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Abstract: The development of silicon-based sensor devices has enabled the possibility to pursue novel
integrated smart sensor technologies. Under this scenario, capacitive sensor devices are one viable
option for implementing different kinds of applications. In this paper, an interdigitated coplanar
capacitive device fabricated over a silicon substrate is presented and its potential use as liquid
sensor is demonstrated. Additionally, a detailed capacitance model, which includes the parasitic
capacitances introduced by the silicon substrate, was developed. The capacitance model has been
theoretically validated through finite-element simulations as well as experimentally by comparison
with fabricated devices. A polydimethylsiloxane mold has been fabricated and bonded to the sensor
device with the aim of defining a cavity to collect the liquid sample into the device’s active region.
The active capacitance component correlates to the electric field coupling between adjacent metal
lines. Therefore, any change to the dielectric constant of the medium above the coplanar metal lines
will produce a change to the device capacitance. Finally, the main guidelines for device performance
improvement are depicted.

Keywords: capacitive coplanar sensor; liquid sensor; parasitic capacitances

1. Introduction

Recent advances in microfabrication technologies have allowed for the possibility to
develop novel sensor devices for a variety of applications such as gas sensors, photodetec-
tors, chemical and biological sensors, as well as liquid sensor devices [1–3]. Different kinds
of structures and materials have demonstrated that they are suitable for the development
of capacitive sensor devices. One of the simplest and most useful structures consist of
a parallel-plates capacitor, where the dielectric medium or the geometrical relation be-
tween the plates is used in order to produce a change on the device capacitance [4–10].
Additionally, the use of coplanar capacitive structures (CCS) has demonstrated the pos-
sibility to implement sensor devices [11–15]. CCS sensors use the fringing electric field
coupling between two adjacent metal lines. Hence, if the medium above the lines changes
its electrical properties, the overall sensor capacitance will be modified. However, the
presence of the different materials as well as the device geometry promotes the existence of
different structures, which usually produces parasitic capacitances. Therefore, an adequate
full device analysis, including the parasitic elements, is of importance to the purpose of
properly determining the device performance.

Different materials and configurations have been used to develop different kinds of
capacitive sensors. For instance, flexible, stretchable, as well as wearable capacitive devices
have been proposed for sensor applications [16–18]. However, integration with standard
digital technology remains an important concern. On the other hand, the fabrication of
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sensor devices based on silicon technology assures the possibility to easily integrate the
sensor with the standard semiconductor technology. This fact affords the opportunity
to integrate sensor devices with different electronic circuitry, as well as the benefits of
digital processing and storage, giving the possibility to develop functional smart sensor
applications. However, the knowledge of the impact of the silicon substrate on the overall
device performance is necessary in order to improve the design and device performance.

In this contribution, an interdigitated coplanar capacitive sensor device fabricated on
silicon substrate is presented. A detailed capacitance model, which includes the parasitic
components, is introduced and validated based on ATLAS simulations, as well as fabricated
devices. Finally, the potential application as liquid sensor is demonstrated, and the silicon
substrate impact is addressed.

2. Coplanar Capacitive Sensor

In this section a description of the fabrication process as well as the physical imple-
mentation of the capacitive sensor is addressed.

2.1. Fabrication Process

Coplanar capacitive sensors are fabricated using sputtering deposition of aluminum
with a thickness of 100 nm. Three different widths: 150, 200, and 250 µm were patterned
on a silicon substrate covered by 300 nm SiO2. The Al layer was patterned by standard
photolithography to define an interdigitated structure with metal lines spacing of 50 µm to
define the device’s active region. Figure 1a shows a schematic representation of the device’s
active region. Subsequently, by a chemical vapor deposition technique, a 300 nm thin
film of parylene-c film was deposited over the structure with the objective of electrically
isolating the device’s metal lines from the liquid sample. Figure 1b shows the picture of the
fabricated devices
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Figure 1. The main characteristics of the coplanar capacitive sensor (CCS) are shown: (a) The
schematic structure is shown, and the basic cell of the device is defined; (b) An image of the fabricated
device over a silicon substrate with 200 µm metal width; (c) The physical device implantation for
liquid sensor applications.
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2.2. Sensor Physical Implementation

The liquid sensor implementation requires the definition of a microcavity to collect
the liquid sample, which includes inlet and outlet feed lines. This cavity was fabricated by
molding polydimethylsiloxane (PDMS). The PDMS was prepared by mixing the elastomer
and the curing agent (Sylgard 184, Dow Corning), in a ratio 10:1. After molding, a hot-
plate process at 80 ◦C for 40 min was performed. Finally, the mold was bonded to the
silicon device by a hot-plate process at 80 ◦C for 5 min. Figure 1c shows the final device
implemented for liquid sensor applications.

3. Sensor Model

Figure 2 shows the device cross-section along the A-A′ cut of the basic cell indicated in
Figure 1a. As can be observed, the sensor is composed of three main capacitive components,
which will be described afterwards.
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3.1. Capacitive Component C1

This capacitive component corresponds to the fringing electric field coupling between
both metal lines, which is the active device capacitance. As can be observed in Figure 2,
the fringing electric field lines pass along two regions, the very thin parylene layer as
well as the microcavity. Hence, this component will be defined by an effective dielectric
(keff) constant defined by the combination of the parylene dielectric constant (kpar) and
the dielectric constant of the cavity medium (kC). When the sensor is empty, the medium
into the cavity is air and thus the dielectric constant of the cavity is one (kC = 1). This
scenario is defined as the reference condition. Once a liquid is injected into de sensor, the
cavity dielectric constant will change and therefore the effective dielectric constant of the C1
coupling will be higher than the reference value. Therefore, the overall device capacitance
will be increased from its reference value due to the presence of a liquid into the cavity.

Based on previous studies [14,15], the length normalized C1 component can be
defined as:

C1 = β
ke f f ε0

π
ln

1 +
W
d

+

√(
1 +

W
d

)γ

− δ

 (1)

where β, γ, and δ are fitting parameters.

3.2. Capacitive Component C2

Due to the conductivity of the silicon substrate, it will act as a virtual electrode, which
will promote an electric coupling with each metal line. Therefore, this capacitance will
correspond to a series arrangement of two identical components (C2a), each one defined as a
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parallel-plate structure formed between the metal line and the virtual electrode. Therefore,
the length normalized C2 component can be defined as:

C2 =
1
2
× koxε0

tox
× W

2
, (2)

where kox and tox are, respectively, the SiO2 dielectric constant and thickness.

3.3. Capacitive Component C3

Due to the metal lines thickness, there will be a lateral electric field coupling between
both metal lines. This component corresponds to a parallel-plate capacitor where the plate
length corresponds to the metal line thickness. Hence, the length normalized capacitance
corresponding to this component can be determined as:

C3 =
kparε0

d
× t (3)

3.4. Total Capacitive Sensor Model

As can be seen from Figure 2, the three capacitive components appear in a parallel
configuration. Thus, the total device capacitance (CT), considering that the basic cell
corresponds to the half of the structure, is defined as:

CT = 2Le f f (C1 + C2 + C3), (4)

where Leff = α × L corresponds to the effective device length, α is a fitting parameter and L
corresponds to the device length.

4. Simulation Results

The sensor behavior has been validated by ATLAS simulation. Different sets of
simulations have been performed with the aim of verifying the main capacitive components.
Finally, a set of simulations of the full structure were executed to verify the overall device
behavior. Figure 3 summarizes the structures utilized for simulation processes.
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Figure 3. Schematic representation of the set of structures used for simulation routines. Struc-
tures shown in (a–d) are used for simulating the capacitance components C1, C2, C3 as well as
CT, respectively.

The C1 component was simulated using the structure shown in Figure 3a. Air is
considered the medium in the cavity, and Figure 4a shows the comparison between the
simulated and modelled capacitance vs. the metal line width for several values of d. As
can be seen, the capacitance increases as the width of the metal line does. On the other
hand, if the spacing between the metal lines is wider, the electric coupling is diminished,
and the capacitance consequently decreases.
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Figure 4. Comparison between simulated and modelled results for: (a) Component C1 vs. the metal line width for several
values of lines spacing. The fitting parameters are defined as: β = 1.25; γ = 1; δ = 0.25; (b) Component C2 vs. the metal line
width, the separation of the metal lines was 20 and 90 µm, respectively; (c) Capacitive component C3 vs. the metal line
spacing for several values of metal line thickness; and (d) Total capacitance CT vs. the metal line width, considering two
different mediums into the cavity and metal lines spacing of 50 µm. In the inset, the capacitance change for the simulated
devices is shown.

The C2 component was simulated according to the structure shown in Figure 3b.
Additionally, Figure 4b shows the comparison between the simulated and modelled results
of capacitance, C2 vs. metal line width. As can be observed, C2 exhibits a linear dependence
with the metal width, and it is independent from the spacing between the metal lines as
expected from Equation (2). Additionally, the C3 component was simulated using the
structure shown in Figure 3c. Figure 4c shows the comparison between the simulated
and modelled results vs. the spacing between the metal lines at several thickness values.
Additionally, due to the very thin metal lines, the C3 component becomes negligible.

Additionally, the full device has been simulated using the structure shown in Figure 3d,
where two different conditions are considered: (i) the reference one, which corresponds
to an empty sensor with air in the cavity medium; and (ii) considering the presence of
certain liquid into the cavity, and for this purpose the region above the parylene region
is defined with a dielectric constant of 80 with the aim of considering that the cavity is
filled with water. Figure 4d shows the comparison between simulated and modeled device
capacitance vs. the metal width for both mediums into the cavity and 50 µm for metal
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line spacing. In the inset, the capacitance changes (∆C) for the different metal spacing
values are shown. As can be observed, CT exhibits a linear dependence on the metal line
width, confirming that the dominant capacitance of the whole device is the parallel-plate
component C2 as Figure 4a–c shows.

Furthermore, the fact that any change to the dielectric constant of the medium above
the parylene layer will produce a change to the C1 component, and as a consequence on
the overall device capacitance, is verified. Additionally, as the metal width is reduced, the
capacitance change is more significant. It is noteworthy that both C1 and C2 components
show a reduction in the metal width, however the C2 reduction is more important, hence ∆C
is improved. These results clearly show that silicon substrate produces an important impact
on the device performance. Therefore, device improvement strategies must consider both
the C2 reduction as well the increment of C1. According to Equations (1) and (2), an increase
in the SiO2 film thickness will produce a reduction in the C2 component, while a reduction
in the metal line spacing will cause an increase in C1. Moreover, a reduction in the metal
width could imply a trade-off on the device performance. Additionally, some strategies
with the aim to electrically decouple the silicon substrate from the total capacitance can be
considered for device optimization.

5. Experimental Results

The sensors fabricated with different metal line widths were measured under the
reference condition, i.e., with air in the cavity, and compared with the model defined by
Equation (4). Figure 5 shows the comparison between the measured and the modelled
capacitance vs. the metal width. As can be seen, the linear dependence observed in the
simulations is experimentally confirmed. The devices have a length of about 16.2 cm and
a fitting parameter (α) with a value of 1.6 was determined. Therefore, a sensor effective
length of about 52 cm was achieved
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Afterwards, a device with 200 µm metal line width was implemented as a liquid sensor,
as Figure 1c shows. Finally, an aqueous solution with ethanol at different concentrations
was injected into the device as Figure 6a shows and the capacitance change was measured.
Figure 6b shows the capacitance change vs. the ethanol concentration. As can be seen, the
implemented liquid sensor exhibits a capacitance change of about 12.7% in the presence
of water, which is consistent with the simulation results shown in the inset of Figure 4d.
Additionally, in the presence of ethanol solution the capacitance change is slightly increased
until 15% as the alcohol concentration is increased to 80%. These results experimentally
confirm the possibility of implementing a liquid sensor in a silicon substrate.
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6. Conclusions

A capacitive coplanar sensor device fabricated on silicon substrate has been imple-
mented for liquid sensor applications. A PDMS microcavity has been designed and bonded
to the silicon-based device with the aim of properly delivering the sample steam to the
sensor’s active area. Additionally, the main sensor capacitance components have been
analyzed and a sensor model has been developed. Furthermore, the impact of the silicon
substrate due to a parasitic capacitance component has been presented. Finally, experi-
mental sensor behavior has been demonstrated using an ethanol aqueous solution and
it is shown that the total device capacitance is increased from 12.7% for deionized water
content to 15% when 80% ethanol content is used.
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