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Abstract: This paper presents a hydrogel-based flexible sensor array to detect plantar pressure distri-
bution and recognize the gait patterns to assist those who suffer from gait disorders to rehabilitate
better. The traditional pressure detection array is composed of rigid metal sensors, which have poor
biocompatibility and expensive manufacturing costs. To solve the above problems, we have designed
and fabricated a novel flexible sensor array based on AAM/NaCl (Acrylamide/Sodium chloride)
hydrogel and PI (Polyimide) membrane. The proposed array exhibits excellent structural flexibility
(209 KPa) and high sensitivity (12.3 mV·N−1), which allows it to be in full contact with the sole of the
foot to collect pressure signals accurately. The Wavelet Transform-Random Forest (WT-RF) algorithm
is introduced to recognize the gaits based on the plantar pressure signals. Wavelet transform realizes
the signal filtering and normalization, and random forest is responsible for the classification of the
processed signals. The classification accuracy of the WT-RF algorithm reaches 91.9%, which ensures
the precise recognition of gaits.

Keywords: plantar pressure detection; gait recognition; flexible hydrogel sensor

1. Introduction

Patients with lower limb diseases or neurological diseases often have problems such
as difficulty walking and chaotic steps [1]. In order to help this group of people carry
out rehabilitation walking training, it is necessary to design a plantar pressure detection
system. In this way, doctors can formulate specific rehabilitation plans for them based on
the changes in the patient’s gait during walking.

To realize gait recognition, it is crucial to gather plantar pressure signals. The pressure
detection array has been studied by many scholars [2–4], and its material types can be
classified into rigid metal and flexible membranes. A three-layer pressure-sensing array is
proposed in [5]. The middle layer of the array is made of piezo-resistive material, and the
top and bottom layers are copper pads. The pressure-sensing array is used to analyze gait
parameters after being cut into the shape of insole. Huang et al. used FSR (force-sensing
resistor) as the sensing element to fabricate a kind of pressure sensor array. Combined
with the triangle positioning algorithm, his team realized the detection of contact force
and contact position. The results show that the force and space detection accuracy of the
pressure sensor array reaches 88.23% [6].

However, the pressure-sensing arrays made of rigid metal materials show poor bio-
compatibility and ductility. As a consequence, it may cause allergic reactions or other
adverse physiological impacts while in contact with human skin. The poor ductility greatly
limits the application range of the pressure-sensing array. It cannot be applied in high-
curvature or uneven surfaces. Sekitani et al. used PEN (polyethylene naphthalate) as a
substrate and organic material as a conductive layer to fabricate a flexible pressure-sensing
array. The fabricated array can detect the spatial distribution of applied mechanical pres-
sure and convert it into two-dimensional images for storage [7]. So et al. embedded a
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PDMS layer in the vertical arrangement of carbon nanotubes to make a flexible pressure
sensor, which realized the function of tactile sensing [8].

Classification of the collected pressure signals is the basis of gait recognition. Common
classification algorithms include support vector machine (SVM) [9–11], artificial neural
networks (ANN) [12–14], and random forests (RF) [15–17]. SVM is a binary classification
model, which constructs a hyperplane with the largest geometric distance and maps it into
a high-dimensional space to classify specific objects. In the experiment of using EMG to
predict the angle of five knee joints, compared with classifiers, such as LDA and KNN,
the classification accuracy of SVM is higher, reaching 93.07 ± 3.84% [18]. However, SVM
classifier is inefficient when the number of samples is large, and it is difficult to find a
proper kernel function for nonlinear classification problems [19]. M.F. et al. applied ANN
to the classification of fatigue strain signal to obtain the best pattern recognition. The
classification accuracy of ANN is 92%, and five levels of fatigue damage are obtained [20].
The ANN has a high demand for computing power and a long training time, so it is not
suitable for the scene with real-time requirements. A random forest algorithm for EEG
signal classification was exhibited in [21], and the accuracy reaches 89.9% after combining
the common spatial pattern (CSP). The random forest algorithm is not ideal for data with
few feature dimensions, so it is not applicable in the pressure signal classification of this
article individually.

This paper proposes a flexible pressure-sensing array to achieve plantar pressure
detection and gait recognition. Due to the flexibility and biocompatibility, the pressure-
sensing array can be utilized well in plantar pressure detection. After obtaining the
pressure signals, the Wavelet Transform-Random Forest (WT-RF) algorithm is applied in
the preprocessing and classification of the gathered signals. Thus, different gaits can be
recognized accordingly, and the comprehensive accuracy reaches 91.9%.

2. Materials and Methods
2.1. Design of Flexible Hydrogel Sensor Array

The flexible hydrogel sensor array (FHSA) is composed of three layers. The top and
bottom layer sustain the overall structure and insulate electrical interference. The middle
layer is the sensing layer, which is responsible for collecting pressure signals. The sensing
layer contains 36 pressure-sensing units, which are arranged in a 66 matrix. Each row of
sensor units output a total of six signals, which are connected to a bus through resistors.
The overall design of FHSA’s structure is presented in Figure 1a.
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Ideally, the external force exerted on the FHSA can be decomposed into three forces:
horizontal transverse (Fx), horizontal longitudinal (Fy), and vertical (Fz). The detection
of pressure is based on the piezoresistive effect, and the change in relative resistance is
presented in Equation (1),

∆R
R

= πxFx + πyFy (1)

where πx and πy are the horizontal transverse and horizontal longitudinal piezoresistive
coefficients. The Fx and Fy represent the force components in the corresponding direction.
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Moreover, based on the principle of elasticity, when a Z-axis pressure is applied to the
FHSA, the strain force can be expressed as Equations (2) and (3).

σx =
2x2

π(x2 + y2)
2

(
xFx + yFy

)
(2)

σy =
2y2

π(x2 + y2)
2

(
xFx + yFy

)
(3)

When determining the dimension of FHSA, it is necessary to minimize the size under
the premise of ensuring the accuracy of pressure detection. The accuracy is reflected in
the relative change rate of resistance. Once the pressure range is determined, the optimal
dimension of FHSA can be obtained according to Equation (4),

∆R
R

= (1 + 2v)·ε + l
w·t (4)

where v is the Poisson rate, and ε is the value of pressure. The l, w, and t are the length,
width, and thickness of the FHSA, respectively. After determining the optimal size of the
FHSA, the strain force at any position on the FHSA is shown in Equation (5). By comparing
the maximum strain force with the material strain threshold, the rationality of the designed
structure can be evaluated.

σ =
3

4π
· t3

(l2w2 + t2)
5/2 Fy (5)

Finite element analysis (FEA) plays a significant role in the structural design. We
used software (Creo, Parametric Technology Corporation, Boston, MA, USA) to study the
mechanical behavior of FHSA under pressure. The Young’s modulus (E) and Poisson ratio
(v) of FHSA are measured and set at 209 KPa and 0.42. The degree of strain is analyzed to
illustrate the mechanical stability of the FHSA, and the result of FEA is shown in Figure 1b.

2.2. Sensor Fabrication and Calibration

The top and bottom layers of FHSA are PI (Polyimide) films, and the material of
middle layer is AAM/NaCl (Acrylamide/Sodium chloride).

The fabrication of hydrogel films can be achieved through the following steps. Add
7.82 g of AAM monomer powder (Aladdin Co., Shanghai, China) and 8.01 g of NaCl
(Aladdin Co., Shanghai, China) to DI (deionized) water and keep stirring to dissolve
them completely. After about 10 min, add 0.085 g of AP (Ammonium persulphate, Sigma-
Aldrich Co., Saint Louis, MO, USA) and 0.03 g of MBAA (Methylene-Bis-Acrylamide,
Sigma-Aldrich Co., Saint Louis, MO, USA) as a crosslinking agent to the mixed solution.
Then, add 0.125 g of TEMED (Tetramethylethylenediamine) to improve the reaction rate
and conductivity. Eventually, pour the solution into a glass mold and wait for it to form.

The PI film is prepared by the steps below. Coat PAA (polyamic acid) solution
(Aladdin Co., Shanghai, China) on a clean glass flake evenly, and then transfer it to the
oven. Adjust the temperature to 270 ◦C and continue heating for an hour. After natural
cooling for 20 min, a piece of complete PI film can be peeled off from the glass flake.

Cut the prepared PI film and AAM/NaCl film into a 350 mm × 350 mm square and
thirty-six squares (50 mm × 50 mm), respectively via laser cutting. Plasma cleaner is
introduced to activate the surface of the above films. Twenty minutes later, take out the
film, adhere them to each other, and place them on a heating plate to heat for half an hour
at 70 ◦C to strengthen the adhesion. Then, connect the AAM/NaCl-based pressure-sensing
units with copper wires and lead them out. Ultimately, encapsulate the FHSA with epoxy
resin to improve its working stability.

Aiming at ensuring the accuracy of the pressure measurement, we have calibrated
the fabricated FHSA. Six locations were randomly selected, and twelve different pressures
were applied on them. We collected and calculated the average resistance and conductance
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of the FHSA under pressures, and determined the relationship between them and pressure.
The results are presented in Table 1.

Table 1. The relationship between the average resistance, conductance of the FHSA, and pressure.

Pressure (Kg·cm−2) Resistance (KΩ) Conductance (mS)

0 721.49 0

0.01 21.34 0.05

0.02 4.87 0.21

0.04 2.51 0.40

0.06 1.97 0.51

0.08 1.41 0.71

0.1 1.11 0.9

0.12 1.02 0.98

0.16 0.89 1.12

0.2 0.73 1.37

0.25 0.56 1.79

Fitting the pressure value and FHSA’s conductance, the relational formula and fitting
curve graph are shown in Equation (6) and Figure 2, respectively.

p = 0.022G2 + 0.106G (6)
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Figure 2. Curve fitting between the pressure applied on FHSA and its conductance.

2.3. Analysis and Classification of Pressure Signals

When the tester steps on the FHSA, the pressure exerted on different sensing units is
unique. Consequently, these units show a distinct value of resistance. In order to collect the
electrical signal changes of the FHSA when subjected to external pressure, we proposed
the partial voltage method, whereby a constant voltage is applied to the FHSA through a
power supply (SS-3020KD, Bufan Electronics Co., Ltd., Dongguan, China) to convert the
resistance changes into voltage signals.

The procedure of signal processing is presented in Figure 3a. The pressure signal
output by the FHSA first passes through a filter circuit to filter out the high-frequency noise
interference contained in the signal. Considering the weak strength of the voltage signal,
we designed an amplifier to amplify it, which is conducive to subsequent processing and
analysis. Before inputting to the computer via Zigbee, the signal is converted from an
analog signal to digital form through an analog-to-digital conversion module.



Sensors 2021, 21, 5964 5 of 12

1 
 

 

Figure 3. (a) Preprocessing of collected pressure signals. (b) Working flow of WT-RF algorithm.

In order to facilitate the subsequent data analysis, the maximum normalization method
(Equation (7)) is introduced to process the voltage signals. In Equation (7), X represents
the voltage signal amplitude at a certain moment, Xmax represents the maximum voltage
value corresponding to the maximum pressure value of a single foot, and Xmin is the initial
voltage. In this way, the pressure input is obtained and converted into a normalized voltage
value. We propose a wavelet transform-random forest (WT-RF) algorithm (Figure 3b) to
classify the input voltage signal to identify the corresponding gait. The wavelet transform
algorithm realizes the denoising of the original signal and further improves the SNR
(signal-to-noise ratio). The mathematical form of the original signal containing noise can
be described as Equation (8).

XScale =
X − Xmin

Xmax − Xmin
(7)

f (t) = a(t) + ω·b(t) (8)

Here, a(t) is the pure signal without noise, b(t) is the noise signal, and ω represents
the intensity of noise. The difference in the characteristics of the pure signal and the noise
signal in the wavelet transform leads to distinct coefficients obtained after the wavelet
decomposition [22]. Using the low-frequency coefficients of wavelet decomposition and
the high-frequency coefficients after threshold quantization to reconstruct, the denoised
signal can be obtained.

Random forest is a feature classification method based on multiple decision trees, and
its final classified result is decided by the voting of trees [23]. We collected the input voltage
signals and randomly selected part of them as the original data set. Then, the original data
set was divided into N training sets for training n decision trees. In the traditional random
forest algorithm, each decision tree has the same weight in the voting decision process.
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In order to improve the final recognition accuracy, we evaluated different decision trees
(Equation (9)) to give the better decision tree more weight,

W(i) = 1 −
1

F(i)

∑n
i=1 F(i)

− n − 2
n

(9)

where W(i) is the weight of the i-th decision tree, n is the count of decision trees, and F(i)
represents the comprehensive precision and recall of the i-th classifier. The algorithm fea-
tures include signal amplitude, skewness, and kurtosis. The pressure signals corresponding
to diverse gaits are distinct, and their signal features are also different, which is the basis
of signal classification and gait recognition. We adjusted the main parameters (count of
decision trees, maximum depth, and the minimum samples of leaf nodes) according to
the difference in data training results. The optimization of above parameters helped us to
achieve better classification accuracy and shorter training time.

3. Results
3.1. Performance Test

To illustrate the structural flexibility of the fabricated FHSA, we studied its mechanical
properties by conducting the tensile and bending experiments (Figure 4a–c). The tensile test
is realized on a programmable stretcher (IPBF-5, CARE Measurement & Control Co., Ltd.,
Tianjin, China). The FHSA is placed on the middle platform of the stretcher and clamped
at both ends, and the stretching of it is realized by the movement of the clamps which are
controlled by stepping motors. A digital multi-meter (MT-1820-C, Prokit’s Industries Co.,
Ltd., Taiwan, China) is connected to the FHSA to read the value of resistance (Figure 4d).
The bending test was carried out on a bending test machine (YHS-216W-10kN-360, Yihua
Instrument Technology Co., Ltd., Shanghai, China). One end of the FHSA is fixed, and the
other end is connected with a clamp. The clamp moves along the track to make the FHSA
bend between 0 and 180. Similarly, under different bending angles, the resistance of the
FHSA is recorded by the digital multi-meter.
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mance test.

The relationship between resistance, material strain, and bending angle is shown in
Figure 5a,b. In the process of repeatedly applying the tensile force to the material and
releasing it, the resistance value of the material is measured in real time to quantify the
structural flexibility, so as to ensure the stability and consistency of the structure under the
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action of external force. It can be seen from the results that when the material is elongated,
its resistance value remains almost unchanged, which indicates that the designed FHSA can
still work normally under 50% of the maximum strain. In the bending experiment, during
bending and releasing, the resistance value of FHSA remains nearly the same. Therefore,
the structure of FHSA can stay intact under the bending of 180◦ and can be applied in most
bending scenes.
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When the FHSA is under pressure, its resistance value decreases. We applied different
pressure to it and recorded the corresponding resistance value. The relationship between
resistance and pressure is shown in Figure 5c. When the pressure is in the range of 0 N to
30 N, the resistance of the FHSA decreases obviously with the increase in pressure. This
shows that the FHSA is more sensitive to the pressure change in a small range. To realize
the accurate detection of high pressure, the increment in the count of pressure-sensing
units is needed. Response time is an important parameter of the FHSA, which reflects the
sensitivity to external pressure. Therefore, we applied a fixed voltage on the FHSA so as to
measure its response time. After stabilizing, the pressure was exerted on the FHSA and the
current curve was observed by an oscilloscope. The change curve of the current is shown
in Figure 5d, and the response time of the FHSA is 69 ms.

3.2. Gait Recognition

The distribution of plantar pressure varies from person to person and may be affected
by factors such as age, gender, and weight [24]. According to the formula of sampling
quantity (Equation (10)), we recruited 30 volunteers and collected their plantar pressure
distribution data,

n =

(
Z α

2

)2
P(1 − P)

E2 (10)

where n is the sample size, Z is the statistic, E is the sampling error, and P represents the
sample proportion. We selected the commonly used confidence 90% and sample proportion
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50%, and set the acceptable error to 15%. The values of the Z α
2
, P, and E are 1.645, 0.5, and

0.15, respectively. After calculation, we finally determined the sample size as thirty. These
volunteers are distributed in six age groups, half male and half female (Table 2). Based
on these data, we examined the feasibility of the proposed FHSA and gait recognition
algorithm and analyzed the effects of age, gender, and weight on the recognition of gaits.

Table 2. Specific information of the recruited volunteers.

Age Group Age Gender
(Female/Male)

Weight
(kg)

Left-Foot
Pressure (kg)

Right-Foot
Pressure (kg)

16–20

17 M 58.3 30.1 29.3

18 M 60.5 31.6 29.9

19 F 43.4 22.3 20.2

20 F 50.6 26.8 25.4

20 M 68.1 34.6 33.1

21–25

21 M 61.6 32.5 30.9

23 F 47.8 24.5 22.8

23 F 49.7 25.8 24.3

24 M 52.2 27.6 25.1

24 F 51 26 24.5

26–30

28 F 61.3 32.4 29.6

28 M 74.3 37.6 36.8

29 M 58.7 28.3 30.4

29 M 83.9 43.1 41

29 F 55.9 28.6 27.9

31–35

31 M 67.3 34.8 33.2

31 M 75.2 36.5 39

32 F 59.6 31.6 28.7

33 F 48.7 25 23.9

35 F 53.9 28.2 26

36–40

37 M 54.4 28.5 26.4

39 F 46.1 23.7 22.3

40 M 67.8 35.8 32.6

40 M 73.5 36.9 35.7

40 F 52 26.5 25.5

41–45

41 F 48.7 25.1 24.1

42 F 59.3 31.4 28.2

44 M 71.9 37 34.8

44 F 55.2 27.9 26

45 M 68 35.3 33.6

The protocol for obtaining the pressure input is to have volunteers step on the FHSA
placed on the ground and walk back and forth five times [25]. A total of six hundred sets
of pressure data (left-foot and right-foot) of diverse gaits were gathered. We selected four
different gait patterns (Figure 6a), and their pressure distributions are shown in Figure 6b.

We randomly selected 500 sets of data as the training set to train our proposed WT-RF
algorithm model, and the remaining 100 sets of data were used for testing to obtain the
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gait recognition accuracy of the trained model. The classification results of the WT-RF
algorithm are presented in Figure 7.

Sensors 2021, 21, x FOR PEER REVIEW 9 of 12 
 

 

 

Figure 6. (a) Different gait patterns. (b) Two-dimensional pressure distribution map correspond-

ing to different gaits 

We randomly selected 500 sets of data as the training set to train our proposed WT-

RF algorithm model, and the remaining 100 sets of data were used for testing to obtain 

the gait recognition accuracy of the trained model. The classification results of the WT-RF 

algorithm are presented in Figure 7. 

 

Figure 7. The classification result of diverse gait patterns. 

In order to determine the accuracy of the proposed WT-RF algorithm in pressure 

signal classification and gait recognition, we introduced four indicators (𝑇𝑃,𝐹𝑃,𝐹𝑁,𝑇𝑁) 

to comprehensively evaluate the classification results, where 𝑇𝑃, 𝐹𝑃, 𝐹𝑁 and 𝑇𝑁 refer 

to true positive, false positive, false negative, and true negative, respectively. Among 

them, true and false indicate whether the predicted gait is consistent with the actual gait, 

and true means that the classification is correct. Therefore, the classification and recogni-

tion accuracy of the WT-RF algorithm can be calculated by Equation (11), and the accuracy 

reaches 91.9%.  

Accuracy =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (11) 

We introduced the Pearson correlation coefficient to analyze the influence of age, 

gender, and weight on the accuracy of gait recognition. The Pearson coefficient can be 

calculated by Equation (12), where 𝑋 is age, gender, weight, and 𝑌 is the accuracy of gait 

recognition. 

Figure 6. (a) Different gait patterns. (b) Two-dimensional pressure distribution map corresponding
to different gaits.

Sensors 2021, 21, x FOR PEER REVIEW 9 of 12 
 

 

 

Figure 6. (a) Different gait patterns. (b) Two-dimensional pressure distribution map correspond-

ing to different gaits 

We randomly selected 500 sets of data as the training set to train our proposed WT-

RF algorithm model, and the remaining 100 sets of data were used for testing to obtain 

the gait recognition accuracy of the trained model. The classification results of the WT-RF 

algorithm are presented in Figure 7. 

 

Figure 7. The classification result of diverse gait patterns. 

In order to determine the accuracy of the proposed WT-RF algorithm in pressure 

signal classification and gait recognition, we introduced four indicators (𝑇𝑃,𝐹𝑃,𝐹𝑁,𝑇𝑁) 

to comprehensively evaluate the classification results, where 𝑇𝑃, 𝐹𝑃, 𝐹𝑁 and 𝑇𝑁 refer 

to true positive, false positive, false negative, and true negative, respectively. Among 

them, true and false indicate whether the predicted gait is consistent with the actual gait, 

and true means that the classification is correct. Therefore, the classification and recogni-

tion accuracy of the WT-RF algorithm can be calculated by Equation (11), and the accuracy 

reaches 91.9%.  

Accuracy =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (11) 

We introduced the Pearson correlation coefficient to analyze the influence of age, 

gender, and weight on the accuracy of gait recognition. The Pearson coefficient can be 

calculated by Equation (12), where 𝑋 is age, gender, weight, and 𝑌 is the accuracy of gait 

recognition. 

Figure 7. The classification result of diverse gait patterns.

In order to determine the accuracy of the proposed WT-RF algorithm in pressure
signal classification and gait recognition, we introduced four indicators (TP,FP,FN,TN)
to comprehensively evaluate the classification results, where TP, FP, FN and TN refer to
true positive, false positive, false negative, and true negative, respectively. Among them,
true and false indicate whether the predicted gait is consistent with the actual gait, and
true means that the classification is correct. Therefore, the classification and recognition
accuracy of the WT-RF algorithm can be calculated by Equation (11), and the accuracy
reaches 91.9%.

Accuracy =
TP + TN

TP + TN + FP + FN
(11)

We introduced the Pearson correlation coefficient to analyze the influence of age,
gender, and weight on the accuracy of gait recognition. The Pearson coefficient can be
calculated by Equation (12), where X is age, gender, weight, and Y is the accuracy of
gait recognition.

ρX,Y =
∑
(
X − X

)(
Y − Y

)√
∑
(
X − X

)2
∑
(
Y − Y

)2
(12)

After calculation, the Pearson coefficients of age, gender, and weight are 0.12, 0.09,
and 0.18, respectively (in gender analysis, XFemale = 0, XMale = 1). It can be seen that age



Sensors 2021, 21, 5964 10 of 12

and gender are not related to the accuracy of gait recognition, and the weight factor has a
slightly higher correlation due to the optimal detection range of the FHSA. In addition, we
trained the other two algorithms with the same data set and compared their classification
accuracy with the WT-RF algorithm (Figure 8). Compared with the other two algorithms,
WT-RF has higher classification accuracy even under few training cycles. When the training
cycles are few, the classification accuracy of RF is significantly higher than that of SVM, but
after 40 training cycles, their accuracies are very close. As a consequence, it is reasonable to
select the WT-RF algorithm to classify the pressure signals and realize gait recognition.
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At present, the mainstream plantar pressure detection system includes a platform
system like this article and an in-shoe system [26]. An in-shoe device for monitoring plantar
pressure is proposed in [27], which is composed of 64 pressure-sensitive elements. It can
collect gait information at 100 Hz and draw a pressure curve to assess walking quality.
Compared with the platform system, it has limitations on the spatial resolution of data and
will affect the normal walking to a certain extent. Based on a gait database composed of
12 people, Kale et al. [28] introduced the view invariant method for gait recognition. The
CCR (Correct Classification Rate) is 85%, which is significantly less than our work (91.9%).

4. Conclusions

This work combines flexible electronic technology and a signal classification algorithm
to provide a new idea for plantar pressure detection and gait recognition. Compared with
traditional rigid metal sensor arrays, the proposed FHSA with structural flexibility has
higher precision of pressure detection and can be applied in more scenarios. The WT-RF
algorithm is introduced to process and classify the pressure signals that gathered by FHSA
to achieve gait recognition. The comprehensive accuracy of the proposed WT-RF algorithm
reaches 91.9%, which is significantly higher than the traditional classification methods.
The mode of flexible sensor array plus specific algorithms is suitable for many extended
application scenarios, such as wind pressure detection and the wearable electronics field.
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