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Abstract: Biometrics has been shown to be an effective solution for the identity recognition problem,
and iris recognition, as well as face recognition, are accurate biometric modalities, among others.
The higher resolution inside the crucial region reveals details of the physiological characteristics
which provides discriminative information to achieve extremely high recognition rate. Due to the
growing needs for the IoT device in various applications, the image sensor is gradually integrated
in the IoT device to decrease the cost, and low-cost image sensors may be preferable than high-cost
ones. However, low-cost image sensors may not satisfy the minimum requirement of the resolution,
which definitely leads to the decrease of the recognition accuracy. Therefore, how to maintain high
accuracy for biometric systems without using expensive high-cost image sensors in mobile sensing
networks becomes an interesting and important issue. In this paper, we proposed MA-SRGAN, a
single image super-resolution (SISR) algorithm, based on the mask-attention mechanism used in
Generative Adversarial Network (GAN). We modified the latest state-of-the-art (nESRGAN+) in
the GAN-based SR model by adding an extra part of a discriminator with an additional loss term
to force the GAN to pay more attention within the region of interest (ROI). The experiments were
performed on the CASIA-Thousand-v4 dataset and the Celeb Attribute dataset. The experimental
results show that the proposed method successfully learns the details of features inside the crucial
region by enhancing the recognition accuracies after image super-resolution (SR).

Keywords: super-resolution; attention mechanism; Generative Adversarial Network; biometric
authentication; biometric identification; mobile sensing network

1. Introduction

Biometrics has been widely used in the various recognition tasks for many of the
essential services, such as large-scale identity management, fugitive hunting, and immigra-
tion checkup [1–3]. For those applications, how to maintain the high quality of the input
image is crucial, which heavily depends on several of the optical factors, such as the focal
length, field of view, depth of focus, and the combination of them. On the sensor side,
higher resolution is desirable for most Internet of Things (IoT) applications. Additional
hardware or more expensive sensors are the common solutions for such requirements,
which leads to higher cost. It also may encounter the physical limitations of the device. For
example, increasing the density of the pixel in a unit area is not always possible if the size
of the sensor chip has to be small and the high density of sensors also causes a decrease
of the number of photons that can be sensed per unit area, leading to low intensity of the
captured image.

One of the most dynamic and exciting developments in information and commu-
nications technology is the advent of the IoT. Some recognition tasks may be deployed
on the IoT device to decrease the cost and increase the capability of concurrency at the
same time [4]. However, it is hard to preserve the high-resolution (HR) image on such
low-cost devices due to the limitation of the hardware and the storage space or bandwidth
of sensing networks. For biometrics-oriented IoT devices, this is not good news since there
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is a standard requirement of spatial sampling ratio in both of the iris image and the face
image which were proposed by the ISO/IEC 29794-6 [5] and the ISO/IEC 19794-5 [6], as
shown in Table 1. So, the IoT devices may not satisfy the minimum requirements of these
standards for biometrics. Therefore, it is desirable if the resolution of the captured biometric
image can be enhanced using computer vision techniques. Such technique is called SR
and it has been developed over decades [7]. According to the mentioned framework, the
advantage of applying the SR technique to biometrics recognition is that the recognition
accuracy will be preserved with the low-resolution input image. In such a way, we can
achieve the high recognition rate with the low-cost IoT device.

Table 1. Comparison of spatial sample ratio based on ISO standard.

Iris Image Face Image

Standard ISO/IEC
29794-6

ISO/IEC
19794-5

Spatial Sample Ratio 15.7 pixels/millimeter 120
pixels/inter-eye

The SR technique can be classified into two categories: spatial domain SR and fre-
quency domain SR. The methods in the spatial domain SR can be further divided into two
sub-classes: single-image SR (SISR) and multi-image SR (MISR). The methods based on
SISR attempt to reconstruct the image back into its HR counterpart with only one given
low-resolution (LR) image. In the image acquisition phase, IoT devices are often limited to
lower resolution, so SISR may be a preferable framework for the IoT applications.

GAN as one of the most famous framework of deep learning method has demonstrated
potential capabilities in many fields [8]. Specifically, the SR technique based on GAN
methods (SR-GANs) achieves outstanding performance for the tasks of computer vision.
The SR-GAN enhance the quality of LR images via the various loss functions, which have
been proposed to improve the image quality from a different perspective. However, most
of the loss functions used in the previous work of GAN may not consider the regions of
interests (ROI) in the LR images. In recent years, several SR methods proposed the attention
mechanism attempt to improve their work. Although some attention-based model certainly
performed better than the previous works on the general metrics, most of the metrics may
not completely reflect the evaluation of human vision perception. Moreover, the generated
SR images, which have a higher score in the metric, makes virtually no difference to the
visual perception compared to the previous works.

However, the attention mechanism may still be useful in the other applications of
SR, because what is pleasing to human visual perception may not necessarily be good
for achieving high accuracy for classification-related tasks. Indeed, there are specific
parts (ROI) for biometric images, like iris region or facial landmarks, which contain very
discriminative information compared to another region in the same picture. The various
ROIs for some biometric applications are shown in Figure 1.

In this work, we propose the mask-based attention approach to force GAN to focus on
the appearance difference of ROI between the super-resolved image and the corresponding
HR image. According to the feedback of discriminator, the generator will be trained to
learn how to recover more detailed information inside ROI while learning structure and
texture information between LR and HR images.
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Figure 1. Various ROIs in biometrics.

To summarize, our main contributions are as follows:

1. We propose MA-SRGAN, which is a GAN-based SR framework using attention
mechanism. It gives attention to user-defined ROI region, which is a novel idea for
SRGAN framework.

2. In the training procedure, we add the attention loss to the state-of-the-art nESRGAN+. In
this way, the generator is forced to pay more attention to ROI. The super-resolved image
will be much more useful for classification-oriented task like biometric recognition.

3. We propose a new perspective for the quantitative evaluation of the effectiveness of
SR, according to the needs of the downstream tasks. In this paper we mainly care
about how to use SR to enhance the input image for biometric recognition in a mobile
sensing network. Therefore, the quantitative evaluation metric of SR we use will
be the domain-specific metric (biometric recognition domain), such as Equal Error
Rate (EER). Furthermore, the more generic metrics, such as Peak Signal-to-Noise
Ratio (PSNR) and Structural Similarity Index (SSIM), will be ignored in the domain-
specific work in order to fairly measure the effectiveness and usefulness of the SR for
downstream tasks.

We obtain a series of comparable results with higher verification rate. On Celeb-
Attribute, it is able to achieve 89.75% Verification Rate (VR) with 5% False Accept Rate
(FAR), and the EER is 6.23%. Moreover, on the CASIA-Thousand-v4, it is able to achieve
92.23% VR with 1% FAR and attains comparable performance with 2.3% EER. Both these
error rates are lower than that of the state-of-the-art GAN-based SR model.

2. Literature Review

The approaches for SISR can be mainly categorized into three kinds: interpolation-
based methods, reconstruction-based methods, and rule-based methods [9]. The deep
learning approach has further surpassed the former methods in recent years. Therefore,
we review deeplearning based approaches in this section.

Dong et al. [10,11] proposed SRCNN as the first work of a deep-learning approach.
It made use of the convolution network to learn the non-linear mapping from LR to HR
in an end-to-end manner, and to achieve superior performance against previous works.
After that, with the various networks that were proposed, the later development of SR also
made the most use of those structures. For example, Kim et al. [12] proposed VDSR which
made use of the residual learning to fit the deeper network. With similar performance,
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DRCN [13] exploited deep recursive networks by combining intermediary results. Inspired
by the Res-Net [14], VDSR, and DRCN, Ying Tai et al. proposed the DRRN [15] to integrate
the previous method into residual units with slight adjustments. Moreover, Tong et al. [16]
proposed the SRDenseNet which made use of the dense connected convolutional networks
with the single skip connection to increase the combination of the features at a different
level. Base on the backbone of the DenseNet [17], the Yulun Zhang et al. [18] further
proposed the RDN, which combined the dense connected convolutional networks with the
residual connections, and exploited the hierarchical features from different convolution
layers and fused them to present on the generated image.

As the pioneer of the GAN-based framework in solving SR, Christian Ledig et al. [19]
proposed SRGAN with the perceptual loss [20,21] as well as the adversarial loss. In
EDSR [22] and MDSR (which was a multiple scale factors version of EDSR), the authors
eliminated the unnecessary part to further achieve the performance of state-of-the-art
SR under the metric of PSNR. In the GAN-based framework, the perceptual loss allows
the generated image more suitable for the human visual system. These images are visu-
ally more convincing despite having a lower score on traditional metrics of quantitative
measures, like PSNR and SSIM.

ESRGAN [23], as its name implies, enhances SRGAN. It introduced a new block
named RRDB in the generator. The RRDB achieved a higher capacity by adding the residual
connection in the main path of Residual Dense Block used in SRGAN. The discriminator
used the relativistic average loss [24] to evaluate “whether one image is more realistic than
the other in the average of expectation”, and vice versa, which forced the discriminator not
only to focus on the fake image but also to learn more information about the real one. In the
part of feature extraction, the extracted features by VGG [25] were taken before activation
rather than after, as in SRGAN. In order to train a deeper network with higher stability, the
several tricks, such as residual learning and BN layer removal, were applied.

Furthermore, Nathanael Carraz Rakotonirina et al. [26] proposed nESRGAN+, which
was the enhancement of ESRGAN, by placing the RRDB into the RRDRB via further adding
the concatenation path in the inner dense block, which will increase the network capacity.
The trick of giving finer details in the high-level aspects meant adding the Gaussian noises
on the main path of the RRDRB structure.

Recently, the attention mechanism was used in the SR and was gradually integrated
into the GAN. Yulun Zhang et al. [27] proposed the RCAN which made use of the residual
backbone with the channel attention mechanism to adaptively rescale channel-wise features
by considering interdependencies among channels. Base on the attention mechanism on
the channels, Tao Dai et al. [28] further proposed the RBAN framework, which consisted of
two types of attention modules in the residual blocks to exploit the vital feature from the
spatial and channel dimensions. On the other hand, Deokyun Kim et al. [29] proposed the
novel facial attention loss to focus on restoring the facial attributes in greater detail, while
the FAN network was also proposed to extract the heatmap value to present the ROI of
facial landmarks.

In the biometric applications, the usefulness of the image may not equal the image
quality evaluated by the human visual system or some metrics based on global image qual-
ity (like PSNR or SSIM). For example, for iris recognition, the details in iris texture region are
much more important than the details in another region in the picture. This factor should
be taken into account when we want to design a novel SR algorithm for biometrics-related
applications. The present work attempts to propose a novel deep learning architecture for
an SR task, specifically useful for biometric recognition in sensing networks.

3. Materials and Methods

The proposed method attempts to enhance the image quality within ROI by the
attention mechanism in the spatial domain. In this section, we first describe the mask
labeling for biometrics to mark the ROI, and then discuss the network structure as well as
the corresponding loss function. Lastly, we describe the proposed attention module as well
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as the novel loss function of the generator. The flowchart of the proposed method is shown
in Figure 2.

Figure 2. The flowchart of the MA-SRGAN.

3.1. Mask Labeling for Biometrics

In order to precisely indicate the ROI in the input image, we designed each mask
according to the corresponding domain knowledge to extract the discriminating features.
For the iris mask, most of the features are located at the region between the iris boundary
and the pupil boundary, and the noise of the image, such as eyelash and reflection points,
will be further excluded from ROI. For the facial mask, we use the facial landmarks as
the center points of the ROI anchor box, and the anchor boxes have a suitable shape in
accordance with the aspect ratio of the corresponding face bounding box. From a practical
view, the simple five-point landmarks, which are the coordinates of eyes, nose, and mouth
corners, will be used as the center points during our experiment. A pictorial example of the
corresponding mask is depicted in Figures 3 and 4, respectively. In our proposed method,
the mask will be a given input to the attention mechanism. In the training phase, we took
the manually labeled mask as the input to guarantee that the ROI is perfectly accurate,
while the labeled masks will also be used during the test phase.

Figure 3. Iris mask labeling for biometrics.
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Figure 4. Face mask labeling for biometrics.

3.2. Attention Mechanism on SR-GAN
3.2.1. SR-GAN Network Architecture

nESRGAN+ is the well-known model in the field of SRGAN, which is composed of
the generative model G and the discriminative model D. As the general framework of
GAN, the G attempts to fool the D via generated SR image from the given LR counterpart,
and the D attempts to perform discrimination based on the subtle difference between the
given (HR, SR) pairs, as illustrated in Figure 5.

Figure 5. The training process of nESRGAN+.

In the framework, G is primarily made up of the basic element RRDRB, which is the
dense block with the residual connection repeated in different levels of the network.

Similarly, D is composed of the VGG-based module and the deep convolution module.
The former classifies the image on the perceptual level, and the latter works toward mini-
mizing PSNR. For more details for the network structure, please refer to Figures 6 and 7.
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Figure 6. The network structure of the generator in nESRGAN+.

Figure 7. The network structure of the discriminator in nESRGAN+.

On the other hand, G and D play the following two-player minimax game with value
function V(G, D) as described in Equation (1).

minGmaxDV(G, D) = Ehr∼PHR_img [log(D(hr))] + Elr∼PLR_img [log(1− D(G(lr)))], (1)

In order to generate more realistic image, the loss function of G further combined
with the perceptual loss, adversarial loss, and pixel-wise L1 loss with the different weights.
Moreover, the corresponding loss function of the novel proposed attention module will
further extend the loss function terms, and the overall loss function of generator is defined
as Equation (2).

LG = Lbe f VGG
percep + λLRa

adv + ηLL1
pixel + γAttenloss (2)

where λ, η, γ are weighting coefficients.

Lbe f VGG
percep = −E hr ∼ PHR_img

lr ∼ PLR_img

‖ ϕi,j(hr) − ϕi,j(G(lr)) ‖2, (3)

LRa
adv = −E

hr ∼ PHR_img
sr ∼ G(lr)

[log(1− DRa(hr, sr))] − E
hr ∼ PHR_img

sr ∼ G(lr)

[log(DRa(sr, hr))], (4)

LL1
pixel = −Elr∼PLR_img

‖ G(lr) − y ‖1, (5)
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In the Equation (3), ϕi,j denotes the VGG-extractor, which extracts the feature from
i-th layer before the j-th activation. In the Equation (4), DRa denotes the relativistic discrim-
inator [15].

3.2.2. Loss Function of Attention Mechanism

Although attention has already been applied to the various issues of computer vi-
sion [20–22], it is barely discussed in the field of SR, since each pixel in the SR image is
equivalently important in the original SR problem. In this paper, we introduce the idea of
attention mechanism in domain-specific SR issue, so that the intentionally recovered detail
will be preferable to the final goal of the desired problem (for example, higher accuracy
in biometric recognition problems). The source to indicate the direction of generating
the SR image is mainly derived from the judgement of the discriminator. So, we place
the attention mechanism on the discriminator, which allows the generator to recover ROI
texture indirectly.

In this paper, we propose the novel component of the discriminator named mask
attention, which is derived from the previous work of nESRGAN+. The mask attention
module takes the prepared boolean mask as input, then focuses on the ROI with simply
executing the element-wise multiplication between the mask. The mentioned attention
module is illustrated as Figure 8, and the corresponding novel loss function of the generator
as Equation (6)

Attenloss = E hr ∼ PHR_img
lr ∼ PLR_img

ROIpart(hr) − ROIpart(lr) (6)

ROIpart(Img) =
W

∑
i=1

H

∑
j=1

∣∣Imgi, j ∗mski,j
∣∣, mski,j ∈ {0, 1} (7)

Figure 8. Attention module and the corresponding loss in the proposed network.

In the Equation (7), the image with high-resolution shape denotes Img and the cor-
responding width and height of the image denote W, H, respectively. Note that the
super-resolution image has exactly same shape as the high-resolution image. Besides, the
binary ROI mask denotes msk, which has the same shape as the high-resolution image.

The benefit of the mask attention is that the discriminator can learn to decide the
important features, and the generator is also forced to learn the correspondence between the
LR and HR counterparts within ROI, which results in images of superior quality, satisfying
both human perception and the requirement of biometric recognition.
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4. Experiments

The proposed MA-SRGAN can be used in the various fields of computer vision tasks,
for example, biometric authentication or medical image enhancement. In this section,
we will take the iris recognition as well as the face recognition as cases for the Proof
of Concept (PoC) to go through the experiment, and demonstrate the effectiveness of
the proposed method. We first describe the process of biometrics and then discuss the
corresponding dataset used in the experiment. After that, we describe the training details
and the experimental procedure. Lastly, the experimental results will be presented.

4.1. Domain Knowledge of Biometrics
4.1.1. Common Procedure of Biometrics

Although most of the biometrics have their independent procedure to pre-process the
input data, there exists a general procedure in terms of biometric template registration and
matching. The whole procedure is illustrated in Figure 9.

Figure 9. Common Phase in biometrics: (a) registration phase; and (b) matching phase.

In the feature registration phase, the users will enroll their biometric trait and the
acquired images will be processed by the recognition system to extract the feature. The
extracted feature will be saved into the template storage.

In the feature matching phase, the biometric traits of the users will be acquired by
the biometric sensor and the acquired image will be processed by the recognition system
to extract the feature. The extracted feature will be compared against all other features
stored in the template storage and a similarity (or distance) value will be computed for
every possible pair. The result of identification or authentication can be determined based
on these similarity values.

Next, we further introduce the feature extraction process for iris recognition and face
recognition and then discuss how to embed the proposed SR method into these processes
to enhance the recognition results.

4.1.2. Iris Recognition Process

According to the framework proposed by Daugman [30–34], the process of iris recog-
nition can be divided into four stages: image acquisition, image preprocessing, feature
extraction, and feature matching.

At first step, the eye image is captured by a Near-infrared (NIR) camera sensor which
is fine-tuned for iris image capturing, since most rich structures of the iris, such as the
cratered surface of the moon, appear in the NIR band. The preprocessing, including iris
segmentation and iris coordinate transformation, is executed so that the iris texture (which
is the ROI for iris recognition purpose) in the original image will be transformed into
the polar coordinate system, resulting in another representation of the iris image in a
rectangular shape. After that, the iris features will be extracted and converted into the
vector of a binary string—these are called iris codes. The feature is compared with the
already stored iris templates. In our experiments, the Harr-wavelet based feature extraction
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method was used for feature extraction of the iris images. Note that such method is able
to extract the feature in various resolution and generating the feature template within
the same dimension, so that the template is able to further perform the cross-resolution
matching.

During the matching phase, the probe iris code is matched against all iris codes in the
enrolled database. This matching is performed by computing the Hamming distance (HD)
between the two iris codes. In our experiments, the threshold value of HD for acceptance
or rejection is selected by considering the best EER. The overall process is depicted in
Figure 10.

Figure 10. The flowchart of iris recognition in our experiment.

4.1.3. Face Recognition Using Deep Learning

For face recognition, the face image is captured by the optical sensor, which can be
either RGB sensor or NIR sensor. The preprocessing including face detection and face
alignment is executed so that the location of face can be detected and the input face can
be properly aligned. After that, depending on which model or classifier is chosen for the
recognition, there exist different ways for feature extraction for face biometrics. In our
experiment, we adopt a deep-learning based model. We applied Dlib library [35] on the
aligned face to extract the feature and encode it into the 128 dimensional vector and the
encoded value will be normalized into the range [0, 1]. The feature extractor in Dlib applied
a very deep residual network as the backbone to extract the face feature as well as to encode
the facial identities. In the matching phase, the probe face code is matched against all the
face templates in the enrolled database by computing the distance between the two face
codes. In this paper, the threshold value of the distance is selected by considering the best
EER. The overall process is depicted in Figure 11.

4.2. Dataset

The dataset we used for the iris recognition and for the face recognition are CASIA-
Thousand-v4 [36] and Large-scale CelebFaces Attributes [37], respectively. The former
dataset is the biggest public iris dataset in the world currently, and the latter one is often
used as the benchmark for face recognition.
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Figure 11. The flowchart of face recognition in our experiment.

The CASIA dataset contains a total of 20,000 images with 2000 classes, and each class
contains 10 eye images with resolution 640 × 480. We created the iris mask manually for
every image in this dataset. On the other hand, the CelebA dataset contains 202,599 images
with 10,177 classes originally. However, each class contains various numbers of images.
Due to the number of images contained in each class being unbalanced, we preprocess the
dataset so that each class contains 20 images with resolution 160 × 200 and the resulting
number of classes used for experiments is 6000. Besides, the data augmentation is per-
formed on both iris images and face images through random horizontal flips. The above
information is shown in Table 2.

Table 2. Dataset Specification.

CASIA CelebA

Number of class 2000 6000
Number of images in each class 10 20

Image resolution
(h × w) 640 × 480 160 × 200

4.3. Training Details and Parameters

The LR images are obtained by the bicubic down-sampling with a scaling factor of
four from the HR images. The size of the mini-batch for iris generation is 4 due to the
memory limitation, and the size of the mini-batch for face generation is 16. The following
setting for the training uses the same specification for both iris and face generation.

Since the proposed MA-SRGAN is based on the backbone of nESRGAN+, the most of
the parameters are still unchanged to achieve the optimized setting. At first, we also make
use of the PSNR-oriented pre-trained model to initialize the generator. The values of λ
and η are set to be the value described in the original nESRGAN+ paper [26] (λ = 5 × 10−3,
η = 1 × 10−2), and the value of γ is set the same as η. The learning rate is set to 1× 10−4, and
the model is optimized using Adam with β1 = 0.5 and β2 = 0.999 with training 10,000 epochs.
The trained model is the one with the three-blocks generator. The implementation is done
with Keras based on the TensorFlow backend, and trained with four NVIDIA GeForce
GTX-1080 GPUs.

4.4. Experimental Design

The dataset used in the experiment is split into the training and the evaluation set
and the evaluation set is further divided into the probe set and the gallery set. In the
training phase, half of the classes will be used to train the model, and the sample will be
randomly picked without duplicate in the dataset. In the evaluation phase, we attempt



Sensors 2021, 21, 5973 12 of 19

to simulate the practical situation of biometric recognition, where the system (in most
cases) registers the higher quality images during the enrollment process. So, the gallery set
contains the high-resolution image as the ground truth, while the probe set contains either
the low-resolution (LR) image or the super-resolved (SR) images generated from the LR
images.

At first, we will compute the recognition performance with the probe images with the
high resolution, which is the original resolution of the image as the Section 4.2 described,
and with the low resolution, which is down-sampled to 1/4 from the high resolution. For
SR performance comparison, we will compare the proposed MA-SRGAN with some recent
deep-learning based methods. Figure 12 illustrates the entire procedure of the experiment.

Figure 12. The procedure for SR-enhanced biometric recognition, as described in Section 4.4.

4.5. Experimental Result

For SR performance evaluation in this paper, instead of using the traditional metrics,
such as PSNR or SSIM, we measured the SR performance by evaluating how much the
performance of the downstream task can be enhanced. The traditional metric like PSNR
or SSIM measure the similarity between the HR and SR image globally, which means it
treats the pixels inside and outside ROI with equal weight. However, in the proposed
method, the model is forced to learn the correspondence between HR and SR images
inside ROI, and such mechanism is particularly useful for specific downstream tasks,
like biometric recognition. Therefore, in order to fairly measure the performance of the
proposed method, we evaluate the SR performance by looking at how much improvement
it brings to the biometric recognition accuracy. Typically, the biometric recognition accuracy
can be compared using ROC curve, EER, Fisher ratio between the authentic and imposter
distribution, and verification rate given a predefined FAR. Therefore, we will use these
metrics to compare the SR performance between the proposed method and other baseline
methods. The following section will describe the effect of the proposed SR method for the
biometrics in terms of the iris recognition as well as the face recognition.

4.5.1. Downstream Task: Iris Recognition

For iris recognition experiments, we observe that the proposed MA-SRGAN performs
better than the most of super resolution methods in terms of EER as illustrated in Figure 13.
In the further comparison between MA-SRGAN and nESRGAN+, which is the latest
state-of-the-art (SOTA) of SRGAN, our proposed method has better performance than
nESRGAN+ in the situation of low FAR, and achieves the lower EER with 2.3%, as described
in the Figure 14 and Table 3, respectively. The ground truth (HR) images achieve an EER
of 2.072%.
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Figure 13. The comparison of the ROC curves of iris recognition based on input images enhanced by the various SR models
using CASIA dataset.

Figure 14. The comparison of ROC curves between nESRGAN+ (current SOTA) and MA-SRGAN (SR/wMsk) on the
CASIA dataset.
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Table 3. The comparison with different resolution in terms of EER and corresponding criteria.

LR Bicubic RCAN nESRGAN+ MASRGAN (Ours) GT

EER 5.500 3.796 2.430 2.488 2.308 2.072
Fisher
Ratio 1.535 1.687 1.86 1.852 1.873 1.932

VR 1 75.62% 84.35% 91.74% 91.65% 92.23% 93.62%
1 The table presents the Verification Rate for each method along with the alignment of 1% False Accept Rate, and
the bold style text indicate the best result with the corresponding metric.

This highlights the benefits of using the attention module in the discriminator network.
It can be observed that the images reconstructed by our model present more detailed
information about the distinguishable part of the iris, which in turn, enhances the iris
recognition accuracy. It shows the proposed method enable the deep model to learn useful
details inside ROI.

4.5.2. Downstream Task: Face Recognition

Our proposed MA-SRGAN can be applied to face recognition and it also works better
than most of the SR methods in terms of EER, as Figure 15 describes. In the further
comparison, the proposed method achieves higher VR than the nESRGAN+ with the lower
FAR. Furthermore, MA-SRGAN achieved an outstanding result in 6.23% of EER, which is
lower than the latest SOTA and partially reflects the 89.75% VR, shown in Figure 16 as well
as Table 4. This also highlights the benefits of using the attention module, which can also
present more informative details about the distinguishable part of face recognition.

Figure 15. The comparison of the ROC curves of face recognition based on input images enhanced by the various SR models
on CelebA dataset.
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Figure 16. The comparison of ROC curves between nESRGAN+ (current SOTA) and MA-SRGAN (SR/wMsk) on the
CelebA dataset.

Table 4. The comparison with different resolution in terms of EER and corresponding criteria.

Bicubic RCAN nESRGAN+ MASRGAN (Ours) GT

EER 11.310 8.260 6.247 6.237 5.506
Fisher Ratio 1.16 1.40 1.65 1.64 1.86

VR 1 24.18% 68.74% 87.71% 89.75% 92.01%
1 The table presents the Verification Rate for each method along with the alignment of 5% False Accept Rate, and
the bold style text indicate the best result with the corresponding metric.

4.5.3. Visual Evaluation

The objective metric of biometric recognition has already shown the superiority of
the proposed method, while visual evaluation is an alternative to judge the image quality
in SR field. Therefore, in this section, we also present several visual comparisons with
both the iris images and the face images on the ROI part according to the domain-specific
requirement.

We show visual comparisons on normalized iris image, as illustrated in Figures 17 and 18.
For both image sets, we observed that most of the compared methods cannot recover the
iris texture and would suffer from blurring artifacts. In contrast, our MA-SRGAN can
slightly alleviate such side-effect and restore texture to some degree, which in turn helps to
enhance the recognition rate.

We show visual comparisons for super-resolved face images, highlighting the multi-
ROI parts, as illustrated in Figures 19 and 20. For both image sets, we observed that most
of the compared methods produces blurring artifacts near the region of facial landmarks.
Only our MA-SRGAN produces more faithful results compared to the HR image and it
enhances facial features such as eye, nose, and mouth.
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Figure 17. Visual results with Bicubic degradation (×4) on “Rcls6_10” from the CASIA dataset.

Figure 18. Visual results with Bicubic degradation (×4) on “Rcls489_7” from the CASIA dataset.

Figure 19. Visual results with Bicubic degradation (×4) on “011006” from the CelebA dataset.
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Figure 20. Visual results with Bicubic degradation (×4) on “064049” from the CelebA dataset.

4.6. Discussion about Practicality of the Proposed Method

For now, we have verified the effectiveness of the ROI mask in the application of bio-
metric recognition via both objective analysis as well as subjective visual comparison. Since
the input image may not come with the corresponding mask in the practical application,
how to create the masks for input images seems to be an open issue in this work.

Fortunately, there exist a lot of sematic segmentation models [38,39], which are able to
predict the corresponding mask for the downstream task. We can train such segmentation
models beforehand using the given labeled masks. Note that there also exist some segmen-
tation models for special purposes, which may be more suitable for generating ROI masks.
For example, Li et al. proposed the robust model for iris segmentation [40], which can even
generate high-quality masks in non-cooperative environments. Besides, some preprocess-
ing algorithm may also offer the ROI information for generating corresponding face masks.
For example, we can use the facial landmark detection model [41] to predict an accurate
center point of the ROI region, and generate the corresponding mask for face images.

Furthermore, a possible improvement of the proposed method is to force the model
to learn the feature-rich region in the image by itself. We may directly apply the metric
of the downstream task to train the generator, and the ROI information will be infer-
enced automatically in the model by applying a back propagation algorithm during the
training phase.

5. Conclusions

We have proposed MA-SRGAN for image SR. Specifically, the user-defined ROI region
will force the generator to focus on the reconstruction of the ROI detail. For propagating
such information to the generator, a new extra-part of the discriminator has been introduced
to further increase the precision of focusing on the correct part by the given ROI mask, and
L1 loss is used to enhance the model robustness against image noise during the training.
Moreover, we found that the SR model which takes the domain knowledge into account
will contribute more to the downstream task. All these improvements have contributed so
that the deep model can learn the correspondence between HR and SR images and is able
to generate images with more detailed and discriminative information inside ROI. As a
result, the proposed MA-SRGAN outperforms the current SOTA (nESRGAN+) in the task
of iris and face recognition by 1.3% verification rate in large-scale biometric experiments.

For future works, we plan to design new modules and force the deep model to learn
the ROI automatically during the training process. This will eliminate the need for human
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labor to denote the ROI and make the proposed method more practical and useful in many
scenarios for mobile sensing networks.
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