. By this means, the feature
point detected has an opportunity to find its correspondence to increase the number of
matches. The rest of this paper is organized as follows. Section 2 describes the proposed
methodology in this research. Section 3 demonstrates and analyzes the experimental results
by using imagery datasets with different conditions. Section 4 discusses the abilities and
the limitations of the proposed method. Section 5 draws the conclusions and proposes
future works so that further improvements can be made.

2. Materials and Methods

Building on BRISK-based methods, this paper proposes an integrated remote sensing
image matching algorithm to achieve as many feature correspondences as possible while
balancing the data processing time via a two-step process. Figure 1 presents the complete
workflow of the proposed methods. The purpose of the first step is to select the most
representative keypoints in an image and add color information into the feature descriptors
to increase their robustness for more precise image matching. The second step is an
extension whose goal is to retrieve more feasible correspondences from the keypoints
skipped in the first step. Based on the proposed schema, this research intends to balance
the time consumed for image matching and the number of matches that can be obtained.
Google Colab was used in this research to process the imagery data without using the
graphical processing unit (default setting).

Figure 1. The proposed two-step workflow for image matching.
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2.1. Enhanced Accelerated BRISK Algorithm

The EABRISK algorithm developed by Cheng and Matsuoka [55] was intended to
improve the efficiency of the BRISK technique in image matching and retrieve more feature
correspondences from keypoints of high similarity. This method includes two parts: the
inverse sorting ring (ISR) and the interactive two-side matching (ITSM) approaches.

The ISR approach simulates the function of the human retina [62] and the mechanism
of visual accommodation [63] to increase the efficiency of image matching. Different
from the sorting ring (SR) pattern shown in Figure 2a [4], the ISR pattern exhibited in
Figure 2b [55] redistributes the 64-byte feature descriptors into groups of 7, 19, 19, and
19 bytes from the outermost to the innermost ring, based on the distribution of ganglion
cells across the human retina [64,65]. For image matching, the mechanism of visual
accommodation shown in Figure 2c is applied to the ISR pattern, where feature similarities
are evaluated progressively from the outermost ring to the innermost ring by the Hamming
distance. The goal of this ring-by-ring process is to find and eliminate unlikely matches in
the early stages so that the feature similarities for inner rings do not need to be computed.
According to ABRISK [4], the thresholds determining the feature similarities in terms of the
Hamming distance are set to 18, 35, 40, and 45 from the outermost ring to the innermost
ring, and a threshold of 80 is used as the last step to evaluate the entire similarity of two
feature points. As a result, the ISR approach can perform image matching more efficiently
by rearranging the 64-byte feature descriptors based on the operation of the human eye.

(a) (b)

(c)

Figure 2. Separating 64-byte BRISK feature descriptors into four rings using grayscale image: (a) the
sorting ring pattern, (b) the inverse sorting ring pattern, and (c) scene changes from blurred to clear.
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As feature points of very high similarity cause ambiguities in determining the most
likely match, the ITSM strategy attempts to address these ambiguities to achieve more
matches by selecting the most likely match based on the minimal Hamming distance within
a group of possible matches of very high similarity. For the case of stereomatching, the most
likely match is further determined by the use of forward and backward processes and
cross-checking for its consistency, thus reducing the ambiguities. Consequently, the ITSM
strategy can retrieve the missing matches from those of very high similarity and increase
the number of feature correspondences. Through the interoperability of ISR and ITSM,
the EABRISK algorithm can address image matching effectively [55].

2.2. Synthetic-Colored Feature Descriptors

Converting an optical image into a single grayscale channel is the most widely adopted
approach for performing image matching, but the R-G-B color information is neutralized.
According to [60], however, a feature point in a grayscale image may behave differently in
the R-G-B channel spaces in terms of the properties extracted in the feature detection stage
that computes scale and orientation invariances. This finding also implies that the feature
descriptors of the feature points acquired from different color channels can be different.
Color information, hence, can be considered useful for supporting the grayscale image for
increasing the distinctiveness and robustness of the feature point.

As presented in Figure 3, it is apparent that the BRISKs detected in the separated
color channels are different, and some feature points that emerge in one channel may
not be available in the other channels. Instead of using all detected feature points for
image matching, this paper aims to select the most representative keypoints that appear
in all four channels based on their highest repeatability. However, due to the effects of
feature detection and computation at the subpixel level, it may not be possible to obtain
completely identical feature points in the four channels. To solve this issue, this study
utilizes a nearest-neighbor strategy based on position to determine the most representative
keypoints. Figure 4a illustrates the procedure of determining a desirable feature point
in all four channels, where the nearest-neighbor strategy handles the inconsistencies in
terms of subpixel-level positions. As shown in the figure, the method proposed in this
paper associates the four feature points that emerge in all four channels and combines them
as a single feature point; consequently, a group of the most representative keypoints can
be generated.

In terms of the nearest-neighbor strategy, this study gathers four feature points from
the four channels based on their image coordinates in which their row and column count are
identical. This strategy simplifies the image coordinates to integers to acquire the maximum
number of SC keypoints; otherwise, subpixel-level coordinates with complex decimals may
reduce the number of SC keypoints. For example, four sets of image coordinates—(213.8,
500.4), (213.6, 500.2), (213.6, 500.1), (213.9, 500.3)—available in the four channels can be
gathered as an SC keypoint when simplifying their image coordinates to integers.

After determining the most representative keypoints, the proposed method further
reforms the feature descriptors by adding the color information. Since each individual
most representative keypoint is composed of four channels, four sets of 64-byte feature
descriptors are available. According to Hendrickson [66], cells in the human retina are
arrayed in discrete layers that can be simplified into four orders—rods, red cones, green
cones, and blue cones—which can be considered to correspond to the four image color
channels: grayscale, red, green, and blue. Because the ISR pattern involves four concentric
circles, which also contains four rings in which the feature descriptors are arranged,
the proposed method assumes that each ring is responsible for the information of an
individual color channel.
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Figure 3. Detecting BRISKs in grayscale and R-G-B channels and finding common keypoints in the
four images (image accessed from https://www.robots.ox.ac.uk/~vgg/data/affine/, accessed on
23 January 2021).

(a) (b)

(c)

Figure 4. Synthesizing colored feature descriptors for the most representative keypoints. (a) Detecting
the most representative keypoints, (b) extracting color descriptors, and (c) inserting synthetic-colored
feature descriptors into the ISR pattern with R-G-B color information.

Since the EABRISK algorithm evaluates feature similarities from the outermost ring
to the innermost ring as a way to imitate human visual accommodation, the outermost

https://www.robots.ox.ac.uk/~vgg/data/affine/
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ring should contain a mixture of information that has the least visual impact. As shown in
Figure 4b, the last seven feature descriptors derived from the grayscale image are placed
into the outermost ring, which is similar to the rods within the human retina. Following
the retina cell order described above, the ring just within the outermost ring is responsible
for red cones, and thus, the 19 feature descriptors belonging to this ring are derived
from the red channel. This process is continued until the four rings are filled with the
required descriptors corresponding to their color channels. However, it should be noted
that the positions of the 7, 19, 19, and 19 feature descriptors to be extracted from the
four color channels should be consistent with their corresponding positions in the new
ring. Consequently, the 64-byte feature descriptors of each individual most representative
keypoint are synthesized with their color information, and thus synthetic-colored keypoints
(SC keypoints), as shown in Figure 4c, are produced for EABRISK image matching (SC-
EABRISK). Figures 2 and 4c show comparisons of the distributions of feature descriptors
and their compositions among the ABRISK, EABRISK, and SC-EABRISK methods.

2.3. Geometric Mapping for Additional Matches

One of the disadvantages of matching local feature points is that the number of
matches may not be as large as expected. This can occur due to either: (1) the recognition
and extraction of only certain feature points (e.g., corners) by the future detection algorithm
or (2) the lack of identical keypoints between the two images. Although many image
processing algorithms require only a portion of matches to address the demands of the
system, more matches are often needed to improve the precision or reliability of the
outcomes. For example, in affine image registration, at least three matches are required
to solve for six parameters mathematically. With the inclusion of extra matches, the least
squares method helps to improve the precision of the six parameters. The consideration
of the spatial distribution of the matches within the images is also important because
matches that form weak geometric networks may produce unstable solutions. For instance,
if only three matches are used for affine image registration, they must not be collinear;
otherwise, the six affine parameters cannot be determined. With more matches available,
there is a higher probability of achieving a better geometric network. Such a concern is also
pertinent to the eight-point [67] and five-point [68] algorithms used for the SfM problem
and relative orientation parameter (EOP) estimation in photogrammetry. For practical uses
and applications, therefore, obtaining additional matches is an important requirement for
ensuring more reliable results.

As the SC-EABRISK algorithm selects the most representative keypoints to perform
image matching, it is apparent that the number of matches obtained must be reduced.
To compensate for this detriment, the proposed method further exploits geometric mapping
to retrieve feasible matches from the keypoints that are not used during the SC-EABRISK
image matching stage. An important reason for addressing geometric mapping is to
avoid spending extra data processing time to maintain the efficiency of the entire process.
For a given stereo pair involving a master image and a target image after SC-EABRISK
processing, the results—the seed matches—are utilized as control points (CPs) to determine
the geometric relationship between the two images. The proposed method in this study
uses affine transformation according to Equation (1) as the geometric mapping function,
conditioned upon guaranteeing that at least three matches can be derived from the SC-
EABRISK processing to solve the six affine parameters (a, b, c, d, e, f ), as described in
Figure 5a. When there are more than three CPs, the least-squares method is used to compute
more precise affine parameters.

x′ = ax + by + c

y′ = dx + ey + f
(1)
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(a) (b)

(c)

Figure 5. Affine transformation and bounding box processing for retrieving a high number of feature
correspondences: (a) solving the affine parameters by seed matching, (b) geometrically mapping the
keypoints, and (c) filtering matches outside the images.

When mapping unused keypoints, the proposed method incorporates all keypoints
emerging from the four channels in both the master and target images to obtain the greatest
number of correspondences possible. As shown in Figure 5b, the geometric mapping
function obtained by using the six affine parameters therefore maps from the master
image to the target image, and vice versa. This process provides each unused keypoint
the opportunity to find its correspondence; however, it is important to note that this
implementation may cause some feature points to be mapped outside the image. To address
this issue, the proposed method utilizes a bounding box based on the dimensions of the
image (rows and columns) as the boundaries to filter any invalid feature points mapped,
as demonstrated in Figure 5c. As a result, every keypoint detected can find their most
likely correspondences by the affine transformation and bounding box (ATBB) procedure,
thus extensively increasing the number of matches when carrying out stereomatching.

2.4. Outlier Removal and Evaluation Indicators

Detecting and removing mismatches (outliers) is typically the last step for most FBMs,
after which correct matches (inliers) can be obtained and preserved. Instead of manual
outlier removal, automatic algorithms based on sample consensus are usually applied to
determine the greatest number of correct matches (NCMs).

Random sample consensus (RANSAC), proposed by Fischler and Bolle [69], may be
the most prevalent method due to its simple but useful assumptions. RANSAC randomly
selects four matches from all available data to estimate the spatial relationship between two
images, e.g., homography or affine transformation. The spatial relationship is thereafter
considered a fitting model, and the remaining matches are assessed to test the capacity of
the fitting model by using linear regression and a prespecified threshold. Through iterative
testing of several fitting models, RANSAC finally provides the best result that achieves
the greatest NCMs under the given threshold. M-estimator sample consensus (MSAC)
is a method similar to RANSAC but is dependent on the threshold itself rather than the
greatest NCMs that can be obtained [70,71].

Locally optimized RANSAC (LO-RANSAC) is an extension that further optimizes
the current best fitting model iteratively to recognize additionally probable outliers from
the RANSAC result [72], allowing an optimal fitting model to thus be determined for
all matches. Although the NCMs obtained may be reduced, LO-RANSAC increases the
quality of the results while maintaining comparable efficiency to RANSAC in terms of data
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processing. Similar to RANSAC, this algorithm also needs a given threshold to discriminate
inliers and outliers.

In addition to the above methods, advanced approaches known as universal sample
consensus (USAC) approaches are demonstrating impressive effectiveness in solving this
task [73]. Graph-Cut RANSAC (GC-RANSAC), devised by Barath and Matas [74], is a local
optimization method utilizing energy minimization and spatial coherence to divide inliers
and outliers; specifically, it globally refines the so-far-the-best fitting model so that the final
outcomes are stable and precise. Similar to RANSAC and LO-RANSAC, GC-RANSAC
also requires a threshold to separate inliers and outliers. In contrast, marginalizing sample
consensus (MAGSAC) is an entirely threshold-free algorithm based on σ-consensus [75]; it
progressively marginalizes outliers and attempts to determine the greatest NCMs. To pre-
vent the given threshold from influencing the final results, the proposed method in this
study utilizes the MAGSAC algorithm to remove outliers; in Figure 2, outlier removal is
performed twice to determine the CPs for the ATBB method and to further improve the
precision of the final output.

The performance of the proposed SC-EABRISK with the ATBB method is assessed via
four indicators: the NCMs obtained, matching precision (MP), recall, and effectiveness.
In many image matching studies, the NCM, derived from outlier removal, is a straightfor-
ward indicator for evaluating the algorithm. MP, defined by Equation (2), is the ratio of the
NCMs over the number of total matches [44,46,76,77]. The recall, explained by Equation (3),
describes the ability of the image matching algorithm in identifying the NCMs out of all
possible matches (APMs) in the original imagery data, where the APMs are determined by
the ground truth and homography [46,78,79]. Due to the lack of such prior knowledge, this
study instead selects the APMs by the smallest number of keypoints detected in either one
of the images. Because FBMs only allow one-to-one feature correspondence, it is apparent
that the smallest number of keypoints detected dominates the APMs. Therefore, it should
be noted that the definitions of MP and recall used to assess the performance of the image
matching algorithms are different from those used in the confusion matrix adopted by AI
studies. The last indicator of effectiveness, shown in Equation (4), evaluates the efficiency
of the algorithm, and is calculated by the NCMs over the time consumed (TC) [55].

MP =
NCMs

NCMs + outliers
× 100% (2)

Recall =
NCMs
APMs

× 100% (3)

E f f ectiveness =
NCMs

TC
(4)

3. Experimental Results and Analysis

The experimental results present and analyze the performance and generalizability of
the proposed algorithm by using three kinds of imagery datasets. The first dataset contains
eight benchmark images (four pairs) accessed from the INRIA Rhone-Alpes research center
to test the preliminary ability of the proposed method. The second dataset involves close-
range photos (CRPs) that frequently address remote sensing issues such as 3D modeling.
The third dataset presents aerial and satellite image pairs that aim for remote sensing tasks
such as large-scale environmental monitoring. Although the image dimensions are a factor
that affects the result of the image matching, this paper instead focuses on the number
of features extracted and synthesized for image matching and analysis. In addition, this
research also compares the image matching results with two relevant approaches building
on ORB—learned arrangements of three patch codes (LATCH) [80] and boosted efficient
binary local image descriptor (BEBLID) [81]—to further investigate the performance of the
proposed method. These two approaches attempt to improve the binary feature descriptors
to make them more distinctive. The LATCH method compares the intensity of three-pixel
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patches surrounding a given ORB keypoint to reproduce the binary descriptors, and the
BEBLID approach harnesses Adaboost to modify the binary descriptors of ORB keypoints.

3.1. Experiments and Analyses on Benchmark Imagery Datasets

Four image pairs were randomly selected from the six benchmark datasets involving
48 images. Figure 6 presents the results of the image matching from the five methods:
EABRISK, SC-EABRISK, SC-EABRISK with ATBB, BEBLID, and LATCH. Each image
pair shows different characteristics as follows: dataset 1 has different image resolutions,
dataset 2 has varied illumination conditions (radiometric changes), dataset 3 contains
image distortions, and dataset 4 demonstrates uniform textures. All the outcomes are
presented following outlier removal by the MAGSAC approach. Compared with the
EABRISK method, the SC-EABRISK approach reduces the NCMs because of the number of
SC keypoints utilized, implying that the the post-processing of ATBB is needed. By using
the NCMs derived from SC-EABRISK as CPs, the ATBB procedure helps to retrieve more
feasible feature correspondences. In addition, the quantity and spatial distribution of the
CPs address the six affine parameters, proving the assumption that the more matches
there are, the higher their probability of being evenly distributed across the image. These
results also indicate that the SC-EABRISK with ATBB method can acquire more feature
correspondences compared to the BEBLID and LATCH methods, showing that the features
extracted from the four channels can contribute additional feature matches.

Table 1 shows the number of features detected and extracted from the grayscale and
R-G-B images and the number of feature pairs (FPs) used in the the data processing step.
In this experiment, both the BEBLID and LATCH approaches utilize grayscale images to
perform feature matching. In addition, Table 2 presents the TC by using the five algorithms.
Different from the SC-EABRISK approach, the EABRISK method utilizes mainly pairs of
grayscale images to carry out image matching. As the BEBLID and LATCH methods mainly
focus on improving the distinctiveness of the feature descriptors instead of the matching
algorithm, their TCs are not included for comparison. Based on these results, it is evident
that the number of SC keypoints is significantly reduced for all image pairs, resulting in a
substantial suppression of the execution time. Based on these results, the proposed method
can perform image matching more efficiently because the TC is significantly reduced.
In this experiment, the TC for the SC-EABRISK approach is less than that of the EABRISK
method by approximately eightfold at maximum (i.e., dataset 3).

To assess the performance of the proposed method, this paper compares the results
derived from the EABRIAK, SC-EABRIAK with ATBB, BEBLID, and LATCH algorithms
separately and investigates their differences in terms of NCMs, MP, recall, and effectiveness.
Figure 7 presents the numerical analysis of the image matching results. Figure 7a shows
that both the BEBLID and LATCH methods present better recall and efficiency values than
the SC-EABRISK with the ATBB method, but the proposed schema can acquire more feature
correspondences in this case. For the remaining results, this study investigates that the
proposed SC-EABRISK with ATBB method shows better performance as the imagery scenes
become more complex. In addition, the recall values obtained by using the SC-EABRISK
with ATBB method may not be very high (e.g., 100%) because some of the matches are
filtered either by the bounding box or via outlier removal. Therefore, the recall values in
these experiments range from 50% to 60%, meaning that half of the keypoints within an
image pair can be matched to their correspondences successfully. The high recall values
presented by the BEBLID and LATCH approaches in all image pairs show their ability to
improve the feature descriptors. Based on these experiments, this study also observes that
both the BEBLID and LATCH approaches have approximately comparable performance
for image matching.
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(a) Dataset 1 (b) Dataset 2

(c) Dataset 3 (d) Dataset 4

Figure 6. Matching images by using four benchmark imagery datasets demonstrating different
variations with five algorithms (from top to bottom: EABRISK, SC-EABRISK, SC-EABRISK with
ATBB, BEBLID, LATCH).

Table 1. Number of keypoints detected and feature pairs (FPs) of each benchmark image pair in the four color spaces.

Color Space Grayscale Red Green Blue SC Keypoints

Image pair
Dataset 1

master target master target master target master target master target

Keypoints 1651 1568 1654 1576 1653 1577 1635 1564 1396 1407

FPs 2588768 - 1964172
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Table 1. Cont.

Color Space Grayscale Red Green Blue SC Keypoints

Image pair
Dataset 2

master target master target master target master target master target

Keypoints 625 427 613 413 651 439 741 547 241 196

FPs 266875 - 47236

Image pair
Dataset 3

master target master target master target master target master target

Keypoints 1062 878 1034 804 1120 958 1013 913 363 311

FPs 932436 - 112893

Image pair
Dataset 4

master target master target master target master target master target

Keypoints 1644 753 1426 597 1819 926 2142 935 731 290

FPs 1237932 - 211990

Table 2. Comparisons of the TC (seconds) by using the benchmark imagery datasets with different al-
gorithms.

Algorithm EABRISK SC-EABRISK SC-EABRISK with ATBB

Dataset 1 33.709 24.651 25.686
Dataset 2 4.180 0.637 1.398
Dataset 3 8.417 1.007 1.916
Dataset 4 10.686 1.773 2.362

(a) Dataset 1 (b) Dataset 2

(c) Dataset 3 (d) Dataset 4

Figure 7. Numerical analyses of the image matching results by using the benchmark imagery datasets.
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3.2. Experiments and Analyses on CRPs

Since CRPs are the most widely used imagery dataset for performing SfM-based 3D
reconstruction, applying the proposed algorithm to CRPs is also important. Although there
is no clear definition of CRPs, this paper classifies them as ground-based and drone images
because the distances between the scene object and the camera in these images are much
shorter than in aerial and satellite imagery. The first case presents a pair of drone images
capturing buildings devastated by the Kumamoto earthquake in Japan in 2016. A surveying
team from Chiba University collected disaster images a few days after the earthquake to
reconstruct the site on a computer for spatial and environmental analyses. The second
example includes two ground-based CRPs accessed from images courtesy of Carl Olsson
for a standard SfM problem. In both cases, local feature matching plays an essential role in
establishing the spatial relationships among images, namely the estimation of ROPs.

Table 3 documents the number of keypoints extracted from the grayscale and R-G-B
images and the number of SC keypoints, and Table 4 shows the TC by using the three
algorithms. Similar to the results obtained with the benchmark imagery datasets, these
tables show that the SC-EABRISK algorithm can reduce the data processing time by up to
approximately tenfold, while the ATBB uses two seconds to geometrically map unused
keypoints and find their correspondences. Therefore, image matching with the proposed
method is more efficient than the previous EABRISK algorithm in terms of effectiveness.
In addition, Figure 8 shows the image matching results after outlier removal with the
five approaches. Similar to the previous experiments, the number of NCMs obtained
with the SC-EABRISK method decreases, after which the ATBB implementation helps to
increase it. Moreover, both the BEBLID and LATCH methods present comparable image
matching results in terms of ORB detected, implying their similar performances. However,
the proposed SC-EABRISK with ATBB algorithm can obtain more NCMs evenly distributed
in the images.

Table 3. Number of keypoints detected and feature pairs (FPs) of each benchmark image pair in the four color spaces
for CRPs.

Color Space Grayscale Red Green Blue SC Keypoints

Image pair
Drone image

master target master target master target master target master target

Keypoints 2688 2270 2692 2509 2713 2327 2429 1997 1253 992

FPs 6101760 - 1242976

Image pair
Ground-based CRPs

master target master target master target master target master target

Keypoints 1712 2399 1999 2695 1621 2332 2200 2857 633 851

FPs 4107088 - 538683

Table 4. Comparisons of the TC (seconds) by using CRPs with different image matching algorithms.

Algorithm EABRISK SC-EABRISK SC-EABRISK with ATBB

Drone image pair 94.177 14.561 16.595
Ground-based CRP pair 44.54 4.677 6.834
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(a) Drone image pair (b) Ground-based CRP pair

Figure 8. Image matching by using CRPs (from top to bottom: EABRISK, SC-EABRISK, SC-EABRISK
with ATBB, BEBLID, LATCH).

Figure 9 presents the numerical analyses of the four indicators to evaluate the per-
formance of the proposed algorithm. Based on the results, the SC-EABRISK with ATBB
method shows better performance than the EABRISK, BEBLID, and LATCH approaches in
terms of the NCMs, MPs, and efficiency. Similarly, the BEBLID and LATCH methods show
similar capabilities for image matching when using the CRP dataset. In these two imagery
datasets, however, the recall values of all four methods become lower than the benchmark
datasets. Because the CRPs are captured from different positions with different viewing
angles, the correspondences of some keypoints are not available. In addition, the impact of
uniform textures may lead to mismatches when the viewing position and angle between
the two CRPs are different. However, the proposed SC-EABRISK with the ATBB method
can still achieve thousands of matches in both CRP pairs and improve the efficiency values.

(a) Drone image pair (b) Ground-based CRP pair

Figure 9. Numerical analyses of the image matching results obtained with CRPs.

3.3. Experiments and Analyses on Aerial and Satellite Images

In addition to the above experiments and analyses, this paper also applied the pro-
posed method to a pair of orthoaerial images with 80% overlap to examine its performance
in the case of image registration, because such a task requires feature correspondences
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for CPs to estimate the spatial relationship between the two images. A pair of IKONOS
satellite images with different illumination conditions were also utilized to examine the
performance of the developed method.

Table 5 shows the number of keypoints detected in the grayscale and R-G-B images
and the number of SC keypoints produced with both imagery datasets. It can be observed
that the number of SC keypoints decreases substantially for the orthoaerial images, while
for the satellite images, approximately 60% of the keypoints are preserved with respect
to the original data. Table 6 records the data processing time of the three algorithms
for two datasets, showing that, for the orthoaerial images, the SC-EABRISK algorithm
reduces the data processing time by approximately 37 times with respect to the EABRISK
method. However, it is also evident that the NCMs also decreased drastically due to the
reduction in the number of SC keypoints. In contrast, the satellite images do not result in
such dramatic outcomes because the number of SC keypoints is moderately maintained,
so the SC-EABRISK algorithm reduces the processing time by approximately 2.7 times.
The implementation of the ATBB method for both cases requires approximately 1 to 2 s to
process the unused keypoints to find their correspondences. Considering the entire data
processing time, the SC-EABRISK integrated with the ATBB algorithm is up to 20 times
faster than the previous EABRISK approach.

Figure 10 visualizes the image matching results for the imagery datasets used. Similar
to the previous results, the number of NCMs is apparently reduced with SC-EABRISK,
but the implementation of the ATBB then increases it. According to the results in
Figures 6b and 10b, the illumination change between two images may influence the NCMs
derived from the SC-EABRISK; therefore, the ATBB process can effectively compensate for
this disadvantage. In addition, the results derived from the BEBLID and LATCH methods
are similar for both image pairs. This study also observes that the distribution of the
matches of the satellite image is more uneven than that of the aerial image pair. Because the
grassland in the middle of the satellite image pair presents minor texture variations, feature
points may be drastically reduced in this area.

Table 5. Number of keypoints detected and feature pairs (FPs) of each benchmark image pair in the four color spaces using
aerial and satellite images.

Color Space Grayscale Red Green Blue SC Keypoints

Image pair
Aerial image

master target master target master target master target master target

Keypoints 3361 2105 3594 2279 4013 2489 1591 1100 609 383

FPs 7074905 - 233247

Image pair
Satellite image

master target master target master target master target master target

Keypoints 2821 1093 2754 1094 2910 1102 2756 1097 1745 698

FPs 3083353 - 1218010

Table 6. Comparisons of the TC (seconds) by using aerial and satellite image pairs with different al-
gorithms.

Algorithm EABRISK SC-EABRISK SC-EABRISK with ATBB

Aerial image pair 89.743 2.38 4.982
Satellite image pair 31.78 11.647 12.903
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(a) Aerial image pair (b) Satellite image pair

Figure 10. Image matching with using aerial and satellite image pairs (from top to bottom: EABRISK,
SC-EABRISK, SC-EABRISK with ATBB, BEBLID, LATCH).

Figure 11 describes the quantitative analyses of the experimental results. Similar to the
previous results, both the BEBLID and LATCH methods present comparable performances
in terms of all indicators. For both image pairs, the proposed SC-EABRISK with ATBB
algorithm shows approximately fourfold to fivefold more NCMs compared to the BEBLID
and LATCH approaches because of the involvement of all keypoints detected in the
color channels. When performing orthoimage registration, the proposed SC-EABRISK
with ATBB approach can not only provide redundant CPs to conduct the least-squares
calculation but also stabilize and improve the precision of the transformation parameters.
In terms of effectiveness, the proposed SC-EABRISK with ATBB algorithm presents better
performance than both the BEBLID and LATCH methods. This observation is consistent
with the results derived from the benchmark datasets and CRPs, proving the high efficiency
of the proposed method.

(a) Aerial image pair (b) Satellite image pair

Figure 11. Numerical analyses of the image matching results by using aerial and satellite image pairs.

4. Discussion

Automatic remote sensing optical image matching is fundamental and crucial for
many spatial applications. In addition to the reliability and robustness of the local features
themselves, the efficiency of the data processing step has gained more attention in recent
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years [4]. This paper aimed to develop a systematic workflow that is able to adopt a
portion of the most robust keypoints and a subsequent geometric mapping to generate the
greatest number of feature correspondences. Different from previously advanced studies
that used only grayscale images for feature detection and descriptor formation [4,44], this
study aimed to also synthesize color information extracted from R-G-B images into the
feature descriptors acquired from the grayscale image to improve their robustness by
utilizing BRISKs.

However, the displacements of possibly identical keypoints caused by subpixel-level
BRISK detection and extraction in the four images prevent direct color synthesis. To achieve
this objective, the proposed method groups four points with very close pixel coordinates
emerging in the grayscale and R-G-B images as the most representative keypoints. There-
after, color synthesis for the feature descriptors is addressed by these four group points
from four color images. Compared with color-invariant methods [57,58], the proposed
method generates SC keypoints that can preserve the true color information in the image
without deteriorating the spectral information. Therefore, the SC descriptors of the most
representative keypoints are expected to be more distinctive than those obtained via the
grayscale image alone. The arrangement of the SC descriptors is then modified by the ISR
pattern, the cell sensitivity, and the distribution of color information across the human
retina. Based on this mechanism, image matching can be carried out more efficiently by
eliminating unlikely matches as early as possible. Figure 12 shows a linear fitting curve
between the TC and the FPs obtained by the eight experimental examples (16 datasets
analyzed with the EABRISK and SC-EABRISK operations) to estimate the processing
time required when supplying different numbers of FPs. Although the estimation may
be biased due to differences in the computer environments, the curve is approximated
as TC = 0.000136 × FPs − 2.569 in this study, allowing prediction of the processing time
needed when applying the proposed method to different imagery data.

Figure 12. FPs versus TCs curve fitting.

There are two significant limitations to the proposed method. First, the number of SC
keypoints may be very low in some specific cases, e.g., Figure 7b,c, caused by the discrete
keypoints found in the four color images. It should be noted that too few SC keypoints
may lead to both unsuccessful image matching due to a lack of feature correspondences
and failure of the geometric mapping using affine transformation for achieving more
feature correspondences. Therefore, further examination of the number of SC keypoints
and their distribution across the image is recommended to ensure successful outcomes.
The second limitation is related to the radiometric variation within the two images; for
instance, Figures 7b and 11b show that the result derived from SC-EABRISK weakens when
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the radiometric condition changes. In terms of this issue, Tsai and Lin [4] illustrated that the
use of grayscale images is not influenced by the limitation of radiometric condition changes,
and Ye et al. [82] also used such images to build structure features for multimodal image
matching by the use of grayscale images. Based on the previous achievements, this paper
suggests using the LATCH, ABRISK, EABRISK, feature structures, or BEBLID algorithm
when the two images have drastic radiometric differences. Therefore, the developed SC-
EABRISK with the ATBB method may be ineffective in coping with images of low temporal
resolution (e.g., spanning month and year) due to unpredictable changes in the illumination
conditions of the same region.

5. Conclusions

This paper proposes an integrated approach for improving the efficiency and per-
formance of image matching based on BRISKs. In addition to using grayscale images,
the proposed method adds color information extracted from R-G-B images to enhance the
distinctiveness and robustness of the feature descriptors and improve the precision of the
image matching. To suitably utilize the color information, the proposed method selects the
keypoints that emerge in the four color spaces simultaneously and uses them as the most
representative keypoints. For each of these representative keypoints, the 64-byte feature
descriptors are rearranged following the mechanism underlying the human retina in terms
of cell distribution and color recognition, and each keypoint in its corresponding color
space contributes a portion of descriptors to form the SC feature descriptors. Every group
containing four keypoints derived from the four color images is synthesized as an individ-
ual keypoint; thereafter, the EABRISK algorithm, which imitates visual accommodation,
is applied to the SC feature descriptors for image matching, and thus, the SC-EABRISK
algorithm aims to match the most representative keypoints and their more robust SC
feature descriptors. The subsequent ATBB procedure further utilizes the results derived
from the SC-EABRISK phase to extensively geometrically map the unused keypoints to
find their likely correspondences. Both forward and backward geometric mapping thus
involve all keypoints in the master and target images and the ATBB procedure allows the
acquisition of a greater number of NCMs simply and effectively without additional TC.

The experimental results using benchmark imagery datasets, CRPs, and aerial and
satellite images ensure the generalizability and practicability of the developed SC-EABRISK
with ATBB method because the images were captured by different platforms and cameras.
In terms of performance evaluation, this paper employed four indicators, the NCMs, MP,
recall, and effectiveness, to assess the proposed method. Since the most representative key-
points are selected, the SC-EABRISK algorithm has a reduced number of NCMs and recall
values, but the increased MPs and effectiveness values imply that image matching can be
performed more precisely and efficiently. Following ATBB processing, the four indicators
are significantly improved, indicating that most of the detected keypoints and their corre-
spondences are found successfully. Therefore, all experimental outcomes indicate that the
proposed method balances the NCMs and the TC, a profound issue when addressing image
matching by previously proposed FBMs. Although the proposed method still presents
some limitations, it is expected to improve the capacities of FBMs, leading to better spatial
products and applications, such as image registration, SfM, and 3D reconstruction. For
future works, the proposed SC-EABRISK algorithm may be extended to multispectral and
hyperspectral satellite image matching by involving additional bands to make the feature
descriptors more robust and distinctive. In addition, the image matching results may serve
as training data for DL-based approaches to match additional images in the future.
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