
sensors

Article

A Tutorial on Hardware-Implemented Fault Injection and
Online Fault Diagnosis for High-Speed Trains

Xiaoyue Yang 1 , Xinyu Qiao 2 , Chao Cheng 3 , Kai Zhong 4 and Hongtian Chen 5,*

����������
�������

Citation: Yang, X.; Qiao, X.; Cheng,

C.; Zhong, K.; Chen, H. A Tutorial on

Hardware-Implemented Fault

Injection and Online Fault Diagnosis

for High-Speed Trains. Sensors 2021,

21, 5957. https://doi.org/10.3390/

s21175957

Academic Editors: Steven Chatterton

and Lang Xu

Received: 9 August 2021

Accepted: 2 September 2021

Published: 5 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Rail Transportation, Wuyi University, Jiangmen 529020, China; xyyeoh@outlook.com
2 School of Astronautics, Harbin Institute of Technology, Harbin 150001, China; qiaoxinyu2018@126.com
3 School of Computer Science and Engineering, Changchun University of Technology,

Changchun 130012, China; chengchao@ccut.edu.cn
4 Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China;

kaizhong0402@ahu.edu.cn
5 Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
* Correspondence: chtbaylor@163.com; Tel.: +86-1326-095-0111

Abstract: Electrical drive systems are the core of high-speed trains, providing energy transmission
from electric power to traction force. Therefore, their safety and reliability topics are always active in
practice. Among the current research, fault injection (FI) and fault diagnosis (FD) are representative
techniques, where FI is an important way to recur faults, and FD ensures the recurring faults can be
successfully detected as soon as possible. In this paper, a tutorial on a hardware-implemented (HIL)
platform that blends FI and FD techniques is given for electrical drive systems of high-speed trains.
The main contributions of this work are fourfold: (1) An HIL platform is elaborated for realistic
simulation of faults, which provides the test and verification environment for FD tasks. (2) Basics of
both the static and dynamic FD methods are reviewed, whose purpose is to guide the engineers and
researchers. (3) Multiple performance indexes are defined for comprehensively evaluating the FD
approaches from the application viewpoints. (4) It is an integrated platform making the FI and FD
work together. Finally, a summary of FD research based on the HIL platform is made.

Keywords: fault injection (FI); fault diagnosis (FD); hardware-implemented (HIL) platforms;
electrical drive systems; high-speed trains

1. Introduction

Over the past five decades, the rapid development of high-speed trains relying on
multiple electrical traction units has been witnessed [1–3]. Nowadays, high-speed trains
have become one of the most important transportation means thanks to their inherent
advantages such as rapidity, comfort, and high efficiency [4]. However, unexpected railway
accidents usually happen all over the word because of external and internal factors [5–7];
for example, design defects of high-speed trains and limits of usage life will induce the
faults appearing in trains and may further lead to catastrophic accidents [8–10]. To the best
of our knowledge, electrical drive systems can be viewed as the heart of high-speed trains,
whose reliability and safety are crucially important to ensure the whole train operates
safely [5]. Therefore, fault diagnosis (FD) for electrical drive systems is always an active
topic from theoretical and practical researchers in the transportation field [6].

In order to investigate FD issues for electrical drive systems of high-speed trains,
two key steps involved are: (1) fault injection (FI) which can replicate faults in a true
manner [11], and (2) FD which can successfully and rapidly detect and diagnosis faults [5].
The first step can simulate various faults appearing in electrical drive systems on the one
hand and provide sufficient data sets for fault analysis and experimental verification on
the other hand [12]. Based on first principles or collected data sets from high-speed trains,
to design reasonable and effective algorithms is the second step for online FD purposes [5].

Sensors 2021, 21, 5957. https://doi.org/10.3390/s21175957 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-7893-3917
https://orcid.org/0000-0003-4963-7283
https://orcid.org/0000-0001-5858-5193
https://orcid.org/0000-0002-8600-9668
https://doi.org/10.3390/s21175957
https://doi.org/10.3390/s21175957
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21175957
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21175957?type=check_update&version=2


Sensors 2021, 21, 5957 2 of 14

Initially applied to the centralized systems, especially dedicated fault-tolerant com-
puter architectures in the early 1970s, FI is widely used to evaluate the fault-tolerant
performance and injects the artificial faults into the system of interest [13]. The FI design
can speed up the occurrence of faults to observe the system changes and also provides a
way for analyzing the efficiency of new fault FD mechanisms [14]. Up to now, there are
three major categories of FI techniques: hardware-based, software-based and emulation-
based [15]. The hardware-based FI method involving the extra hardware, which is specially
designed, allows injecting faults into the target system. This technique works efficiently
for large-scale-integration circuits but meanwhile introduces a high risk of damage for the
target system. The software-based method is targeted to applications in operating systems,
and it cannot inject faults into the inaccessible location of software. Unlike the former
two methods, the detailed simulation model is crucial for the emulation-based method,
which leads to a maximum amount of observability and controllability, whereas model
development is time-consuming and inaccurate. These FI methods mainly concentrate on
evaluating the dependability of microelectronics systems or software programs [16]. Nev-
ertheless, apart from the microelectronics system, a traction control system (TCS) consists
of the power electronic and mechanical parts [17].

Nowadays, the hardware-in-the-loop (HIL) technique is widely applied to the power
system field, which requires the entire system to be modelled inside the real-time simulator
and does not involve external interfacing or input/output. In fact, the primary goal of HIL
simulation is testing of the physical controller (including the hardware design and control
strategy). A real-time simulator needs to solve the model equations for a one-time step
within the same time in a real-world clock. If the execution time for the simulation of the
system is shorter than or equal to the selected time-step, the simulation is considered to be
real-time. The study [18] presents an HIL platform to simulate the open-switch fault of one
rectifier in TCS, which aims to verify the proposed FD method. In [12], a multiprocessor
HIL-based FI is proposed for real-time simulation of faults in traction control systems, and a
timing optimization method is proposed to deal with overruns induced by real-time FI.

Generally, the current FD methods for electrical drive systems of high-speed trains
can be definitely divided into three categories: signal analysis-based, model-based and
data-driven methods [5,19]. For signal analysis-based strategies, the difference between
nominal and fault statuses reflected in time domain [20], frequency domain [21] and time-
frequency domain [22], are desirable features used for the FD purposes. As pointed out
in [6], the commonly used FD method in practice is the so-called human inspection, which
belongs to signal analysis-based methods. Based on a well-established system model
of electrical drive systems, model-based methods can effectively perform FD tasks via
designing residual generators [23]. Most recently, data-driven FD methods for electrical
drive systems of high-speed trains have been intensively developed and widely accepted
because of their simplicity of design and ease of implementation [24].

In the previous studies, FI and FD are independently and separately designed, which
poses inevitable difficulties in the validation of online FD algorithms. Motivated by
the aforementioned observations, the main contributions of this paper are summarized
as follows:

1. Introduce an integrated validation platform where FI and FD can work together in
real time.

2. Base an evaluation system for FD systems where various performance indexes
are defined.

3. Review the data-driven FD literature whose verification is based the designed
HIL platform.

The rest of this study is organized as follows. Section 2 describes the preliminaries
of electrical drive systems, typical fault types, and the objective pursued in this paper.
Section 3 details the FI methodologies using hardware-implemented manners. Based on
the existing FD research, Section 4 summarizes the FD algorithms together with imple-
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mentation procedures. Section 5 concludes this paper with future work and promising
research directions.

2. Background

In this section, preliminaries of electrical driven systems, associated with various
faults, will be described, followed by the objectives this work is dedicated to.

2.1. Electrical Drive Systems of High-Speed Trains

In this study, the CRH2A-type high-speed train is taken into consideration in which
four traction systems provide traction power of the entire train [4]. As presented in [2],
the traction system is one core unit consisting of a three-level source inverter (VSI), four
induction motors, a traction control unit (TCU), filters, etc. Its control strategy is space
vector pulse-width-modulation (SVPWM), and the corresponding schematic diagram is
depicted in Figure 1.
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Figure 1. The schematic diagram of electrical drive systems in high-speed trains [24].

In the traction system of CRH2A-type high-speed trains, six sensors are equipped to
collect real-time observations that will be used as the input of both the double proportional
integral (PI) controller and the supervision unit. After setting a given traction speed, TCU
can achieve expected performance by adjusting gate control signals of VSI based on the
SVPWM strategy. By comparing online samplings and the corresponding pre-designed
thresholds, the supervision unit adopted in the existing high-speed trains may not be
effective for successful detection of parts’ faults, and then an auto-protecting mode will be
activated [2]. Actually, either high missing alarm ratios (MARs) or high false alarm ratios
(FARs) in traction systems of high-speed trains will lead to unsatisfactory FDD results and
should be prohibitive. An acceptable trade off between MAR and FAR should be at least
achieved for FDD in traction systems of high-speed trains.

2.2. Fault Types

For the electrical drive systems of high-speed trains, there are different ways to judge
which category one fault belongs to. For example, fault types can be determined depending
upon fault amplitude [24], fault location [11] and fault-duration time [25].

According to the fault location, faults in electrical drive systems could be divided into
into the following four scenarios:

1. Sensor faults: Faults may happen in voltage sensors, current sensors, speed sensors,
temperature sensors, etc.

2. Converter faults: Aging components such as performance degradation of capacitance,
short- and open-circuit of insulated-gate bipolar transistors (IGBTs) are common faults
appearing in traction converters.

3. Motor faults: Rotor-broken bar, air-gap eccentricity, together with interturn-short
circuits will induce faults in traction motors.

4. Control-unit faults: Errors in both analog and digital signals are responsible for faults
in traction control units.

According to the appearance time of faults, two categories are summarized as follows:
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1. Permanent faults: Some hardware malfunctions such as open circuit of IGBT and gear
war belong to the permanent faults.

2. Intermittent/Transient faults: These faults appear, disappear and reappear nondeter-
ministically, and the duration time is short such that important features are difficult
to be captured [26].

In addition, faults in electrical drive systems can be categorized into three types based
on their amplitudes:

1. Incipient faults: This type of fault is usually characterized by small amplitudes, tiny
influences and common faults as time goes on [24]. These faults in electrical drive
systems of high-speed trains are, for example, sensor faults and aging components.

2. Common faults: There are some kinds of faults that have larger amplitudes than
incipient faults and at the same time affect the performance of trains in a considerable
means. Timely maintenance is necessary when they occur.

3. Failures: The failure means malfunctions of components or systems. It usually results
in system performance far from the acceptable operation. The broken IGBT will
distort three-phase currents, causing degraded traction efficiency.

2.3. Objectives

Based on preliminaries of electrical driven systems and fault types [27], the proposed
HIL platform can simulate a variety of failure scenarios in electrical drive systems of
high-speed trains. It can effectively avoid the following problems: (1) Design the extra
hardware in hardware-based fault injection technology; (2) Real-time debugging difficulty
in software-based fault injection technology. It fully provides the experimental verification
convenience for peers. It contributes to the objective and comprehensive evaluation of
the proposed fault diagnosis algorithm. At the same time, it is possible to transform the
research results into practical applications or give technical guidance for engineers.

3. Fault Injection Methodology
3.1. Signal-Based Fault Injection Methods

As mentioned in Section 2, among the four main components of traction systems,
there are some typical electronic-subsystems and mechanical equipment, such as IGBT in
converters, monitoring or communication modules in TCU and rotors in traction motors.
These subsystems maintain the stable operation of TCS, while they may also malfunction.
Some faults are attributed to inaccuracy during the development, while others can originate
from external causes such as production process defects or environmental stress (including
heating, electromagnetic, mechanical stress, etc.). Once fault occurs, the electrical charac-
teristics of faulty components are distinct from the normal status, and these changes are
directly reflected in the output signals.

As mentioned in Section 2, the fault scenarios can be described qualitatively regarding
the measurements. In order to generate the artificial fault scenarios, the signal-based fault
injection method is introduced, providing the observable signals for FD as well as the
associated fault prognosis.

For a faulty component or subsystem, its D fault types can be written as:

f = { f1, · · · , fi, · · · , fD} (1)

where i = 1, · · · , D. According to the fault fi of consideration, a set of corresponding
signals will be generated. Based on the characteristics such as time and amplitude, the fault
signal f (t) can be defined as follows:

(1) If f (t) is the transient fault, then

f (t) = ε(t− ts)− ε(t− te) · λ{aj}. (2)
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(2) If f (t) is the intermittent fault, then

f (t) =
N

∑
j=1

nj

∑
j=1

[ε(t− (Tj+1 + τj · ρj)− Tj − ε(t− Tj+1))] · λ{aj}. (3)

(3) If f (t) is the permanent fault, then

f (t) = ε(t− ts) · λ{aj}. (4)

From (2) to (4), ε signifies the step function; ts is the activation time of faults; λ{·}
represents the threshold function for selecting analog or digital signals; aj means the
amplitude of impulses. For the intermittent-fault cases, N is the total number of impulse-
sequence types; j represents the index of the category of impulse sequences; nj means the
number of pulses; τj denotes the period of the j-th impulse sequence; ρ is the duty cycle
of impulse sequences. In fact, (2)–(4) cover a spread spectrum that can describe transient
faults, intermittent faults and permanent faults.

Along with the aforementioned descriptions, the framework of the signal-based FI
method is shown in Figure 2, where the FI manager controls the injection process. First,
the fault scenarios of the tested subsystem or components are analyzed, and the FI point A is
determined. Hence, the original signal S0 will be obtained. Based on the fault types (which
will be injected into the subsystem) confirmed by user instructions, the activation module
then provides the activation time of the faults. After that, the fault signal f described
by (2)–(4) is determined by the fault library. By this means, the fault injection signal S f
can be obtained by the signal conditioning operator. Specifically, the signal conditioning
operator consists of three kinds of operators (i.e., the adder, multiplier and multiplexer).
Because subsystems/components are connected by the wires, the FI point can be split into
A and A′. As depicted in Figure 2, the FI is placed between the real and target subsystems.
Consequently, the input signal of the target subsystems/components is replaced by the FI
signal, and thereby the signal-based FI targets can be implemented.

Figure 2. The framework of the signal-based FI method.

3.2. Hardware-in-the-Loop Fault Injection for Traction Systems

For the purpose of realizing the HIL fault injection, this work takes into consideration
the following aspects:
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(1) A real-time simulation of models consumes a large amount of FPGA resources, espe-
cially for power electronics-based apparatus. However, not all models are required
for such a short execution time.

(2) High FPGA resources will be consumed when the FI signals are inserted.

Based on a multiprocessor structure, the work will present an HIL fault injection
platform for electrical drive systems with consideration of the two above mentioned
aspects. As shown in Figure 3, the HIL-based FI structure consists of a master-slave system
based on multi-FPGAs/CPUs, physical TCU, signal modulation module, host PC, fault
scenarios library, D/A and digital I/Os, Gigalink and peripheral high-speed bus (PHS).
Besides, the variable transmission between FPGA and CPU is implemented by the PHS bus.

Figure 3. Schematic views of multi-FPGAs/CPUs HIL platform for real-time fault injection.
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4. Fault Diagnosis Methodology

This section will first develop the fault detection strategies including how to extract
the fault features and how to establish the test statistics. Second, by the use of these
fault features, several fault diagnosis strategies will be formulated. Based on the results
including fault detection and FD, a comprehensive evaluation index will be obtained.

4.1. Fault Detection

Let the number of all measurement variables z be kz. When a fault fi(k) appears in
electrical drive systems, unexpected deviations will be reflected in z such that

z f (k) = z(k) + Ωi fi(k) (5)

where k represents the sampling step, Ωi is the matrix signifying the fault direction, ‖ fi‖
describes the deviational magnitude caused by fi and the subscript “ f ” means different
faulty conditions [24].

In (5), z reflects the uncertainty caused by the surrounding noises and external dis-
turbances that are unknown beforehand in practical applications. Whilst, Ω f results in
unexpected deviations on z.

For the fault detection purpose, we consider the high-speed trains to work under
a steady condition, i.e., at a given traction speed. Furthermore, the moving-window
technique is used for enlarging the fault features. Due to the simplicity, the stacked data
in a certain size of the moving window is defined as its original form. To detect the fault
occurring in electrical drive systems, two necessary steps are:

(1) To extract fault features that are helpful for addressing high-frequency (online) data.
(2) To define a test statistic, based on which a reliable detection result of faults can

be returned.

4.1.1. Data-Driven Feature Extraction

Some important features are hidden in the measurement signals, as summarized in
Table 1. Among them, the mean, covariance and slope are employed in our designed
platform to detect and diagnose different faults. Remarkably, the slope is an important
index that can be utilized for determining incipient faults.

Table 1. Key signal features and data processing approaches.

Features Approaches

Mean Expectation operation
Variance/covariance Principal component analysis
High-order statistics Independent component analysis

Correlation Canonical correlation analysis
Slope First-order difference

Entropy Mutual information
Waveform index Wavelet transform

Root mean square Partial least squares

For achieving online fault detection tasks where both sampling frequency and dimen-
sion of signals are high, principal component analysis is used for improving computation
efficiency. Therefore, z(k) on the principal and residual subspace become

ẑ(k) = PpPT
p z(k)

z̃(k) = PrPT
r z(k)

(6)
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where ẑ(k) and z̃(k) are respectively principal and residual components of z(k); Pp ∈ Rkz×kp

and Pr ∈ Rkz×(kz−kp) are the loading matrices which are obtained via

E((z−E(z))2) = [Pp Pr]

[
Λp 0
0 Λr

]
[Pp Pr]

T . (7)

In addition, kp represents the number of principal components and satisfies kp � kz.
The information of measurement variable z(k) is reflected in the variance. It should be
noted that z(k) obeys Gaussian distribution. As mentioned in [24,28,29], the operation
of traction systems is accompanied by non-Gaussian signals. In order to deal with the
measured non-Gaussian signals, independent component analysis (ICA) is adopted in FDD
of traction systems. Therefore, the hidden statistically independent components can be
extracted by

ŝ(k) = Wz(k)

s.t. maxM(ŝ(k))
(8)

where ŝ(k) is the estimation of independent components;M is the non-Gaussian measure-
ment function, whose function is detailed in [30].

Different from the PCA and ICA approaches, canonical correlation analysis (CCA)
is to find the maximum correlation between system input and output. Then, canonical
variables are extracted among measured signals. Suppose that the model has input vector
uo ∈ Rl and output vector yo ∈ Rm such that[

uo
yo

]
∼ N

([
uu
uy

]
,
[

Σu Σuy
ΣT

uy Σy

])
(9)

where Σ is covariance matrices. Then, the correlation evaluation is defined as

Ξ = Σ−1/2
u ΣuyΣ−1/2

y . (10)

Based on an SVD on Ξ, the matrix Ξ can be decomposed as

Ξ = ΓΣRT (11)

with Γ = (γ1, . . . , γl), Σ =

[
Σκ 0
0 0

]
, R = (r1, . . . , rm). where κ is the number of principal

components, Σκ is canonical correlation matrix [31]. Then, the canonical correlation vectors
are given as

J = Σ−1/2
u Γ ∈ Rll

L = Σ−1/2
y R ∈ Rmm (12)

Obviously, CCA method maintains the following properties [32]

ΓΓT = Ikzu , RTR = Ikyy , JTΣuyL = ΣLT,

ΣT
uy = ΣTJTΣu, JTΣy = ΣLTΣy.

(13)

The three methods mentioned above have shown superior performance in static FDD.
However, as the system state (such as the controller adjust the operation), the data will
have dynamic characteristics [33]. Therefore, dynamic fault diagnosis methods have been
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widely used in high-speed trains [34]. The state space model of the traction system can be
defined as [6]:

x(k + 1) = Ax(k) + Bu(k) + w(k)

y(k) = Cx(k) + Du(k) + v(k)
(14)

where x ∈ Rmx is the state of electrical drive systems. In general, w ∈ Rmx and v ∈ Rmy

are noise sequences and are normally distributed. Matrices A, B, C, D are appropriately
dimensioned in electrical drive systems. Specifically, the matrices are the change in angular
velocity at different times. For example, the matrice A is given as

A =


−Rr L2

m−Rs L2
r

σLs L2
r

0 Rr Lm
σLs L2

r

Lmωr
σLs

0 −Rr L2
m−Rs L2

r
σLs L2

r
− Lmωr

σLs
Rr Lm
σLs L2

r
LmRr

Lr
0 − Rr

Lr
−ωr

0 LmRr
Lr

−ωr − Rr
Lr

, (15)

where ωr is the motor rotor speed, and σ is the coefficient of magnetic leakage which
can be obtained by σ = (LsLr − L2

m/(LsLr)). Ls, Lr and Lm are inductance in stator side,
inductance in rotor side and mutual inductance of motor, respectively. Rr and Rs are
resistance in stator side and in rotor side, respectively. Obviously, matrix A shows that
parameters change in real time. Therefore, it is significant to adopt dynamic methods for
diagnosing faults in electrical drive systems.

Next, the following three notations are introduced to describe electric drive systems
of high-speed trains:

ws(k) =
[
wT(k− s) · · ·wT(k)

]
∈ R(s+1)n

Ωk = [w(k) · · ·w(k + N − 1)] ∈ Rn×N

Ωk,s = [w(k) · · ·w(k + N − 1)] = [Ωk−s · · ·Ωk]
T ∈ R(s+1)n×N

(16)

where s and N are some integers.
Based on the parity space approach, the state space model (14) of electric drive systems

is re-written as

Yk,s = ΓsXk−s + Hu,sUk,s + Hw,sWk,s + Vk,s ∈ R(s+1)my×N , (17)

Xk−s = [x(k− s) · · · x(k− s + N − 1)], Γs =
[
CT(CA)T · · · (CAs)T

]T
,

Hu,s =


D 0 · · · 0

CB
. . . . . . 0

...
. . . . . .

...
CAs−1B · · · CB D

, Hw,s =


D 0 · · · 0

C D
. . .

...
...

. . . D 0
CAs−1 · · · C D

,
(18)

where Γs ∈ R(s+1)my×mx , Hu,s ∈ R(s+1)my×(s+1)mu , and Hw,s ∈ R(s+1)my×(s+1)mu . Hw,sWk,s +
Vk,s represents the noise of electric drive systems.

The state space model (17) can be further written into[
Uk,s
Yk,s

]
=

[
I 0

Hu,s Γs

][
Uk,s
Xk−s

]
+

[
0

Hw,sWk,s + Vk,s

]
. (19)

Construct

Z f =

[
Uk,s
Yk,s

]
, Zp =

[
Uk−sp−1,sp

Yk−sp−1,sp

]
. (20)
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where Z f and Zp represent future and past collected data, respectively. Therefore, LQ
decomposition is performed on the data set Zp

Uk,s
Yk,s

 =

 L11 0 0
L21 L22 0
L31 L32 L33

 Q1
Q2
Q3

, (21)

where  Q1
Q2
Q3

[ QT
1 QT

2 QT
3
]
=

 I 0 0
0 I 0
0 0 I

. (22)

Finally, Uk,s and Yk,s is expressed as

Z f

[
Zp

Uk,s

]T

=

[
L21 L22
L31 L32

][
L11 0
L21 L22

]T

, (23)

Yk,s =
[

L31 L32
][ Q1

Q2

]
+ L33Q3. (24)

In a word, the dynamic method maps the input and output data into several stacking
matrices to establish the system model. In addition, the high-speed train is vulnerable
to external interference and condition switching, such as acceleration and deceleration.
Therefore, the internal parameters change in real time, so that the dynamic method is
more appropriate in electric drive systems. Compared with static methods, it is often not
rigorous enough to deal with such situations.

4.1.2. Definition of Test Statistics

Based on the obtained features of signals, two test statistics, the T2 and squared
prediction error (SPE), are defined at k-th time instance as follows

T2(k) = zT(k)PpΛ−1
p PT

p z(k)

SPE(k) = zT(k)(Ikz×kz − PpPT
p )z(k)

(25)

Then a reliable fault detection task can be achieved according to the following bi-
nary decision

Fault and alarm⇐= T2(k) ≥ Jth,T2 or SPE ≥ Jth,SPE

Fault-free⇐= otherwise
(26)

where Jth signifies the threshold of test statistics. In practical scenarios, the flood of false
alarms must be prohibited so that the detection results can provide the conductor an
auxiliary and effective indicator. Therefore, determining proper thresholds is usually
accomplished via abundant tests [6]. It should be pointed out that the distribution of test
statistics, such as the Chi-square distribution, cannot be directly used as a look-up table
because z(k) is non-Gaussian.

4.2. Fault Diagnosis

In addition, taking PCA as an example, ẑ(k) and z̃(k) under faulty cases will be

ẑ f (k) = ẑ(k) + PpPT
p Ωi fi(k),

z̃ f (k) = z̃(k) + PrPT
r Ωi fi(k).

(27)
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As shown in (27), the necessary condition that fi can be detectable and diagnosable is

PPT 0 Ωi (28)

where 0 denotes the non-orthogonality between two spaces. After the fault being detected
successfully, then the objective of fault diagnosis is

max Pr( f ∈ fi|PPTΩi f ), (29)

or
max Pr( f ∈ fi|Ωi f ) (30)

where Pr(·) is the probability.
In fact, the implementation of (29) is depended upon the fault feature; whilst the

formulation of (30) is directly based on fault information hidden in original signals.

4.3. Comprehensive Evaluation Indices

At present, comprehensive evaluation indexes of FD can be considered from two
dimensions in electrical drive systems: (1) the actual engineering indexes are analyzed
to understand the engineering requirements; (2) the differences of performance indexes
among the methods are verified in the laboratory. The following two dimensions are
introduced in detail.

In practical engineering, FD is also called quality evaluation in electrical drive systems.
The main method of quality evaluation is to determine the fault level by the score of the
evaluation. Specifically, it is divided into the following steps:

Step 1: Standards of fault deduction. The identified faults include four types: A, B, C
and D. Among them, 5 points will be deducted for class A, 10 points for class B, 20 points
for class C and 100 points for class D. Partial score standards of faults of electrical drive
systems are listed in Table 2.

Table 2. Evaluation standards of electrical drive systems.

Standards of Quality
Faults Types

A B C D

Main transformer
and its cooling Poor cleaning Loose wiring,

and invalid desiccant
Abnormal fan rotation and
low liquid level or oil spill

Traction
converter faults

Traction converter
and its control Poor cleaning Loose wiring,

and invalid desiccant
Abnormal fan rotation
and traction converter faults None

Traction motor
and its cooling

Poor installation
of oil filling plug
and unstable
cooling duct

Loose fittings, broken
wiring, missing oil
injection plug and
blocked exhaust

Loose and damaged
power line,
sensor and wiring

Cracked mount
and bad motor

Auxiliary
converter

None None One dysfunction Two dysfunctions

Step 2: According to Table 2, the quality score of electrical drive systems can be given

True score = 1000− Fault score× 8. (31)

where the true score must not be negative, and the full score for quality is 1000 points.
Step 3: Based on the true score, the evaluation list of electrical drive systems is

presented in Table 3.
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Table 3. Fault level results of electrical drive systems.

Fault Levels True Scores

A 900–1000
B 800–899
C 700–799
D 699 or less

Step 4: Finally, engineers repair the damaged parts according to the true score.
The above steps can effectively provide more direct maintenance for electrical drive

systems in the actual project, which is helpful to help engineers identify different fault
levels. In addition, in order to further measure the superior performance of different
algorithms, the following comprehensive evaluation indicators of false alarm rate (FAR)
and missing alarm rate (MAR) are given in the laboratory.

FAR is defined as the probability that normal operations are judged to be faulty, which
can be expressed as

FAR = P(J > Jth| f = 0), (32)

where J is the test statistic or evaluation function to measure the system. Generally, there
are different definitions of J about the requirements of the system [35]. For example, J
has `2-norm, root square mean, `∞-norm and other forms to provide a more accurate
measurement standard. Jth is represented as a threshold. The setting of Jth is directly
related to J. In fault detection, FAR has important physical meaning to some extent.

MAR is defined as the probability that faults are not successfully detected, which can
be expressed as

MAR = P(J < Jth| f 6= 0). (33)

Compared with FAR, MAR is concerned with the fault detection ability of the system
in case of fault.

Hence, it is helpful to the scientific research and engineering application of HIL to
select the appropriate evaluation indices based on the actual engineering needs.

4.4. An Overview of FD Methods

The HIL-based platform has been widely used by a large number of experts and schol-
ars to verify the effectiveness of the proposed FD methods [36–38]. From the perspective
of model-based diagnosis method, a real-time FD method for sensors and IGBTs of the
impulse rectifier is proposed in [39]. It is based on the structural analysis of electrical drive
systems whose structural model has been established. The structural model under various
fault conditions is evaluated and optimized. In [11], an FI strategy for safety testing and
FD verification is presented in the electrical drive control systems. By simulating fault
scenarios, the influence of fault signals on the system is analyzed from the perspective of
mechanism. The FI strategy based on signal adjustment is adopted to pave the way for
subsequent data-driven FD experiments.

As a common abnormality of the electrical drive systems, the incipient fault has
always been an international problem that needs to be solved urgently. Since it is hard to
identify the existence of incipient faults from the perspective of model-based diagnosis
method, data-driven fault diagnosis method has been widely concerned, and a large
number of research results are published [40,41]. Aiming at the crowding problem caused
by incipient fault, a fault detection and diagnosis method is proposed based on probability-
relevant PCA [25]. The effectiveness of the proposed method is verified in incipient FD by
using HIL platform. In [42], considering the heterogeneity of sensor distribution, a multi-
blocks system monitoring scheme is proposed. In the experimental verification, HIL is
used to compare the performance on the different comprehensive evaluation indexes.
For multimode fault detection, a just-in-time-learning aided CCA is proposed in [31] by
using the system modal change of HIL platform, which overcomes the traditional method
in the single working condition process.
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In summary, the HIL platform provides an integration of environment of FD and FD,
which improves the possibility for the practical application of advanced theoretical methods.

5. Conclusions

In this paper, an HIL-based platform has been developed for simulating the realistic
faults in electrical drive systems of high-speed trains. Then FD algorithms have been tested
to detect the obtained faults, whose performance can be evaluated via comprehensive
indices. This platform is an integrated design that covers both FI and FD techniques,
providing engineers or researchers with a reliable simulation system. The design platform
is developed based on an electrical drive system of CRH2-type trains. The abundant
attempts of FD have illustrated its effectiveness and feasibility. In the coming ten years,
the authors believe that, based on this tutorial, there will be lots of follow-up publications
and applications. It can not only analyze the electrical fault of the electric drive system but
also identify the mechanical fault.
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