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Abstract: Wireless sensing can be used for human identification by mining and quantifying individual
behavior effects on wireless signal propagation. This work proposes a novel device-free biometric
(DFB) system, WirelessID, that explores the joint human fine-grained behavior and body physical
signatures embedded in channel state information (CSI) by extracting spatiotemporal features. In
addition, the signal fluctuations corresponding to different parts of the body contribute differently
to the identification performance. Inspired by the success of the attention mechanism in computer
vision (CV), thus, to extract more robust features, we introduce the spatiotemporal attention function
into our system. To evaluate the performance, commercial WiFi devices are used for prototyping
WirelessID in a real laboratory environment with an average accuracy of 93.14% and a best accuracy
of 97.72% for five individuals.
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1. Introduction

Presently, developments in wireless sensing technologies have shown that wireless
signals can be deployed to transmit information between wireless communication devices
and are also able to realize object wireless sensing [1]. Movements of individuals within
the coverage of wireless signals will inevitably impact signal propagation. These effects on
wireless signals are recorded as channel state information (CSI). The mining and quantify-
ing of such effects in CSI without additional sensors such as cameras, radars, or wearable
devices are the main focus of device-free wireless sensing (DFWS).

Biometrics or biological recognition is the automatic identification of individuals by
quantifying their biological and behavioral characteristics [2]. Pioneering studies have
explored the inherent influence of the human body or human behavior on wireless signal
propagation to recognize individuals using commercial WiFi, which is typically referred to
as device-free biometrics (DFB).

1.1. Motivation

Previous attempts at DFB have mainly focused on biometric features such as gait [3,4],
respiration [5], and radio biometrics [6]. Although bandwidth is limited, WiFi still exhibits
similar functions to those of radar in terms of indoor sensing. Yunze Zeng et al. [3]
demonstrated that the gait information of an individual hidden in the CSI is sufficient for
confirming his/her identity. Wei Wang et al. [4] performed time–frequency transformation
on the CSI waveform to obtain a spectrogram to extract walking patterns. Jie Wang et al. [5]
proposed an empirical mode-decomposition-based general DFI framework to extract
intrinsic features for DFB. Differences in individual physical characteristics (such as height
and weight, body water content, skin conditions, and other biological tissues) cause
differential interference with wireless signal propagation [6]. Based on the above insights,
Qinyi Xu et al. [6] utilized a time-reversal (TR) technique to explore the radio biometrics of
different individuals for DFB.
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The above works aimed to identify the unique biometric characteristics (behavioral
or physical signature of individuals) hidden in CSI. The objectives of these works are
either to discover the characteristics of the coarse-grained behavior itself or to discover
the characteristics of the physical characteristics of the human body without considering
them as a single entity. Practically, when a person makes a gesture, it will inevitably lead
to the movement of other parts of the body, which together with the stationary part of
the body causes a disturbance in wireless signal propagation. Motivated by the above
insight, in this work, we propose a novel DFB system, WirelessID, that explores the joint
human fine-grained behavior and body physical signatures embedded in CSI by extracting
spatiotemporal features. In addition, the signal fluctuations corresponding to different parts
of the body contribute differently to identification performance. That is, different parts of a
CSI sample and different CSI series contribute differently to the features. Inspired by the
success of the attention mechanism [7] in computer vision (CV), thus, to extract more robust
features, we introduce the spatiotemporal attention function into our deep model that
automatically assigns weight according to its importance for performance improvement.

1.2. Contributions

The main contributions of this work are as follows:

• We leverage, for the first time, the joint human fine-grained behavior and body
physical signature embedded in CSI for human identification;

• We propose a novel DFB system, WirelessID. To evaluate the performance, commercial
WiFi devices are used for prototyping WirelessID in a real laboratory environment.
The recognition rate of the test has an average accuracy of 93.14% and a best accuracy
of 97.72% for five individuals.

1.3. Organization

The remaining structure of this work is organized as follows. We introduce the related
work in Section 2. In Section 3, the system architecture of WirelessID is elaborated, focusing
on two modules: sensing signal acquisition and preprocessing; spatiotemporal feature
extraction. This is followed by experiments on the performance evaluation of WirelessID
with a discussion, given in Section 4. We conclude this work in Section 6.

2. Related Work
2.1. Human Identification

Human identification is the basis of various applications, such as smart homes and
security. In existing systems, cameras and radars are commonly used sensors for identity
recognition. The static features hidden in fingerprint [8], iris [9], and face [10] images are
mined and used for identity recognition, while radars or cameras capture the dynamic
characteristics of the human body in the gait for identification [11–13]. The high cost limits
the popularity of radar systems in daily life. Ordinary cameras are inexpensive and easy to
deploy, but have a high risk of privacy leakage. Compared with the sensing techniques
mentioned above, wireless sensing does not require special sensor equipment, can control
privacy disclosure to a low level, can function normally in smoky or dark environments,
and represents important technical support for achieving ubiquitous sensing [1]. Cur-
rently, researchers from industry and academia are actively promoting wireless sensing
technologies for human identification [3–6,14]. Inspired by their positive results, this
work explores identity recognition by mining the unique patterns of individuals hidden in
wireless sensing signals.

2.2. Device-Free Wireless Sensing for Human Detection

WiFi signals contain plentiful information, such as time of arrival (ToA), angle of
arrival (AoA), and CSI, that can be used to achieve various functions similar to radar
systems [15]. The achievements in this field are roughly divided into model-based meth-
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ods (such as the Fresnel model) and data-driven/pattern-based methods (such as deep
learning), which we introduce respectively below.

2.2.1. Model-Based Methods for DFWS

By mapping the relationship between signal fluctuations and human activities in the
area surrounded by wireless signals, the model-based method realizes DFWS [16]. The
Fresnel zone model was introduced into DFWS to characterize the properties of wireless
signal propagation, thereby realizing respiration detection [17]. CARM proposed two
models: the CSI-speed model and the CSI-activity model for human activity recognition
by modeling the relationships among the frequencies of CSI power variations, the human
movement speeds, and a specific human activity [18]. Model-based methods have been
successful in some specific application scenarios with special designs. With the success of
deep learning in computer vision (CV), ubiquitous sensing methods are expected to be
realized. Data-driven DFWS is becoming a research hotspot.

2.2.2. Data-Driven Methods for DFWS

Deep neural networks were originally designed to handle image classification and
recognition problems in CV. For this, X. Wang et al. transformed AoAs estimations into
images to train a DCNN for indoor localization [19]. CsiGAN was proposed to solve the
classification problem of categories not included in the training set by using the generative
adversarial network (GAN) to generate diverse fake samples [20]. Another WiFi sensing
problem is that when people walk out of the best sensing area, the sensing performance
will drop sharply. To solve this problem, F. Wang [21] proposed to construct multiple
separated antenna pairs to enhance spatial diversity. The above works are to improve the
ability of WiFi sensing from the perspective of information sensing and data enhancement
and further to extract highly distinguishable features by deep models.

2.3. Attention Model

Human visual attention was studied by Rensink [22] in 2000. Ten years later, it was
introduced into CV by Hinton et al. [23] and Denil et al. [24]. Since then, the attention
mechanism has been widely used in CV and proven to be successful in various applica-
tions, such as video description [25,26], activity recognition [27], and object recognition [28].
Humans exploit a sequence of partial glimpses and selectively focus on the salient parts
to capture the visual structure better [28]. F. Wang et al. [29] incorporated an attention
mechanism with a CNN to obtain attention-aware features for improving the image clas-
sification performance. Instead of deeply embedding the attention map operation in the
CNN model, CBAM [28] built a convolutional block attention module that can cooperate
with any existing CNN architecture in a plug-and-play manner. CBAM learned spatial
and channel-wise features by exploiting the interspatial relationship of features and the
interchannel relationship of features, respectively. By exploiting the intertemporal relation-
ship of features, the attention mechanism was extended to the temporal domain [30,31].
For example, Bengio et al. [30] achieved attention allocation by the weighted sum of the
intermediate outputs of an RNN for machine translation.

These attention models learn to select the most relevant part of the data for the task im-
plicitly. Inspired by them, this work explores the use of the spatiotemporal attention mecha-
nism in DFWS to refine the spatiotemporal features and improve recognition performance.

3. WirelessID

As shown in Figure 1, the device-free human identification process of WirelessID
mainly contains three stages: (1) sensing signal acquisition and preprocessing; (2) spa-
tiotemporal feature extraction; (3) human identification. The details of each part are
presented below.
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Figure 1. Architecture of Wireless ID.

3.1. Sensing Signal Acquisition and Preprocessing

Currently, wireless channels can be measured by commercial WiFi devices. x(t) and
y(t) represent the transmitted and received signals at time t, respectively. CSI can be
expressed as H( f , t) = Y( f , t)/X( f , t), where X( f , t) and Y( f , t) are frequency domain
representations of x(t) and y(t), respectively [18].

Taking into account the multipath effects on the wireless signal in the sensing area,
CSI can be formulated as follows [32]:

H( f , t) =

(
N

∑
n=1

αn( f , t)e−j2π f τn( f ,t)

)
ejε( f ,t), (1)

where N indicates the total number of paths, αn( f , t) and τn( f , t) are the complex atten-
uation and propagation delay of the nth path, respectively, and ejε( f ,t) is the phase shift
caused by timing alignment offset, sampling frequency offset, and carrier frequency offset.

To reveal the Doppler frequency shift (DFS), which is similar to what is observed in
Doppler radar results [4], a transformation of CSI is formulated as follows [32]:

H( f , t) =

(
Hs( f ) + ∑

n∈Pd

αn(t)ej2π ∫ t
−∞ f Dn (u)du

)
× ejε( f ,t), (2)

where Hs( f ) is the sum of CSI for all static paths (without DFS) and Pd is the set of dynamic
paths caused by target movements (with DFS).

Due to the imperfections of commercial WiFi devices, the raw CSI data are always
noisy. The signal fluctuations caused by human behavior are submerged in noise. As the
signal fluctuations in the OFDM subcarriers are correlated, we used a principal component
analysis (PCA)-based denoising algorithm [18] before a further denoising process through
conjugate multiplication of the CSI of two antennas [32,33]. We performed a short-term
Fourier transform (STFT) on the denoised CSI data to obtain DFS [18]. Nonzero DFS is
caused by human fine-grained behaviors (including human gestures and such movements
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introduced by other parts of the body). Only the spectrograms of nonzero DFS were then
used for spatiotemporal feature extraction.

3.2. Spatiotemporal Feature Extraction

Wireless signals are inherently deficient in spatial resolution, which means that all
signal fluctuations caused by human behavior are difficult to capture and record in the CSI.
This problem can be solved to a certain extent by using multiple antennas and multiple
subcarriers. However, the sensing data are usually high-dimensional. The capability of
deep learning (DL) to automatically learn forceful features at multiple levels of abstraction,
rather than relying entirely on artificially constructed features, is becoming increasingly
important with the continuing growth in the data size [34]. Based on the above insights,
we chose DL for CSI feature extraction. To learn more robust features for improving
identification performance, our feature extraction module contains two submodules: an
attention-spatial module and an attention-temporal module, which obtain spatial features
and temporal features by the convolutional neural networks and long short-term memory
model, respectively. The details of the CNN and LSTM with the attention approach are
presented below.

3.2.1. Attention-Spatial Model

Multiwireless link sensing enhances spatial resolution, and the spatial information
is hidden in the high-dimensional CSI data. By performing the convolution operation
(operated by multiple filters) of CNN [1] on a spectrogram, spatial features can be obtained.
Additionally, different frequency components and other signatures in the spectrogram
contribute differently to the maximization of recognition performance. In other words,
certain frequency components play a major role in recognition. An attention mechanism
has been used in object tracking and recognition [24], which learns to select images to
minimize tracking uncertainty. Applying pooling and convolution operations has been
shown to be effective to generate a spatial attention map [28,35]. Thus, as in Equation (3),
we utilized average-pooling and max-pooling on F, generating two 2D maps. We then
concatenated these two maps. This was followed by a convolution operation and a sigmoid
function to produce a spatial attention map, as Equation (4). Given an intermediate feature
map F∈RC×H×W , the spatial attention is the degree of attention to different positions on
the feature map. Mathematically, as in Equation (4), it means that for F, effective spatial
attention corresponds to a matrix S(F)∈RH×W , each position of which is a weight for the
pixel at the corresponding position of F by performing elementwise multiplication.

S(F) = Sig(Conv([AvgPool(F);MaxPool(F)])), (3)

Fs = S(F)·F, (4)

where [·] represents concatenating average-pooled features with max-pooled features,
Conv is the convolution operation, Sig represents the sigmoid function, and · denotes
elementwise multiplication between the spatial attention and the input feature map.

Therefore, we applied the operation as detailed in Equation (4) to extract spatial
attention features in our spectrogram. The output of this model is input to the attention-
temporal model to learn temporal attention features. The next section details the attention-
temporal model.

3.2.2. Attention-Temporal Model

The spectrum sequence contains the dynamics of complete behavior over time. Spec-
trogram sequences related to behavior may have different lengths because performing
different behaviors may take different amounts of time, and different users exhibiting the
same behavior may take different amounts of time. We used LSTM to encode the temporal
dynamic information of a sequence. Particularly, LSTM with an attention mechanism
preserves the intermediate encoding sequence results and then adaptively models a subset
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of these intermediate output results [30]. In other words, as shown in Equation (5), the
model automatically assigns different weights to the learned features f according to the
importance of the final recognition performance improvement. A softmax function is used
to evaluate the importance of feature fi and outputs a regularized score ai. As a result,
as shown in Equation (6), the temporal attention features are obtained by performing
multiplication of the learned features and their scores.

ai = So f tmax
(

WT fi + b
)

, (5)

Ft =
N

∑
n=1

ai ∗ fi, (6)

where W denotes the weight vector and b denotes the bias.

3.3. Human Identification

Human identification is a typical multiclass classification process, so softmax was
selected as our activation function [36]. The features extracted from the above step were
used to train a softmax classifier. The output of the classifier represents the probability
distribution of the five human identities.

4. Experiment and Evaluation
4.1. Experiment Setup

We conducted CSI measurements with the Linux 802.11n CSI Tool [1] on commercial
WiFi cards deployed in a laboratory. As shown in Figure 2, the laboratory was occupied by
eight sets of tables and chairs. A computer with one antenna was deployed to transmit
signals and to enhance the sensing signal spatial resolution, and six antennas were deployed
on another computer to receive the signals. Five users of different heights and weights
(details in Table 1) successively performed three gestures (drawing Arabic numerals 1, 2,
and 3) between the transmitting and receiving antennas. The obtained sensing data were
saved as CSI for further processing (as described in Section 3.1) with a sampling rate of
1000, to obtain a DFS spectrogram. The number of spectrogram samples for each class was
1200–1500, 70% of which were randomly selected as the training set and the remaining
30% of which were selected as the test set. We ensured that no test data were used for the
training process.

All experiments were conducted on a TensorFlow 1.8 platform deployed on a server
running Ubuntu 16.04 LTS with one RTX2080Ti-11G GPU. In the training phase, training
data batches were input into the deep model continuously until the model converged with
a learning rate of 0.001 and a batch size of 128. The test data were then used to test the
model performance.

4.2. Performance Evaluation

We constructed various DL network models (CNN with attention, LSTM with atten-
tion, CNN-LSTM, and CNN-LSTM with attention) and verified the impact of the number
of antennas on their identification rate. The network architectures of the CNN and LSTM
with the spatiotemporal attention used in this work are shown in Table 2. The impact of
the amount of training data on the performance was also tested. Based on the above ex-
periments, we compared the top-1 accuracy of the models. In particular, we experimented
with WirelessID’s cross-gesture identification performance to guide the implementation of
the system in real life. Furthermore, we compared the performance with the baselines.
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Figure 2. Experimental deployment scenario.

Table 1. User information.

Users Gender Height (cm) Weight (kg)

1 Female 155 45
2 Female 160 59
3 Male 164 56
4 Male 176 62
5 Male 181 75

4.2.1. Impact of the Number of Receiving Antennas

As maintained above, the fine-grained gesture and the movement of other parts of the
body cause a disturbance in wireless signal propagation. We designed a deep model to obtain
the personalized features of different users hidden in the signal fluctuations. We first visualize
the personalized features of the middle layer of the deep model that were used to distinguish
different users as Figure 3. We then studied how the performance of the DL network models
varies with the number of receiving antennas. As shown in Figure 4, in almost all cases (except
for that with 4 antennas), the CNN-LSTM with attention approach performed the best. In
addition, the performance of all deep models experienced a significant improvement when
the number of receiving antennas increased from 2 to 3, but it slowly improved when it
increased from 3 to 6. The worst performance occurred in the case of a single receiving
antenna. The main reason is that a single link is not enough to capture sufficient spatial
characteristics to distinguish different users. Since the best performance of all deep models
appeared in the case of 6 antennas, our subsequent experiments were based on 6 antennas.

Figure 3. Output features of the middle layer of the deep model.
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Figure 4. Identification rate in terms of the number of receiving antennas.

Table 2. Network architectures of the CNN and LSTM with spatiotemporal attention.

No. Operation Configuration

1 Input 121 × 30 × 6
2 Conv1 Kernel = 3 × 3,

Stride = [1, 1, 1, 1]
3 Activation ReLU
4 Pooling Max pooling, ksize = [1, 2, 2, 1],

Strides = [1, 2, 2, 1]
5 Conv2 Kernel = 5 × 5,

Stride = [1, 1, 1, 1]
6 Activation ReLU
7 Conv3 Kernel = 5 × 5,

Stride = [1, 1, 1, 1]
8 Activation ReLU

9 Spatial Attention
Max pooling = [1, 2, 2, 1],

Average pooling = [1, 2, 2, 1],
Concatenate, Conv (Kernel = 5 × 5,

Stride = [1, 1, 1, 1]), Sigmoid
10 Multiplication Element-wise multiplication

11 LSTM
Input_size = 1500,
Hidden_size = 128,
Output_size = 128,

Num_layers = 5
12 Temporal Attention Attention_vec = 1 × 128
13 Multiplication Dot product
14 Dense Softmax

4.2.2. Impact of the Usage Percentage of the Training Set

This section presents the performance of the DL network models when the usage per-
centage of the training set was varied using 6 antennas and keeping the network structure
unchanged according to Section 4.2.1. As shown in Figure 5, in the initial stage, due to
insufficient training data, all the deep models overfit, resulting in poor performance. As
the amount of training data increased, CNN with attention achieved the best performance
(using 60% of the training set) and, later, LSTM with attention (using 70% of the training
set). The most likely reason is that the two models are simpler than the other two and do
not require too much data to converge. Considering the economic cost of data, the model
trained on 80% of our training set is already acceptable.
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Figure 5. Identification rate in terms of the usage percentage of the training set.

4.2.3. Comparison of the Deep Models

We compare the performance of different deep model structures in this section, espe-
cially the impact of the attention mechanism using 80% of the training set. The result is
shown in Table 3. The top-1 accuracy of CNN-LSTM with attention was about 7% higher
than that of CNN-LSTM, indicating the effectiveness of the attention mechanism. How-
ever, the performance of the CNN or LSTM with attention approach was not as good as
that of the CNN-LSTM without attention approach, which illustrates the importance of
spatiotemporal characteristics for identity recognition.

Table 3. Performance comparison of deep models.

Method CNN-LSTM CNN with
Attention

LSTM with
Attention

CNN-LSTM
with Attention

Top-1 accuracy 0.9137 0.8779 0.8592 0.9772

4.2.4. Cross-Behavior Performance Evaluation

The performance of WirelessID was evaluated under different behaviors with the
purpose of testing whether the performance is independent of behavior by using 6 antennas
and 80% of the training set. Only training data containing one gesture were used to train
and test the model at a time. Therefore, the same experiment was conducted three times.
As shown in Figure 6, the experimental results demonstrated that WirelessID had robust
identification performance, with an average accuracy of 93.14% for five users across three
gestures. The best accuracy was 97.72% for User 5 with the tallest height and heaviest
weight. The accuracy of Gesture 1 was typically lower than that of the other two gestures.
The most likely reason is that Gesture 1 (drawing Arabic numeral 1) was too simple, and
the signal fluctuation caused by it was not rich enough to distinguish between identities
well. The above insights indicated that the performance of WirelessID depends on gestures
to a certain extent, of which moderately complex gestures are more suitable.
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5. Comparisons with the Baselines

We compared the performance with that of WiID [37], which is the first gesture-based
human identification work. WiID utilized the motion contour of body parts as the power-
based feature for user identification while we leveraged the nonzero DFS only caused by
human fine-grained behaviors (including human gestures and such movements introduced
by other parts of the body). WiID achieved an average accuracy of 91.8% in the lab. The
internal environment of their lab was simpler than ours (complex environment affects
sensing performance). Our work achieved an average accuracy of 93.14%, which is better
than that of WiID. Note that the best accuracy of our work could be up to 97.72%, showing
that by the careful design of gestures, our model can meet the application standards of the
real world.

6. Conclusions

In this work, we leveraged, for the first time, the joint human fine-grained behavior
and body physical signature embedded in CSI for human identification. Signal fluctua-
tions corresponding to different parts of the body contribute differently to identification
performance. To extract more robust features, we introduced an attention mechanism into
our deep spatiotemporal model. To evaluate the performance, commercial WiFi devices
were used for prototyping WirelessID in a real laboratory environment. We tested the
impact of receiving antenna numbers and the impact of the usage percentage of the training
set. We also compared the performance of different deep models, and the cross-behavior
performance evaluation demonstrated that WirelessID had an average accuracy of 93.14%
and a best accuracy of 97.72% for five individuals. Note that our experiment was conducted
in a stable environment, that is only the behavior of the user and the surrounding static
objects affected the signal propagation at the experimental site. Regarding the influence of
unstable wireless signals on activity sensing, Giuseppe Bianchi et al. performed a sufficient
analysis, the details of which can be found in [38].
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