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Abstract: The addition of piezoelectric zinc oxide (ZnO) fillers into a flexible polymer matrix has
emerged as potential piezocomposite materials that can be used for applications such as energy
harvesters and pressure sensors. A simple approach for the fabrication of PDMS-ZnO piezoelectric
nanocomposites based on two ZnO fillers: nanoparticles (NP) and nanoflowers (NF) is presented
in this paper. The effect of the ZnO fillers’ geometry and size on the thermal, mechanical and
piezoelectric properties is discussed. The sensors were fabricated in a sandwich-like structure using
aluminium (Al) thin films as top and bottom electrodes. Piezocomposites at a concentration of 10%
w/w showed good flexibility, generating a piezoelectric response under compression force. The NF
piezocomposites showed the highest piezoelectric response compared to the NP piezocomposites
due to their geometric connectivity. The piezoelectric compound NF generated 4.2 V while the NP
generated 1.86 V under around 36 kPa pressure. The data also show that the generated voltage
increases with increasing applied force regardless of the type of filler.

Keywords: polydimethylsiloxane; zinc oxide; thermomechanical characterisation; piezoelectric
properties; nanocomposites; sensors

1. Introduction

Recent developments in the field of flexible electronics have increased the exploration
of a new class of emerging materials such as piezocomposite materials [1–3]. The fabri-
cation of piezocomposite materials has an increasing interest due to the combination of
two materials with different properties such as the mechanical flexibility provided by the
polymer and the piezoelectricity given by the fillers involved. These materials are generally
fabricated using a low-cost and simple process under low temperatures with enhanced
properties that can be tailored towards specific applications [4]. However, the challenges
remain when it comes to the piezoelectric properties of these nanocomposites as it will
depend on the type of fillers used and the connectivity between these fillers which can be
strongly affected by different factors such as the fabrication method used, filler concen-
tration, size and shape of fillers, dispersion and distribution of fillers and polymer–filler
interactions. On the other hand, the integration of the fillers into the polymer matrix can
also have an impact on other properties including mechanical and thermal [5–8].

Poly(dimethylsiloxane) (PDMS) has attracted immense interest within the scientific
and industrial community in a wide range of fields including electronics, medical devices,
adhesives, robotics and coatings. PDMS exhibits interesting properties such as flexibility,
hydrophobicity, chemical stability, biocompatibility and high resistance to thermal and
thermo-oxidative degradation in a wide temperature range (−100–300 ◦C) [4,9,10]. In order
to harness these properties as well as converting it into a piezoelectric material, a variety
of piezoelectric fillers have been integrated into the polymer. Piezoelectric materials such
as lead zirconate titanate (PZT), barium titanate (BaTiO3), aluminium nitride (AlN), and
gallium nitride (GaN) have been widely used in the field of micro-electromechanicalsystems
(MEMS) and nano-electromechanicalsystems (NEMS) and sensors [11,12]. However, the
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use of these materials require expensive and complicated fabrication processes and most of
them are not considered biocompatible nor eco-friendly materials. Therefore, zinc oxide
(ZnO) is preferred over the above mentioned piezoelectric materials due to its simple
fabrication and non-toxic properties. ZnO has the richest family of nanostructures in
comparison to other materials as it can be obtained as wires, rods, flowers, belts, helixes,
walls, etc [3,13–16]. Studies have reported improvement in toughness, scratch resistance,
resistance to fatigue, thermal stability, weatherability and optical and barrier properties
when integrating ZnO nanowires and nanoparticles into polymers enabling a wide range of
applications [17,18]. The integration of ZnO fillers into PDMS has been reported to generate
a piezoelectric response, being biocompatible and also environmentally friendly, making
them non-toxic and safe to be disposed of in a landfill after use [3,19–22]. Among the ZnO
nanomaterials, nanoparticles and nanowires have been commonly used in nanocomposites
but fewer studies have used other types of nanostructures [14,23,24]. 3D nanostructures
such as ZnO NFs have been found to enhance light harvesting, photocatalytic performance
and antibacterial activity; this is due to their high surface area to volume ratio, surface-
reaction efficiency and better charge transfer and carrier immobility [25]. Among the ZnO
NFs, different type of morphologies have been reported such as ones with cabbage-like
structures and petal-like structures resulting in a microstructural arrangement composed
of many nanostructures [26–28]. The piezoelectric features of ZnO fillers combined with
the flexibility of PDMS can pave the way towards potential piezocomposite materials for
wearable/implantable biomedical devices and electronic skins [1,3,19–22,29–31].

The size and shape of the fillers together with the concentration are crucial parameters
to reach a piezoelectric response when embedded in a continuous polymer matrix. The
interphase region in which the filler is surrounded by the polymer can have a significant
effect on the final properties of the nanocomposite. Therefore, the use of 3D nanostructures
have become more attractive candidates for piezoelectric fillers due to their geometry, size
and spatial distribution. To the best of our knowledge, the majority of the studies have
been dedicated mainly to ZnO particles and nanowires embedded in polymers but only
a few have used different fillers to compare the effect of the geometry and size in their
piezoelectric response [17,28,32]. For instance, the addition of ZnO micron-sized fillers
in PDMS as piezocomposite material for energy harvesting and biosensors using high
concentrations of 30% by weight have been reported to increase the Young’s modulus
(less flexibility) [33]. Another study reported that there is a direct correlation between
filler concentration and output voltage obtaining the highest output voltage of 23 V when
subjected to a load resistance of 10 MΩ at 7.4% wt concentration of ZnO nanoparticles into
PDMS ranging from 2% wt to 9.1% wt concentrations [8]. Recently, a composite film of
PDMS and ZnO tetrapods was reported to be potentially used as piezocapacitive pressure
sensor with a sensitivity of 2.55 kPa−1 [24].

Therefore, it is important to characterise whether the addition of the ZnO nanofillers
into a PDMS matrix compromises the flexibility, thermal stability and conformability when
reaching a piezoelectric percolated network of fillers. Despite the amount of effort looking
for other piezocomposites alternatives, researchers have reported difficulties in regards
to the processability, limitation of operating temperatures and the need for additional
steps such as poling, dielectrophoresis or doping techniques. This work is dedicated to
the design, fabrication and characterisation of PDMS-ZnO nanocomposites using in-house
synthesised dendritic nanoflowers and commercially available nanoparticles. The effect
of size and geometry connectivity of the fillers on the mechanical and thermomechanical
properties has been analysed by performing uniaxial tensile testing, dynamic mechanical
analysis and thermogravimetric analysis. Finally, in order to test the potential of the
piezoelectric properties of the nanocomposites up to 10% wt concentration of ZnO fillers,
the specimen was subjected to different loads while the electrical response was recorded.
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2. Materials and Methods
2.1. Fabrication of PDMS-ZnO Nanocomposites
2.1.1. ZnO Nanofillers

Two different ZnO nanofillers were used: in-house synthesised ZnO NFs and com-
mercially NPs purchased from Sigma–Aldrich (size < 100 nm). The in-house ZnO NFs
were synthesised via a hydrothermal method which consisted of the reaction of zinc nitrate
Zn(NO3)2·6H2O and hexamethylenetetramine (HMTA) in de-ionized water mixed at an
equimolar concentration (20 mM). The zinc nitrate and HMTA were added in de-ionized
water and magnetically stirred for 10 min. The solution was sealed and kept in the oven
at 90 ◦C for 18 h. Once the solution was cooled, it was further washed and centrifuged
3 times with ethanol. Finally, the remaining sediment (white powder) in ethanol was left to
dry at room temperature overnight.

2.1.2. PDMS-ZnO Nanocomposites

The nanocomposites were fabricated by mixing the PDMS base polymer and the ZnO
nanofillers at different concentrations (0.1, 0.3, 0.5, 0.7, 1, 2, 3 and 5 % w/w). Each mixture
was magnetically stirred for 10 min to minimise the formation of large agglomerates
within the material. Then, the curing agent was added in a ratio of 10:1 followed by
additional magnetic stirring for 15 min to obtain a better dispersion within the mixture.
Finally, the mixture was poured into an aluminium mould and degassed for 2 h in a
vacuum desiccator in order to remove the air bubbles resulting from the stirring process.
The samples were cured at 100 ◦C for 60 min in a pre-heated oven. Two PDMS-ZnO
nanocomposites batches were fabricated including the in-house synthesised NFs (PDMS-
NFs) and the purchased NPs (PDMS-NPs). Each batch consisted of 40 samples (5 identical
samples for each concentration).

2.1.3. Fabrication of PDMS Nanocomposites-Based Sensors

Square chips with dimensions of 40 mm × 40 mm were used as carrier chips.
Poly(diallyl dimethylammonium chloride) (PolyDADMAC) was spin-coated onto the
carrier chip as a sacrificial layer followed by a deposition of a 500 nm layer of aluminium
(Al) which acts as the bottom electrode. PDMS-ZnO mixtures of 5 and 10% w/w were
spin-coated on top of the Al layer. Then, the chips were cured at 100 ◦C for 60 min followed
by another deposition of a 500 nm thick Al layer to act as the top electrode. Finally, the chips
were immersed in water for around 4 h in order to completely dissolve the PolyDADMAC
sacrificial layer and the PDMS-ZnO nanocomposite devices were then fully released from
the carrier chip. Finally, Al foil strips were connected to the top and bottom electrodes
using Ag adhesive paste. A schematic diagram of the fabrication process is shown in
Figure 1.

Figure 1. The fabrication process of PDMS piezocomposite sensors.



Sensors 2021, 21, 5873 4 of 18

2.2. Characterisation and Testing Methods
2.2.1. Tensile Testing

The mechanical properties of the nanocomposites were determined by tensile testing
performed with a universal tensile machine (INSTRON 3367, Norwood, MA, USA) fitted
with a load cell of 50 N at a rate of 50 mm/min. Each set contained 5 dog-bone shaped
samples with a gauge length of 33 mm, a thickness of 1 mm, and a cross-sectional area of
3 mm × 1 mm (ASTM D412 standards) (Figure 2).

Figure 2. Aluminium mould—ASTM D412/dog-bone shaped samples.

2.2.2. Scanning Electron Microscopy (SEM)

Microstructural characterisation of the ZnO nanofillers used (NFs and NPs), PDMS-
NPs and PDMS-NFs nanocomposites was carried out by a thermionic emission electron
microscope (TESCAN-VEGA3). Fractured surfaces of the nanocomposites samples after
tensile testing were investigated to obtain information about the dispersion of nanofillers
within the silicone matrix and the adhesion between polymer and nanofillers. In this case,
the fractured surfaces were sputter-coated with a thin film of gold to facilitate scanning
electron microscopy (SEM) imaging.

2.2.3. X-ray Diffraction (XRD)

The crystal structures of the ZnO nanostructures (NFs and NPs) were characterised by
X-ray diffraction (Bruker D8 Advance) using Cu Kα radiation (λ = 1.54018 Å) in the range
between 30◦ and 70◦ operated at a voltage of 40 kV and a current of 40 mA.

2.2.4. Fourier Transform Infrared Spectroscopy (FTIR)

A Perkin Elmer Spectrum65 FT-IR Spectrometer was employed to investigate the
interaction between the PDMS and the ZnO nanofillers. The spectra of neat PDMS and
PDMS-ZnO nanocomposites (5% w/w) were obtained in the range between 500 cm−1 to
4000 cm−1.

2.2.5. Brunauer, Emmett and Teller (BET) Surface Areas

The surface characterisation area of the ZnO nanostructures was estimated using a
Quantachrome Quadrasorbevo (Boynton Beach, FL, USA) automated surface area analyser.
The measurements were carried out by the adsorption/desorption of low-temperature
(77 K) nitrogen and carbon dioxide (273 K) as a function of relative pressure. The weight
of the powdered samples was approximately 100 mg and they were degassed for 16 h at
125 ◦C under a high vacuum prior to analysis.
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2.2.6. Dynamic Mechanical Analysis (DMA)

The dynamic mechanical data of the nanocomposites measurements were obtained by
using a DMA (Q8000) of TA instruments. Samples (10 mm × 10 mm × 2 mm) were tested
on a tensile mode at a constant frequency of 1 Hz in a temperature range from −150 ◦C to
150 ◦C at a scanning rate of 3 ◦C/min. Storage modulus (E’) and loss tangent (tanδ) were
determined as a function of temperature for neat PDMS and PDMS-ZnO nanocomposites
(NFs and NPs). The maximum peak of the loss tangent as a function of temperature
corresponds to the glass–rubber transition temperature (Tg) of the material (neat PDMS or
PDMS-ZnO nanocomposite).

2.2.7. Thermogravimetric Analysis (TGA)

The thermal stability of the nanocomposites was analysed by performing the thermo-
gravimetric analysis (TGA) using an SDT Q600 from TA Instruments. The neat PDMS and
PDMS-ZnO nanocomposites (NFs and NPs) samples were heated at a rate of 10 ◦C/min
from 30 to 800 ◦C in an N2 atmosphere.

2.2.8. Piezoelectric Testing of Nanocomposites

The piezoelectric response of the PDMS piezocomposites sensors has been char-
acterised by applying a dynamic load using a motorised test stand (Mark-10 ESM303,
Coplague, NY, USA) which is comprised of a flat and circular crosshead with a diameter of
10 mm. The top and bottom electrodes of the sensors have been connected to a nanovolt-
meter (Keithley 2182A, Beaverton, OR, USA) and tested to different compressive pressures.
The voltage between the top and bottom electrodes has been reported when applying
pressure for 0.5 s and then released, repeating the process five times with a 0.5 s pause
between each cycle. A schematic diagram of the fabricated PDMS piezocomposites sensors
is shown in Figure 3.

Figure 3. Schematic of fabricated PDMS piezocomposite sensor.

3. Results and Discussion
3.1. Microstructural Characterisation

The structural properties of the ZnO fillers (purchased NPs and in-house synthesised
NFs) used in the piezocomposites such as shape, size, morphology and crystal size were
analysed by SEM, XRD and BET analysis, respectively. Figure 4a,b show the SEM images of
the ZnO fillers in the form of powder of in-house synthesised dendritic NFs and purchased
NPs ones, respectively.
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Figure 4. SEM images of (a) in-house synthesised dendritic ZnO NFs and (b) purchased agglomerated ZnO NPs.

In Figure 4a, the in-house synthesised particles show a flower-like microstructure
formed by individual nanorods grown radially from a centre in which these exhibit different
lengths within 3 and 6 µm while the diameters are between 180–220 nm (i.e., dendritic
NFs). On the other hand, the purchased NPs are shown in Figure 4b (diameter < 100 nm,
rhombohedral shape) exhibiting an irregular shape in agglomerates of different sizes
(5–30 µm).

The structural properties of the ZnO nanostructures used were investigated by XRD
and BET. Figure 5 shows the diffraction patterns of the NPs and NFs, respectively. The
diffraction peaks at 2θ: 31.9, 34.53, 36.38, 47.65, 56.71, 62.98, 66.50, 68.03 and 68.19 cor-
respond to (100), (002), (101), (102), (110), (103), (200), (112) and (201) crystal planes are
associated to the hexagonal wurtzite crystal structure of ZnO and were in agreement with
the Joint Committee on Powder Diffraction Standards (JCPDS)—International Centre for
Diffraction Data card No. 36-1451 [34]. Therefore, one can confirm that the in-house
synthesised ZnO NFs are free of impurities and exhibit good crystallinity compared to the
commercial and standard database.

The average crystal sizes of the particles were determined using the Debye–Scherrer
Equation (1):

D =
Kλ

FWHM cosθ
(1)

where D is the crystal size, K is the Scherrer constant which is related to the crystallite
shape and is usually 0.9, λ is the wavelength of light used for diffraction (CuKα) which is
1.54 Å, FWHM (full width at half maximum) of the diffraction peak and θ is the angle of
diffraction. The average size of the particle was found to be 32.95 nm and 32.65 nm for NPs
and NFs, respectively.

In addition, the surface area of the ZnO NPs and NFs was obtained from the BET
analysis shown in Table 1. The surface area of NPs is almost 6 times higher than the NFs
which means that NPs are smaller than the NFs as seen in the SEM images. Therefore,
dispersion and distribution can be more difficult to achieve when using NPs rather than
NFs. The average crystalline size of the particles was also calculated by using the following
Equation (2):

dBET =
6000

ρSBET
(2)

where dBET corresponds to the crystalline size (nm), ρ is the density of ZnO powder (g/cm3)
and SBET is the BET surface area (m2/g). The values of the crystalline sizes are shown in
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Table 1 showing that NPs is 76.50 nm while NFs is 486.58 nm. The difference between
the values obtained by BET and XRD is probably an indication of a conglomeration of the
ZnO powders which is in agreement with other studies [34]. Therefore, the agglomeration
coefficient was determined by using the following Equation (3):

CF =
dBET

D
(3)

where CF corresponds to the agglomeration coefficient, dBET is the crystalline size (nm) and
D is the average crystalline size of the ZnO. The CF obtained for NPs is 1.39 while for NFs
is 1.87 indicating that the agglomeration is bigger for NFs than for NPs prior to the mixing
process for the fabrication of the nanocomposite.

Figure 5. XRD patterns of the ZnO nanostructures: NPs and NFs.

Table 1. Summary of morphological characteristics of ZnO nanostructures.

Type Shape Particle Size [nm] BET Surface
Area [m2/g]

dBET
[nm]

ZnO NPs Rhombohedral <100 nm 13.994 76.50

ZnO NFs Flower stick length ~3–6 µm
diameter ~180–220 nm 2.200 486.58

3.2. Mechanical Characterisation

The Young’s modulus (E) has been calculated using the stress-strain curves up to 40%
strain. When analysing mechanical properties of rubbers, E is calculated in the 0–40% strain
interval (small deformations for rubbers) thus providing information about the stiffness
of the material in this interval [4,35,36]. Other parameters, including elongation at break
(Eb%) and ultimate tensile strength (UTS) (i.e., the maximum stress that a material can
withstand load just before failure), were measured to explore the way nanofillers affect
the mechanical properties of the initial polymer. Each value corresponds to the mean
of five measurements with its respective standard deviation. Volume fraction, aspect
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ratio, polymer–filler interactions, orientation and distribution of the nanofillers must be
considered to shed light on the changes seen in the bulk mechanical properties of the initial
material. Figure 6 shows some of the original stress–strain curves until sample failure
obtained from the tensile testing for PDMS, PDMS-5%NFs and PDMS-5%NPs, respectively.

Figure 6. Stress–strain curves obtained from tensile tests for PDMS, PDMS-5%ZnO NPs and PDMS-
5%ZnO NFs. Inset: stress–strain curves up to 40% strain.

Figure 7 shows E values as a function of NFs and NPs loading concentrations obtained
from the tensile testing of the piezocomposites up to 40% strain. At low loadings (<1%)
the elastic modulus E showed nearly the same value as for neat PDMS (1.42 ± 0.21MPa)
regardless of the type of filler, while at higher loadings (5%) E decreased to 0.77 ± 0.015 for
NFs and 1.13 ± 0.02 for NPs. At this concentration, the formation of agglomerations is low
and the mechanical properties are not significantly affected while for concentrations from
2% up to 5%, E was found to decrease regardless of the type of filler. The observed decrease
can be explained by the fact that nanofillers can restrict the formation of the 3D networks
within the polymer, a weak filler–matrix interaction and an increase in the interacting
interphase region [37–41]. The introduction of ZnO nanofillers in the PDMS matrix inhibits
the curing process, thus resulting in a decrease in crosslinking density leading to a final
nanocomposite with a lower E [42,43]. As concentration increases, filler–filler interactions
seem to be more predominant upon matrix–filler interactions, thus, showing a lack of
physical and chemical interaction between PDMS-ZnO which is correlated with the FTIR
analysis in the next section [44]. Low molecular weight PDMS such as Sylgard 184 has
been found to be immiscible with ZnO fillers leading to the formation of macroscopic
phase separations [16]. However, the observed decrease in E by 20% means that the
produced piezocomposites still exhibit the desirable flexibility required for flexible sensor
applications [4].
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Figure 7. Young’s modulus of PDMS-NPs and PDMS-NFs as a function of nanofillers concentrations.

It is worth pointing out that the PDMS-NPs exhibits slightly higher E than PDMS-NFs
for loadings >1% probably due to better interfacial adhesion as mentioned before. In
this respect, the difference in E between the two different nanocomposites (PDMS-NPs
and PDMS-NFs) might be due to the difference in the fillers shape, surface area and
roughness. Furthermore, E can be affected also by the degree of dispersion and aggregation
of the nanofillers within the polymer matrix. By using only direct mechanical mixing,
uniform dispersion is difficult to achieve since van der Waals forces between fillers are
most likely dominating over the interaction forces between fillers and polymers. Under
these conditions, fillers agglomerates are formed thus affecting E. The formation of the
agglomerates affects the interphase region which has been shown to affect the properties
of the nanocomposites [8].

Figure 8 shows the elongation at break (Eb%) and ultimate tensile strength (UTS) as a
function of nanofillers concentration. Figure 8a shows a slight increase in Eb% when
introducing nanofillers. Figure 8b shows no influence on the UTS as the nanofillers
concentration increases. Therefore, the nanocomposites show a softening effect when
introducing the ZnO nanofillers enabling more deformation of the PDMS matrix and less
stress transferred to the fillers. Similarly, this can be explained by the lack of interaction
between polymer and filler and the weak correlation of Eb% and UTS with concentration.
However, the slight increase in Eb% is probably due to wetting properties and strong
interfacial adhesion [20].

The fractured surface area of the nanocomposites at 5 %wt concentration of NFs and
NPs are shown in Figure 9. The presence of micron-sized agglomerates on the fractured
surfaces (after the tensile test) of the samples regardless of the use of NFs or NPs as
nanofillers can be observed. ZnO NFs randomly distributed seem to be pulled out from
the surface (holes) indicating poor adhesion between the nanofiller and the polymer
matrix while NPs appear to have a stronger adhesion with the polymer matrix probably
due to their smoother surface, size and area leading to better wetting properties and
interfacial adhesion.
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Figure 8. Elongation at break (Eb%) and ultimate tensile strength (UTS) as a function of concentration for (a) PDMS-NPs
and (b) PDMS-NFs.

Figure 9. SEM images of fractured surface: (a,b) 5% PDMS-NFs, (c,d) 5% PDMS-NPs nanocomposite materials.
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Even though the CF was shown to be bigger for NFs than NPs, it can be observed that
after mixing, the aggregation of NFs is less compared to NPs due to their surface area, size
and random orientation (i.e., pointing in different directions). Thus, the NFs can be better
dispersed under a mechanical mixing process compared to the NPs. The distance between
NPs is shortened due to their higher surface area and filler-filler interaction resulting in
the formation of microscale agglomerates. It is important to mention that in this work no
special coupling agent was used in our ZnO fillers. Therefore, in both nanocomposites, one
can assume that the chemical interaction between polymer-filler (PDMS-ZnO) is the same
while the interfacial adhesion at the interphase changes based on the surface area, shape
and size of the fillers (see Table 1).

On the other hand, in order to study the interaction between the PDMS and the
ZnO nanofillers, FTIR spectroscopy has been used. Figure 10 shows the FTIR spectra
obtained from PDMS and PDMS with 5% wt fillers’ concentration, with the typical bands
corresponding to a PDMS microstructure.

Figure 10. FTIR spectra of PDMS, PDMS-5% ZnO NPs and PDMS-5% ZnO NFs.

The vibrational bands at 2962 cm−1 and 2904 cm−1 refer to CH-stretching related
to methyl groups CH3. The band observed at 1260 cm−1 indicates a CH3 symmetric
deformation of Si-CH3 as well as CH2 wagging. Bands at 1060 cm−1 and 1010 cm−1 are
related to Si-O-Si stretching vibrations commonly associated with siloxane structures. The
bands at 790 cm−1 and 690 cm−1 are related to Si-C stretching and CH3 rocking vibrations.
The 3D PDMS networks are formed by the curing process between the base polymer and the
curing agent consisting of polymer chains with –O-Si-(CH3)2-O- repeating units together
with methylene bridges. As mentioned in the previous section, the fabrication of PDMS-
ZnO nanocomposites consisted of dispersing the ZnO fillers in the base polymer followed
by adding the curing agent to the mixture, leading to the formation of a 3D PDMS network
with embedded ZnO nanostructures. The hydroxyl groups on the ZnO nanostructures
surface can react with SiH groups of the curing agent leading to the formation of extra
Si-O-Si bonds. However, as shown in Figure 10, the spectra corresponding to unloaded
PDMS and ZnO-PDMS nanocomposites (5% wt) are very similar (no detectable difference
in peak intensity and the overall spectra) indicating that the chemical interaction between
ZnO fillers and PDMS is limited.



Sensors 2021, 21, 5873 12 of 18

3.3. Dynamic Mechanical Characterisation of PDMS-ZnO Nanocomposites

DMA measures the response of material when applying an oscillating force or defor-
mation to analyse the viscous and elastic contributions on the mechanical properties. These
responses are expressed in terms of storage modulus (elastic modulus, E′), loss modulus
(viscous modulus, E′ ′) and tan δ (damping coefficient). Storage modulus is generally re-
lated to the stiffness of the material and refers to the mechanical energy storage capabilities
of the material while the loss modulus represents the dissipated heat (hysteresis) which is
very sensitive to molecular motions, transitions, and relaxation processes. Tan δ is the ratio
of the loss modulus to the storage modulus represented generally as a peak that can be
related to the Tg of the material [45,46]. As the temperature increases, molecular chains
started to move more freely and therefore, an increase in loss modulus was observed.
As a result, the material became less stiff and more rubbery causing a decrease in the
storage modulus. Therefore, the tan δ is associated to the glass transition temperature of
the polymer (Tg). The tanδ peak is usually related to the Tg which can give insight into the
degree of interfacial interaction between the polymer matrix. Typically changes in Tg of the
nanocomposites can be attributed to the type of interaction between the polymer and the
nanofillers. In order to investigate the effect of the addition of the type and concentration
of nanofillers on the thermomechanical properties of the PDMS-ZnO nanocomposites, a
dynamic mechanical analysis under temperatures between−150 ◦C and 100 ◦C was carried
out. Parameters such as tanδ and storage modulus were obtained. From Figure 11a,b, tanδ
is observed to have a first predominant peak at about −107 ◦C and a second peak at about
−50 ◦C for both unloaded PDMS and nanocomposites.

Figure 11. Tanδ as a function of temperature (inset: two peaks associated with Tg and Tm, respectively) of (a) PDMS-NFs
and (b) PDMS-NPs.

The first peak at approximately −107 ◦C is associated with the first transition of the
segmental motion of PDMS chains corresponding to the glass transition temperature (Tg).
Tg has not been observed to shift dramatically by more than 10 ◦C as a function of filler
concentrations for both cases which is indicative of poor polymer–filler interaction. The
second peak at about −50 ◦C is attributed to the polymer chains located in the interphase
region. However, this second peak is different as concentration increases in the case of NFs.
The peak seems to become narrower for higher concentrations between 2 and 5% wt while
at lower concentrations the peak seems broader. This behaviour is due to the fact that the
volume fraction of the interphase region increases at higher concentrations, immobilizing
the polymer chains around the fillers. On the other hand, the second peak corresponding
to the NPs, did not show any trend as filler concentration increases [47,48].
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Figure 12a,b shows E′ as a function of temperature for PDMS-NFs and PDMS-NPs
respectively. E′ of nanocomposites remained in the same order of magnitude as neat PDMS
regardless of the type of filler. However, E′ slightly decreased for NFs and NPs when
compared to neat PDMS at higher temperatures including room temperature. These results
indicate that the addition of ZnO NFs and NPs does not act as a reinforcement in the
PDMS matrix at concentrations up to 5% wt, which once again, validates the flexibility of
the nanocomposites.

Figure 12. Plots showing: E′ (storage modulus) as a function of the temperature of (a) PDMS-NFs and (b) PDMS-NPs (inset:
zoom of temperature ranges between −100 and 25◦C).

3.4. Thermal Characterisation of PDMS-ZnO Nanocomposites

The influence of ZnO fillers on the thermal degradation of the nanocomposites has
been investigated by thermogravimetric analysis. Figure 13 shows the thermal analysis
curves upon heating of the PDMS and PDMS nanocomposites.

Figure 13. Thermal analysis curves for PDMS, PDMS-5%ZnO NPs and PDMS-5%ZnO NFs.
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The decomposition temperatures at 5% and 20% weight loss and the residual weight
at 800 ◦C for neat PDMS and PDMS nanocomposites at 1, 3 and 5 % wt concentrations are
summarised in Table 2. A slight increase in thermal stability can be observed at 5% and
20% of weight loss when adding ZnO fillers into PDMS regardless of type and shape. On
the other hand, the residual weight at 800 ◦C is approximately 56% for 5% wt NFs and 61%
for NPs while for unload PDMS is around 41%. The difference in weight loss between the
two fillers can be attributed to the size and geometry of the fillers, interphase region and
presence of agglomerates. Therefore, the presence of larger agglomerates together within
PDMS-NPs act as a barrier, delaying the degradation of the polymer chains compared to
PDMS-NFs [49]. Overall, the incorporation of ZnO nanofillers provides higher thermal
stability to the nanocomposite with respect to the neat PDMS, due to the high heat resistance
and thermal stability of the ZnO fillers as reported in previous studies [20,21,49,50].

Table 2. Summary of decomposition temperatures at different weight loss [%] for all samples.

NFs NPs

Concentration [% w/w] T5% T80% * T800% T5% T80% * T800%

PDMS 379.75 526.84 41.06 379.75 526.84 41.06

1 418.89 527.06 22.26 404.09 543.70 52.95

3 403.55 544.17 48.98 408.13 574.07 57.69

5 398.01 542.38 55.76 405.11 617.25 60.63
* Residual weight at 800 ◦C.

3.5. Piezoelectric Characterisation

The piezoelectric response of the nanocomposites was evaluated when subjected to a
compressive force. It was found that a higher concentration than 5% wt ZnO was required
in order to obtain a significant piezoelectric response. Considering that the mechanical
response trend is favourable in this order of ZnO concentration, we present in Figure 14a,b
the piezoelectric response of the piezocomposites at a concentration of 10% in weight for
both geometries. The box-plot represents the standard deviation of the minimum and
maximum measured voltage for each applied pressured ranging from 0.1 kPa up to 50 kPa.

Figure 14. Piezoelectric response of the PDMS piezocomposites sensors (a) 10%-NPs and (b) 10%-NFs as a function of
applied force.
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The NFs piezocomposite generated 4.2 V while NPs generated 1.86 V under the same
force of ca. 4 N (corresponding to a pressure of ca. 35 kPa). The data also show that the
generated voltage increases with the increase in applied force regardless of the type of filler.
In order to explain the effect of the filler geometry in the piezoelectric response, several
factors need to be considered. Firstly, the crystalline 0002 planes of the ZnO nanostructures
are responsible for the voltage generation when oriented perpendicular to the applied
force. The flower-like structures exhibit more crystals in this direction due to the spatial
distribution of their geometry compared to nanoparticles. In addition, several studies have
reported that ZnO nanostructures such as nanoflowers and tetrapods are more susceptible
to larger deformations (bending) under compressive force due to their high aspect ratio
with respect to nanoparticles [10,24,32,51].

Another factor to consider is the surface area of the nanofillers. The NFs have a surface
area of 2.2 m2/g while NPs have 13.994 m2/g (Table 1) which means that the decrease
in particle size leads to more formation of agglomerates within the polymer matrix and
the filler-filler interaction is stronger NPs. In this case, the electron flow might be trapped
in the dipoles at the ZnO-ZnO interphase region and no connection path occurs to the
electrodes, resulting in no piezoelectric response. Therefore, one could expect that the
percolation threshold for NPs is higher compared to the NFs. Piezocomposites up to 5% wt
did not show any piezoelectric response regardless of the type of filler. This result could be
attributed to two reasons: firstly, concentrations under 5% wt might not produce enough
volume occupied across the width of the material leading to no contact between the top
and bottom electrode and secondly, not enough contribution from the volume of interphase
regions. However, when the concentration is increased up to 10% wt, the volume occupied
by the nanofillers increases, the formation of agglomerates increases and the contribution
of the interactions of the interphase regions also increases causing a piezoelectric response
under compressive load. Others have reported the need of using higher concentrations
of ZnO nanofillers as well as employing alignment techniques (i.e., dielectrophoresis) or
doping in order to obtain a piezoelectric response in a polymer matrix using different
working modes [3,14,17,23,28,33].

On the other hand, sensitivity was determined by the linear relationship between
the generated voltage and the applied force. The sensitivity of the piezocomposite was
59.3 mV/kPa and 21.6 mV/kPa for NFs and NPs nanocomposites, respectively. The differ-
ence in sensitivity might be due to the overall mechanical properties of the piezocomposites.
Although the mechanical characterisation of the nanocomposites was performed up to 5%
by weight, we have shown that the mechanical behaviour at this range of concentrations
follows a consistent trend which is favourable to the targeting application; meaning that
E is low and the E of PDMS-ZnO NPs is higher than that of PDMS-ZnO NFs at this con-
centration range. A higher stiffness results in a smaller piezoelectric sensitivity which can
explain the different piezoelectric sensitivities observed for the 10% ZnO nanocomposites
(NP vs. NF) in this work.

4. Conclusions

The fabrication and characterisation PDMS-ZnO nanocomposites show that the addi-
tion of the nanofillers did not constrain the flexibility and thermomechanical stability of the
nanocomposites up to 5% wt which is favourable for the use of these materials in pressure
sensors. However, it was found that there is a correlation between the filler concentration
and the piezoelectric response from the PDMS-ZnO nanocomposites, hence, a higher con-
centration than 5% wt is required in order to obtain a piezoelectric response. The 10% wt
NFs nanocomposite generated a response of 4.2 V while 10% wt NPs nanocomposite gener-
ated 1.86 V under an applied pressure of 3.5 kPa. The sensitivity of the nanocomposites
was 59.3 mV/kPa and 21.6 mV/kPa for NFs and NPs, respectively, and the difference can
be attributed to the fact that E for NFs is smaller than NPs, hence, the lower the stiffness
the higher the sensitivity. In addition, NFs are more likely to be more sensitive to the
applied pressure due to the spatial distribution and geometry of the fillers compared to
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the NPs. Therefore, in-house NFs can provide better performance, stability and robustness
when used in nanocomposites for sensing applications compared to commercial NPs. The
selection of the geometry of the nanofillers should be carefully selected in order to max-
imise the advantages when targeting specific applications, specifically if piezoelectricity is
required. Overall, our results fully suggest the potential use of simple and low-cost PDMS-
ZnO nanocomposites for pressure sensors exhibiting good mechanical flexibility, excellent
thermal stability and biocompatibility by a simple and cost-effective fabrication process.
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