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Abstract: Multi-Temporal Interferometric Synthetic Aperture Radar (MT-InSAR) techniques are
gaining momentum in the assessment and health monitoring of infrastructure assets. Amongst
others, the Persistent Scatterers Interferometry (PSI) technique has proven to be viable for the long-
term evaluation of ground scatterers. However, its effectiveness as a routine tool for certain critical
application areas, such as the assessment of millimetre-scale differential displacements in airport
runways, is still debated. This research aims to demonstrate the viability of using medium-resolution
Copernicus ESA Sentinel-1A (C-Band) SAR products and their contribution to improve current
maintenance strategies in case of localised foundation settlements in airport runways. To this
purpose, “Runway n.3” of the “Leonardo Da Vinci International Airport” in Fiumicino, Rome, Italy
was investigated as an explanatory case study, in view of historical geotechnical settlements affecting
the runway area. In this context, a geostatistical study is developed for the exploratory spatial data
analysis and the interpolation of the Sentinel-1A SAR data. The geostatistical analysis provided
ample information on the spatial continuity of the Sentinel 1 data in comparison with the high-
resolution COSMO-SkyMed data and the ground-based topographic levelling data. Furthermore,
a comparison between the PSI outcomes from the Sentinel-1A SAR data—interpolated through
Ordinary Kriging—and the ground-truth topographic levelling data demonstrated the high accuracy
of the Sentinel 1 data. This is proven by the high values of the correlation coefficient (r = 0.94),
the multiple R-squared coefficient (R2 = 0.88) and the Slope value (0.96). The results of this study
clearly support the effectiveness of using Sentinel-1A SAR data as a continuous and long-term
routine monitoring tool for millimetre-scale displacements in airport runways, paving the way for the
development of more efficient and sustainable maintenance strategies for inclusion in next generation
Airport Pavement Management Systems (APMSs).

Keywords: satellite remote sensing; airport runway monitoring; ESA Sentinel 1 (C-Band) SAR
data; Multi-Temporal SAR Interferometry (MT-InSAR); Persistent Scatterers Interferometry (PSI);
geostatistics; kriging interpolation; topographic levelling; Airport Pavement Management System
(APMS)

1. Introduction

Monitoring the structural integrity of transport infrastructures, such as highways,
railways and airfields, is a priority for national authorities and asset administrators to
guarantee the structural integrity, ensure the operational safety and prevent infrastructure
damage and deteriorations prior to any expensive rehabilitation or structural failure [1,2].

Worldwide, dramatic events related to the vulnerability of transport infrastructures to
natural hazards (e.g., earthquakes, subsidence and landslides) and endogenous events (e.g.,
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the end of pavements’ service life, an increase in the traffic loads, the aging of materials,
rebar corrosion) highlighted the importance of routine monitoring and the proper planning
of maintenance activities. Countries with a transportation network system highly exposed
to the effects of major natural events are actively investing money to promote more effective
asset management procedures. This is the case of Italy, where the Ministry for Transport
and Infrastructures has urged to implement new measures for a continuous infrastructure
monitoring though the provision of dedicated guidelines [3].

Within this context, several non-destructive testing (NDT) technologies and ground-
based sensors are used for infrastructure subsidence monitoring. Amongst others, ac-
celerometers, strain gauges, wireless network systems, ground penetrating radar (GPR)
and the ground-based interferometric radar systems, have proven effective for the provi-
sion of denser information and their incorporation into more functional asset management
systems, as reported in Table 1.

Table 1. Non-destructive testing (NDT) technologies and sensors for subsidence and displacement
monitoring.

NDT Technology References

Accelerometers [4–6]
Strain Gauges [7]

Wireless Network Systems [8]
Laser Scanner [9,10]

Global Position System (GPS) [11]
Ground Penetrating Radar (GPR) [12–17]

Levelling data [18]
Ground-based Interferometer [19]

The main limitations from a stand-alone use of these technologies can be the difference
in the multi-scale source of respective datasets, the multi-temporal and the multi-spatial
resolution required for the monitoring of infrastructures, a relatively limited land coverage
linked with main constraints from specific working principles; the limited repeatability of
measurements in time, and the high costs of monitoring at the network level [20,21].

To overcome these drawbacks, innovative integrated approaches have been developed
and applied for the monitoring of civil engineering structures and infrastructures [22–25].
However, costs of the equipment remain substantially high, and the on-site operations are
difficult to implement at the network level, due to budget and administrative constraints.
To tackle these limitations, various innovative satellite-based remote sensing technologies,
i.e., the Interferometric Synthetic-Aperture Radar (InSAR) [26–30] have been successfully
applied in the last few years for the monitoring of transportation infrastructures. Main
advantages of these techniques are related to the provision of very dense and frequently
updated arrays of data as well as to the availability of historical time-series of displacements
accessible through numerous available archives.

Amongst the main limitations, we can mention (i) the need to collect datasets with
different orbit geometries or, alternatively, using ground-truth reference points for the
actual vertical and horizontal components of the displacements, and (ii) high computational
efforts required for the processing of SAR imagery at the network level, especially in case
of long-period investigations and high-frequency datasets (i.e., X-Band). Regarding the
latter point, the use of C-Band data stands as a more easily accessible information by the
end-users for large-scale analyses and the measurements of settlements at the centimetre
scale. In fact, use of the medium resolution imagery allows for lighter data processing
and management flows, and it permits to investigate wider portions of the territory and
transportation networks.

Nevertheless, several limitations can still be pointed out about using medium-resolution
data for transport infrastructure monitoring, including (i) the ground pixel resolution,
which does not allow allocating a detected PS displacement from a randomly given object
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to its actual position on the ground, and (ii) the accuracy of the measurements, due to
the limited frequency range of the sensors. Under specific conditions, especially in urban
areas with buildings located in the vicinity of transport infrastructures, assigning the PS
information directly to relevant infrastructure elements can be a difficult task. Hence, use
of the medium ground-resolution in this case remains a challenge, due to the limited size
of the infrastructures in relation to the maximum available monitoring resolution.

Within this framework, this study reports a geostatistical analysis for the investigation
of the spatial variability characteristics of C-Band data and their accuracy in comparison
to conventional ground-based methods. To elaborate, medium resolution C-Band data
have been compared to the information collected through topographic levelling for the
monitoring of vertical subsidence in airport runways. Furthermore, the sampling geometry
and the spatial variability of the C-Band data are compared with same features from X-Band
products, which are referred to as the benchmark information in terms of precision and
accuracy of displacements [31].

2. Displacement Monitoring Techniques and Data-Analysis Methods for Airport
Infrastructure Management: Background and Open Issues

Conventional and novel techniques for the monitoring of displacements in transport
infrastructures and airport runways are presented in this section. In detail, the topographic
levelling and the LiDAR techniques will be here referred to as “conventional techniques”,
as opposed to the satellite-based Multi-Temporal SAR Interferometry (MT-InSAR) methods,
i.e., referred to as “advanced techniques” for network-scale monitoring.

2.1. Topographic Levelling

Levelling is a relatively straightforward operation in topographic surveying based
on the variation measurement of the elevation between consecutive surveys. In transport
infrastructure monitoring, use of the geometric levelling relies on achieving the height
difference from readings on levelling staffs [32].

According to [33], the topographic levelling allows monitoring the long-term settle-
ments of an infrastructure from the variation in the vertical position of a target across
multiple surveys. This is a relative measurement referred to a single stable point or to
multiple stable points, which are typically indicated as topographic benchmarks. In the
last few years, several levelling-based investigations of civil infrastructures have been
reported in the literature [32,33]. Amongst others, the main limitations include (i) a limited
productivity due to a main constraining condition of measuring marks individually, (ii)
the necessity to close the infrastructure during the inspections, (iii) the impossibility to
perform surveys in adverse weather conditions, and (iv) the difficulty in the provision of a
clear line of sight between consecutive targets in a survey.

2.2. Multi-Temporal SAR Interferometry (MT-InSAR)

The working framework of the multi-temporal InSAR technique relies on statistical
analyses of the signal emitted by the on-satellite sensor and back-scattered by a network of
coherent targets on the ground, i.e., the Persistent Scatterers (PSs).

The selection of PSs is based on the signal amplitude information associated to the
pixels of a SAR image, as the original interferometric phase (∆φ) ranges in the interval
(–π ÷ π). More specifically, the phase (φ) is the key information in any interferometric
application, as it relates to different phase components, as follows:

φ = φ flat + φ topo + φ def + φ atm + φ noise (1)

where φ flat, φ topo, φ def, φ atm, and φ noise are the phase components related to the reference
surface, topography, deformations, atmospheric delay and noise, respectively.

Displacements are detected by relating the signal phase variation between progressive
acquisitions to the motion of a target under investigation (Figure 1). In detail, the general
approach is to compare a dataset of N SAR images, collected at different times on the same
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area, computing the interferometric phase (∆φ) as the phase difference, for each N-1 pairs
referred to the same master image. The component related to the ground deformations
(φdef) must be worked out from Equation (1), which is proportional to the sensor-to-target
distance difference (∆r) divided by the wavelength (λ) of the SAR sensor, as expressed by
Equation (2):

∆φde f =
4π

λ
∆r (2)
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Figure 1. (a) SAR sensor and acquisition layout; (b) Main working principles of the PS-InSAR technique, detecting the
phase-shift (∆r) produced by a ground deformation.

A correct detection of PSs strongly depends on the phase stability, which is expressed
as the PS coherence. The pixel selected as a candidate PS must have an amplitude large
enough to dominate the resolution cell, which remains stable in terms of its electromagnetic
response (e.g., back-scattering features are stable in time) across a significant dataset of
SAR images. Thus, the clutter component slightly affects the phase (φ) due to the statistical
relationship between the calibrated amplitude stability and the phase stability.

This approach allows to measure target displacements across multiple satellite acquisi-
tions by the separation between the phase shift from the ground motions and those related
to atmospheric, topographic and signal noise contributions [26–29,34]. The MT-InSAR
technique is computationally affordable, and it has proven effective in the assessment of
displacements and the detection of critical sections [28,29].

In the last few years, several MT-InSAR techniques (i.e., InSAR [26,27], Small Baseline
Subset (SBAS) [24–28], SqueeSAR [25]) relying on different approaches for the detection
of PS targets (i.e., coherence, or amplitude stability index based), have been used for
the monitoring of transport infrastructures, such as railways, highways, [35–39], bridges,
tunnels [40–46], and airport runways [47,48].

However, SAR satellites can only detect displacements in the Line-of-Sight (LoS) of
the SAR sensor, with reference to the specific orbit-related incident angle. Therefore, the
detected displacement is a component of the real displacement on the ground. Different
methods have been proposed in the literature to overcome this issue and to evaluate the
real displacements-velocity-vector. Amongst others, this can be achieved by a combina-
tion between the LoS displacement information from two different datasets acquired in
Ascending (Asc.) and Descending (Desc.) acquisition geometries [49,50].

MT-InSAR for Airport Infrastructure Monitoring: An Overview of Applications and Areas
of Further Research

In the last few years, limited research has been conducted on the application of
satellite interferometry to the monitoring of airport runways. Mostly, these studies did not
specifically focus on their inspection, but rather on the assessment of large-scale subsidence
involving airport systems, i.e., the land side and the air side. Furthermore, this research
mainly aimed at relating the InSAR results to the main geological features of the areas
investigated, which are usually geotechnically complex portions of territory that had been
previously reclaimed to the sea. In addition to this, it is observed that a lack of research
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exists within the context of InSAR data management and integration in airport pavement
management systems. To this effect, this section reports an overview of research about the
use of InSAR techniques in airport monitoring, to highlight the main findings and identify
areas of further research.

Jiang et al. [51] present a case study on the deformation monitoring and the analysis
of the geological environment at the Shanghai Pudong International Airport, China. The
authors used a multi-temporal InSAR approach to identify several down-lifting displace-
ment areas. Processing was carried out on a SAR dataset composed by 15 TerraSAR-X SAR
images acquired in descending geometry. A qualitative spatio-temporal analysis of the
ground deformations confirmed a correlation between the InSAR measurements and the
variations observed in the geological environment.

Jiang et al. [47] present an integrated analysis of SAR interferometric and geological
data for the investigation of long-term reclamation settlements at the Chek Lap Kok Airport,
Hong Kong. Relying on a dataset of ascending (25 scenes) and descending (22 scenes)
images acquired by the ENVISAT ASAR mission (C-Band) and a sparse levelling campaign,
the authors successfully related the deformation trend observed in the areas of the airport
to the main geotechnical properties of the soils, with a special focus on the area reclaimed
by the sea. More recently, the same settlement occurrence has been investigated by Wu
et al., [52] through an extensive InSAR analysis covering two decades of observations.
The authors merged information from several multi-temporal datasets collected through
various space missions (i.e., ERS-2, ENVISAT ASAR, COSMO-SkyMed and Sentinel-1A).
The outcomes were compared to the data collected using GNSS stations located in the
airport area as well as to available geological data. The study successfully demonstrated
the effectiveness of InSAR analyses in the monitoring of extensive settlements in areas
reclaimed to the sea.

The same topic has been addressed by Liu et al. [53]. The authors used the SBAS
InSAR approach on Sentinel-1 SAR images acquired in Ascending geometry. The scope
was to monitor the ground settlements following a sea reclamation land from construction
of the Xiamen New Airport, China. The study reports significant information for airport
land reclamation design purposes and the next stages of the construction process.

More recently, Gao et al. [54] presented research on the monitoring of severe down-
lifting deformations at the Beijing Capital International Airport, China. In this case, the
authors demonstrated that settlements were not related to consolidation effects on sea
reclaimed lands but mostly on the variation of the groundwater levels. An InSAR investi-
gation into the differential settlements observed on one of the runways at the Fiumicino
International Airport in Rome, Italy, has been reported by Bianchini et al. [48]. In this work,
processed X-Band SAR images highlighted the presence of vertical displacements. These
were compared to the outputs from a dense levelling campaign conducted over four years’
time. The limited errors confirmed that PS-InSAR analyses of high frequency images are
very effective in reconstructing vertical deformations in airfield runways.

In general, existing research has widely demonstrated the effectiveness of InSAR
analyses for the interpretation of geological and geotechnical features in areas of interest
for airports. In addition, these studies clearly demonstrate the reliability of the InSAR
technique in reconstructing the actual vertical displacements, with a very limited difference
across the adopted frequency band and the acquisition geometry, given the quasi-vertical
principal direction of deformations. However, gaps in knowledge and ground for further
research and development are still observed concerning the satellite monitoring of airport
systems and, especially, the runways. Although satellite data are in some cases compared
and validated against other established technologies and methods (e.g., the use of GNSS
stations or levelled points), the spatial density of this ground-truth information is very
limited in most cases. This makes it difficult to assess the geostatistical significance of these
data, especially at the local level and in critical sections of the airport system (e.g., in case a
detailed monitoring of displacements in airport runways is required). Furthermore, the lack
of PSs and ground measurement points still limits, and in some cases, it can also inhibit the
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provision of a continuous monitoring of runways through InSAR techniques. To elaborate,
the application of conventional InSAR approaches can be constrained by limitations in the
number of PSs at certain sections of runways (e.g., due to different back-scattered effects
related to the roughness of the pavement) [55]. This can pave the way to new research
focussing on the application of existing InSAR methods with Distributed Scatterers (DS)
supported by geostatistical analyses [56–58].

Within this framework, it is fair to observe that the aforementioned research is mostly
related to the investigation of deformation patterns at a wider scale of inspection through
the application of InSAR techniques. Conversely, a more detailed assessment of the airport
individual structures and infrastructures using medium resolution satellite data is still to
be covered. In this regard, the provision of InSAR-related information for integration into
more advanced APMSs could be crucial to predict major failures in advance and maintain
airport infrastructures more effectively.

The medium-resolution dataset analysed in this paper stems from the Sentinel-1
Mission. This is the European Imaging Radar Observatory for the Copernicus joint initiative
of the European Commission (EC) and the European Space Agency (ESA). This mission
is composed of a constellation of two satellites, Sentinel-1A and Sentinel-1B [59]. As a
constellation of two satellites orbiting 180◦ apart, the mission covers the entire Earth every
six days. To this extent, Sentinel-1 data are ideal for transport infrastructure monitoring
purposes in view of a relatively short revisiting time and a large land coverage. On the other
hand, the typical ground resolution of the C-Band imagery (i.e., 20 m of azimuth resolution
and 5 m of range resolution for Sentinel-1 data) can stand as a significant limitation for
applications to transport infrastructure networks and still represents an open challenge.

Within this framework, the main peculiarities and areas of novelty related to the
satellite and ground-based datasets presented in this paper are summarised below:

• The comparison between measurements from satellite databases (medium and high
resolutions) and ground-truth measurements from topographic levelling directly
collected on an airport runway;

• Analysing a medium resolution dataset (Sentinel 1, C-Band) for the monitoring of
displacements in an airport runway affected by well-known deformations, includ-
ing a long-term investigation for the suitability of the Sentinel-1 sensor to detect
displacements in the area of subsidence;

• The dataset peculiarities: the runway is constructed on a flat area, hence, due to the
high construction standard requirements [60], this can be assumed as a horizontal
structure with limited and evenly-distributed settlements. In this paper, the effective-
ness of the C-Band medium resolution is tested against a scenario where settlements
have formed relatively rapidly in time and are localised in certain sections.

2.3. Data-Analysis Methods: An Overview on Geostatistical Approaches and Areas of Further
Research

Geostatistics [61,62] is a branch of statistics dealing with the analysis of spatio-
temporal data representing the values of a physical-chemical property of interest. Geostatis-
tics is characterised by a well-established theoretical background and validated approaches
and it is mostly popular for the use of the interpolation Kriging-based algorithms [61].
These are widely implemented in many software packages and are fundamental tools for
use in geographic information systems [62]. Beyond the interpolation algorithms, geostatis-
tical methodologies have been also developed for exploratory spatial data analyses (ESDA)
and the investigation of spatial uncertainties [61].

The kriging-based algorithms, denoted as the Best Linear Unbiased Estimators (BLUE),
are designed to predict parametric values in unsampled locations. This can be achieved
by using a weighted linear combination of neighbouring data, with weights designed
to obtain an unbiased prediction with minimum prediction variance [63,64]. The spatial
autocorrelation of data (e.g., covariance or variogram function) plays a pivotal role in the
system of normal equations [63], to be resolved for calculation of the interpolation weights.



Sensors 2021, 21, 5769 7 of 28

To this effect, the weighting scheme is considered as an objective feature [65], as it depends
on the inherent spatial—statistical structure of the data.

Geostatistics relies on the random function theory [62]. Accordingly, the spatial
distribution of a physical—chemical property is considered as the outcome of a spatial
random function. The bivariate spatial autocorrelation of the data is generally evaluated
with a variogram (Equation (3)):

2γ(h) = Var {Z(u)− Z(u + h)} (3)

The variogram (Equation (3)) is the semi-variance of the difference between two
random variables located in two different locations, u and u + h (with u and h vectors).
Under second order or, at least, intrinsic stationarity conditions [61], the semi-variance
depends only on the separation h between pairs of locations; in these conditions, the
variogram can be estimated directly by the available data z(uα), as follows:

γ(h) =
1

2N(h)

N

∑
α=1

[z(uα)− z(uα + h)]2 (4)

The experimental variogram (h), for a given value of h, is the half of the mean squared
differences of the N(h) data pairs z(uα)− z(uα + h), which are spatially separated by
the vector h. Considering a set of discrete values of h (lags), it is possible to estimate a
set of values of the theoretical function γ(h) from the data. The experimental variogram
cannot be used directly to solve the kriging system of equations, as it should be known for
every value of h, and its negative should be a positive definite function [61]. Accordingly,
a theoretical function, selected amongst a family of authorised models, should be inferred
from the experimental variogram. This can be achieved using diverse approaches, such as
the ordinary/weighted least squares or the maximum likelihood approaches [66].

A standard geostatistical analysis tailored for interpolation purposes is characterised
by three main stages: (1) ESDA; (2) Inference of the variogram; (3) Interpolation and
accuracy assessment. A relevant part of the methodology relies on the ESDA, which
includes the study of the spatial autocorrelation. The ESDA is a fundamental multi-
purpose step, which is capable of highlighting connections between computed spatial
statistics, domain-related knowledge and information linked with the data acquisition
procedures.

The main objectives of this step of the analysis are as follows:

• The detection of local and global outliers; the detection of potential non-stationarity in
spatial variability (e.g., the presence of a trend);

• An assessment of the necessity to transform the data due to highly skewed distribu-
tions (e.g., by means of log and box-cox transformations);

• The detection of spatial continuity anisotropy.

As reported above, a variogram can be estimated directly from the raw data only
under, at least, intrinsic spatial stationarity conditions (i.e., stationarity of the mean and
of the variogram). Consequently, during ESDA, it is crucial to detect non-stationarity in
the data, which could be related to the presence of trends and/or non-stationarity in local
variance. Moreover, the analysis of a variogram can provide further information on data
errors and their short-range variability, as well as on the spatial support of samples [64–67].

The second step of the analysis is focused on the inference of a variogram model. In
this stage, the fitting of the experimental variogram is performed according to a weighted
least squares approach, using the algorithm implemented in the Gstat R-package [66]. In
the fitting, the weights for a specific lag h are directly proportional to the number of sample
pairs and inversely proportional to the squared distance.

The third stage of the analysis is focused on the application of the Kriging-based
interpolation [61]. The selection of a specific Kriging algorithm is dependent on the spatial-
statistical structure of the data, considering both the primary variable of interest as well
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as any potential secondary correlated variable. The potential presence of a trend is an
important factor in selecting the most suitable Kriging algorithm. In this context, it is
convenient to decompose the random variable Z(u) into a residual stochastic component
R(u) and a deterministic component m(u) (5):

Z(u) = R(u) + m(u) (5)

R(u) is a second order (i.e., stationarity of expected value, variance and variogram)
stationary random function, with an expected value equal to zero; m(u) is the trend,
generally representing long-range spatial patterns. The trend/residual decomposition
permits to handle the non-stationarity of Z(u) by filtering out the trend component m(u).
The Ordinary Kriging (OK) and the Universal Kriging (UK) algorithms [61], including
regression kriging and kriging with external drift [61–65], use this approach to deal with
spatial trends. The OK is one of the most flexible and practical kriging algorithms, being
capable to handle a trend m(u) changing smoothly in the domain of investigation, when it
can be considered constant inside a moving local subdomain W(u).

Further advantages of using kriging algorithms are as follows: (i) the possibility of
evaluating the prediction uncertainty, by an estimation of the prediction variance, and (ii)
the capability of interpolating across non-punctual spatial supports, by means of the Block
Kriging algorithm. The selection of areal (in 2D) or volumetric (in 3D) interpolation sup-
ports allows reducing the estimation variance by decreasing the spatial resolution [61–64].

Within this framework, the main peculiarities and areas of novelty related to the
geostatistical analyses presented in this paper are linked with the possibility of comparing
variograms from InSAR and levelling data. More specifically, the availability of ground-
truth levelling data allows the following operations:

• To investigate into their spatial variability across the runway, which is affected by
displacements of different scale (size and spatial distribution);

• To optimise the fitting model for interpolation purposes;
• To explore the variability characteristics of the satellite data (medium and high

resolution).

3. Aim and Objectives

The main aim of the research presented in this paper is to investigate into the ap-
plicability of medium-resolution (C-Band) satellite remote sensing imagery (e.g., data
from the Sentinel 1 A mission) for the long-term routine monitoring of millimetre-scale
displacements in airport runway pavements. To this effect, a case study is presented where
“Runway n.3” of the “Leonardo Da Vinci International Airport” in Fiumicino, Rome, Italy,
has been monitored with medium-resolution Sentinel-1A and high-resolution COSMO
SkyMed satellite data, as well as with topographic levelling. The runway has been taken as
an explanatory case study in view of historical geotechnical settlements affecting its area.

To quantify the displacements obtained through the satellite-based technologies and
validate them with on-site topographic levelling measurements, a geostatistical approach
has been adopted based on two major investigation goals. The first is related to the
sampling geometry of the Sentinel data, which is characterised by clustering and relatively
low spatial density. Accordingly, with these data the accuracy of the values interpolated
on the grid nodes or at points of interest (e.g., the levelling points) can be significantly
affected by the interpolation approach adopted. A second important aspect is the necessity
to study the spatial continuity structure of the Sentinel data, also in comparison with the
ground-based levelling data and the COSMO-SkyMed data.
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To achieve the main aim of this research, set objectives are as follows:

• To measure and evaluate the suitability of Sentinel 1 (C-Band) SAR data for monitoring
airport runway pavements displacements on a multi-year temporal scale through the
satellite-based PSI monitoring technique;

• To compare the results obtained by the PSI technique to the measurements collected
via a dense topographic levelling campaign, through a geostatistical analysis;

• To evaluate the feasibility of the proposed geostatistical analysis as a reliable investi-
gation approach for the comparison of satellite-based and ground-based displacement
information, as well as a tool for the integration of satellite-based information within
next generation APMS to improve upon current maintenance strategies.

4. Methodology

The methodology presented in this paper is based on two major stages. The acquisition
and processing of satellite and ground-based data for displacement monitoring in airport
runways are first presented, followed by a geostatistical study.

To elaborate, a first stage of the methodology is aimed at evaluating the average
velocity values of the displacements (mm/yr) for the detected Persistent Scatterers (PSs).
This procedure was conducted using both Sentinel 1-A and high-resolution COSMO-
SkyMed SAR datasets. More specifically, the decomposition of displacements from Sentinel
1 data in the vertical and horizontal directions is evaluated. Parallel to this, the acquisition
and analysis of displacements collected on-site by topographic levelling are implemented.
For the second stage of the presented methodology, a geostatistical study is reported for
the exploratory spatial data analysis and the interpolation of the Sentinel-1 SAR data The
implemented methodology is showed in the flow-chart in Figure 2.
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4.1. Implemented Displacement Monitoring Techniques and Data Exploration Approach
4.1.1. Topographic Levelling: Data Acquisition Methods

The first stage of a topographic levelling survey consists in the acquisition of the
data, which is performed by collecting data directly on site. To this effect, the runway
must be closed to service for the entire duration of the survey. The relative position
of the identified topographic nets is measured with reference to a fixed stable ground
control point, taken outside the investigated runway and not affected by displacements
over time. Measurements are carried out at regular time intervals, e.g., monthly. As a
result, the displacements observed at any survey can be monitored, and the deformation
velocities can be calculated with a sub-millimetre accuracy. A major advantage of this
well-established method is in the high accuracy and reliability of the information collected.
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The main disadvantage is related to the high costs of the data collection stage on-site and
its complex logistics. Traffic on runways must be in fact interrupted during the surveys
(i.e., the runway must be closed), hence, it cannot be carried out at regular short intervals
in time.

In this study, a five-year dataset of topographic levelling measurements was collected
with a time-frequency of one year, for a total number of 466 levelled points. For each
levelled point of the dataset, it was possible to assess the trend of displacements and,
therefore, to compute the average deformation velocity in the reference period.

4.1.2. PSI Data Processing

Two SAR imagery datasets with different operating frequencies were acquired. Details
of these datasets are given in Section 5.2. Then, the imageries were processed by the
application of the PSI technique.

The PSI technique performed in this paper operates by the application of a multi-stage
approach, which was based on a sequence of the following chronological steps [26,28,29]:

• Creation of the “Connection Graphs” where a Master image is selected to allow the
identification of the connections for the formation of the interferograms. Then, a
statistical analysis of the amplitudes of the electromagnetic response is performed
on a pixel-by-pixel basis to compute the Amplitude Dispersion Index. The reference
master image was selected amongst those acquired in the middle of the temporal
and perpendicular baseline domain, to minimise space and temporal decorrelations.
Therefore, the corresponding interferograms for each pair of master-slave images are
computed.

• The second step is based on the identification of the Persistent Scatterer Candidates
(PSCs), selected by computing the amplitude dispersion index values relative to
each pixel. The PSCs are pixels, associated to the resolution cell of the SAR sensor,
with a value of stability index exceeding a fixed threshold (typically of 0.25). The
interferometric phase ∆φi is computed for any PSC, at any ith interferogram.

• The atmospheric phase contributions (φatm) as well as, the orbital and noise-related
effects (φnoise) are evaluated and removed from the interferometric phase (∆φi), to
identify the phase-shift uniquely related to the range variations. To elaborate, the
topographic phase (φtopo) is removed using the Digital Elevation Model (DEM) ac-
quired in the framework of the Shuttle Radar Topographic Mission (SRTM), with a
pixel resolution of 3 arc seconds (90 × 90 m). This is made available by the National
Aeronautics and Space Administration (NASA) in partnership with the United States
Geological Survey (USGS). The DEM resolution is adopted considering that the area
investigated for the airport runway is flat, and the phase values are slightly affected
by this parameter.

The above-listed processing phases have been applied by means of the “Interferometric
Stacking Module” of the Software SARscape [68], which is integrated in the Software ENVI
and licensed within the context of the “STRAIN2” EOhops project (ID 53071), funded by
the European Space Agency (ESA).

As a result of the above steps, stable reflectors (i.e., the PSs) can be detected over the
inspected area. At the end of the analysis, the PSs with a temporal coherence above 0.7
were eventually selected. For each PS, the LoS velocity, the displacement time-series and
heights have been estimated using a linear trend model of the deformations.

4.2. Geostatistical Analysis

Geostatistics has been used to evaluate the spatial statistical structure and the accuracy
of Sentinel 1 SAR data in monitoring runway displacements (see Section 2.3). Concerning
the ESDA process, statistical summaries and spatial statistical tools, such as the classed
post maps [62], the variogram cloud [69,70], the directional variograms and the variogram
maps [62] have been computed in this study. The analysis has been carried out using
the Gstat library [65], implemented for the R statistical programming environment [71],
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and relevant exploratory tools of the “Geostatistical analyst” package of the GIS software
Arcmap 10.7 (Esri). The geostatistical analysis implemented in this study is developed
according to the following main steps:

• ESDA: analysis of the spatial sampling geometry, statistical summaries, spatial ex-
plorative analysis and analysis of the spatial continuity by means of experimental
variograms, with identification of the main directions of the anisotropy.

• Inference of a variogram model: fitting of the experimental variogram with a vari-
ogram model, considering the main directions of the anisotropy.

• Interpolation and accuracy assessment: data interpolation using the fitted variogram
model and the appropriate kriging algorithm, considering the spatial statistical struc-
ture of the data.

In this research, a punctual OK was selected as the interpolation algorithm at the
levelling points, due to the spatial statistical characteristics of the dataset. The quality of
the interpolation parameters and the consistency of the inferred variogram model were
evaluated by means of the leave-one-out Cross-Validation (CV) diagnostics [62], including
the root-mean-square error (RMSE), the root mean square standardised error (RMSSE), and
the statistical and spatial distribution of the errors. The interpolation of Sentinel 1 SAR
data at the levelling points allows evaluating the accuracy of the Sentinel 1 SAR data in the
investigated domain. Moreover, a comparative analysis of the spatial continuity of Sentinel
1, COSMO-SkyMed, and levelling data can provide further information on the accuracy of
the Sentinel 1 data with respect to the COSMO-SkyMed data.

As a main novelty of the proposed geostatistical approach, it is worth mentioning the
optimisation of the model, due to a large availability of ground-truth levelling points. This
allows defining a maximum distance of interpolation and investigating into the directional
variograms. Hence, the accuracy of the geostatistical model used for data analysis and
interpretation purposes can be improved.

5. Case Study
5.1. Area of Investigation

The study area is located at the “Leonardo Da Vinci” International Airport in Fiumi-
cino, Rome, Italy. The airport carries most of the intercontinental air traffic to and from the
Italian territory, and it is ranked as the main national airport and one of the most trafficked
at the international level. The airport airside system is composed of three runways with a
capacity of 90 aircraft movs/hour, including take-off and landing operations. However,
its original layout was formed by only two runways. Following an increasing demand in
the air traffic volumes, a third runway (i.e., Runway n.3 in Figure 3) was in fact realised
in the ‘70s and located in the North-East area of the airport, alongside the North–South
direction. Furthermore, reports in the “Airport Development Plan” predict an increase in
the air traffic stream from approximately 40 million passengers/year (year 2014) to 65 mil-
lion passengers/year in 2027, bringing the current airside system capacity to 120 aircraft
movs/h. Additionally, the “Master Plan 2030” [72] set new directions for the construction
of a fourth runway, the eastern expansion of the aircraft aprons, the construction of new
flight infrastructures and a new terminal system to support an expected increase in the air
traffic demand.
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Within this framework, it is worth mentioning that maintenance of the existing asset
and plans for its future expansion are heavily affected by a well-known and active subsi-
dence of the foundation soils. This is due to the presence of clayey and silty geological
layers with poor load-bearing capacity, as shown in the geological maps of the area reported
in Figure 3c. [73]. In more detail, the first 50 m of the subsoil are characterised by a high
sedimentary heterogeneity with a prevalence of a palustrine sedimentary environment
(cohesive and organic soils) in the south-east runway sector and a fluvial sedimentary
environment (with presence of clay and silt) in the north-western runway sector [73]. This
lithological heterogeneity has caused severe differential settlements on Runway n. 3.

5.2. Displacement Monitoring Techniques: Equipment and Datasets
5.2.1. Satellite SAR Datasets

The SAR images were acquired in the framework of the Sentinel 1A mission, in the
ascending (i.e., with the satellite orbiting South to North, looking in the East direction)
and descending (i.e., with the satellite orbiting North to South, looking in the West direc-
tion) acquisition geometries, whereas the used COSMO-SkyMed SAR products rely on a
single acquisition geometry only (descending). The first step consists in identifying the
displacements detected in the LoS of the satellite sensors. The datasets were processed
using the PSI technique, as described in Section 4.1.2. The Copernicus Sentinel-1 SAR data
covered the period between April 2017 and December 2019. The X-Band SAR products,
covering the period between November 2016 and December 2019, were acquired by the
COSMO-SkyMed mission. The main characteristics of the Sentinel-1 and COSMO-SkyMed
missions are reported in the (Table 2).

The COSMO-SkyMed system operates in X-Band at a frequency of 9.6 GHz (wave-
length of 3.1 cm). This allows to achieve a ground-resolution square cell of 3 m size
and—under ideal conditions—a millimetre accuracy for the measurements.
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Table 2. Main features of the SAR imagery dataset from the Sentinel 1 ESA (European Space Agency) and the COSMO-
SkyMed missions—Italian Space Agency (ASI).

Satellite Missions Sentinel 1A COSMO-SkyMed

Band C-Band X-Band
Property European Space Agency (ESA) Italian Space Agency (ASI)

Reference Time Period April 2017–December 2019 November 2016–December 2019
Acquisition Geometry Descending/Ascending Descending

Frequency/Wavelenght 5.4 GHz/λ = 5.5 cm 9.6 GHz/λ = 3.1 cm
Range Resolution 5 m 3 m

Azimuth Resolution 20 m 3 m
Acquisition mode Interferometric Wide Swath (IW) Stripmap HIMAGE
Processing Level L1—Single Look Complex L1A- Single look Complex Slant

Number of Images 25 Desc./23 Asc. 39 Desc.

Sub-Swath IW3 for Desc. Geometry/
IW2 for Asc. Geometry -

Mean Incidence Angle (rad/degrees) Desc.: 0.75/42.97
Asc.: 0.67/38.39

Desc: 0.46/26.5
-

5.2.2. Topographic Levelling Equipment

A standard geometric levelling survey of the runway was conducted using the DNA03
Digital Level system, manufactured by Leica. The elevation measurements were collected
by means of a 2 m high levelling invar rod. The main features of the employed levelling
system are summarised in Table 3.

Table 3. Main features of the topographic levelling equipment.

Topographic Levelling Equipment Leica DNA 03

Measuring Time Operator dependent
Measuring Range Up to 110 m

Levelling Accuracy 0.3 mm/km
Compensator Pendulum with magnetic damping

The collected nets were automatically compensated, with an average Squared Root
Mean Error (SQRM) of 0.94 mm. The starting and ending point of the measurements
was a levelling benchmark situated in the North-West corner of the runway area, which
was verified to have a stable elevation. This point was connected to the high precision
levelling net developed by the Istituto Geografico Militare (IGM), through a levelling line
with an average accuracy of 1.0 mm/km. Tests were performed every year from 2015 to
2019 and covered five sections along the runway with a transversal spacing of 15 m and a
longitudinal length equal to the entire runway development. As shown in Figure 4, the
levelled points were spaced 15 m on the transverse direction, summing up to a total of five
measurements for every inspected cross-section of the runway. In turn, cross-sections were
spaced 60 m across the longitudinal direction (i.e., the take-off/landing direction). This
spacing was further decreased up to 10 m at critical sections, i.e., areas subject to heavy
displacements.
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6. Results and Discussion
6.1. Displacement Monitoring Techniques: Persistent Scatterers Interferometry (PSI) and
Topographic Levelling Investigations

The connection graphs containing detailed information on the SAR acquisitions,
including the time of acquisition and the baseline, are reported in Figure 5. More specifically,
the Time-Baseline and the Time-Position plots are reported, where the yellow dots represent
the Master image selected in the stack of each database, and the green dots are the slaves
selected to compute the differential interferograms.
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Ascending (a,b); Sentinel 1A Descending (c,d); COSMO−SkyMed Descending (e,f) datasets. Data
display is in relation to the master image (indicated in yellow) and the slaves (green dots), which
were identified to calculate the interferograms.
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The outcomes of the PSI processing phases are reported in Figure 6, in terms of the PS
outputs from the C-Band and the X-Band SAR datasets.
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The PS outputs were imported into a GIS environment and displayed as a function of
the annual average velocity of motion. The green points are referred to the stable scatterers
with a displacement velocity ranging from −4 mm/yr to +4 mm/yr. Figure 6 provides
an overview of the average LoS annual velocities estimated from the Sentinel and the
COSMO-SkyMed data.

The figure colourmap refers to displacements in the range [−25 ÷ +25] mm/year.
Across the entire airport area, it was possible to detect several PSs showing a coherent trend
of deformation for both the SAR datasets. A number of PSs, mostly located in proximity to
Runway n.3, are shown to be affected by a down-lifting trend of deformations. In detail,
Figure 6 clearly shows that Runway n. 3 can be divided in two distinct areas from North
to South direction, i.e., a stable area in the northern part of the runway (displacements
reported in green), and a southern area affected by higher settlements (displacements
reported in red).

It is worth noting that, as the SAR sensor can detect displacements in reference to
the incident angle of the LoS only, the detected displacement is a component of the real
velocity vector on the ground.

To investigate the decomposition and the real direction of the displacements, the PSs
obtained by the MT-InSAR processing of the Sentinel 1 data were post-processed and
compared (Figure 7). These data were acquired in both the acquisition geometries.

Regardless of the specific acquisition geometry, the LoS displacement (Dlos) is a projec-
tion of a three-dimensional displacement vector [47,49,50]:

Dlos = dv cos(ϑ)− de cos(β) sin(ϑ)− dn sin(β) sin(ϑ) (6)

with dv, de and dn being the vertical, eastern and northern components of the displacement,
respectively, ϑ and β being the incident angles and the azimuth of the radar, respectively.
Given the conditions of (i) SAR acquisitions not being affected by PS displacements in
the N-S direction and (ii) satellite orbits almost parallel to the N-S direction, it is reason-
able to assume this component as negligible. This reduces the number of unknowns in
Equation (6).
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Under this assumption, it is possible to evaluate the actual vertical component of the
PS displacements if both the acquisition geometries are available, by solving the following
system of equations [47,49]:[

dASC
dDESC

]
=

[
cos(ϑASC) − sin(ϑASC) cos(βASC)

cos(ϑDESC) − sin(ϑDESC) cos(βDESC)

][
dv
de

]
(7)

where ASC and DESC refer to the ascending and descending acquisition geometries, respec-
tively, and dv and de are the vertical and the horizontal components of the displacements,
respectively.
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Figure 7. PSI results identified in the study area in the LoS in (a) ascending and (b) descending geometries of the Sentinel 1
dataset. The down−lifting area affected by subsidence, represented by red dots, is clearly visible in both the datasets. The
basemap is taken from Google maps.

As in most of the cases it is no possible to associate a randomly given PS obtained from
an acquisition geometry to another PS with the same coordinates but different acquisition
geometry, geostatistical approaches, e.g., the use of interpolated grids, are required for
matching the datasets. Nevertheless, the use of interpolated information, especially in case
of medium-resolution Sentinel 1 datasets, implies that new uncertainties could be intro-
duced and affect the interpretation of results. This can stand as a limit of the PSI technique
for pavement inspections, given the relatively high spatial variability of distresses and
faults. Accordingly, prior to the application of Equation (7) to the investigated PS database,
a comparative analysis of the Sentinel-1 data acquired with different orbit geometries was
carried out. Hence, this allows assessing the impact of neglecting the horizontal displace-
ment component from the analysis of displacements. This assumption agrees with the
flat conditions for the surveyed area and the correlation between the loading mode and
type of expected displacements on the runway. Specifically, for de = 0 Equation (7) can be
solved as dASC = dDESC, i.e., it is possible to evaluate the model suitability in neglecting de
by comparing displacements in the LoS from both the acquisition geometries.
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To that intent, each PSASC was compared in terms of displacement velocity (mm/yr)
to the mean value of the PSDESC located in a radius of 20 m from the PSASC position, which
is in line with the ground resolution of the sensor. The result of this operation is shown in
Figure 8.
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Figure 8. (a) Scatter−plot and (b) regular plot of the comparison between displacement velocity values of the PSs acquired
in the two acquisition geometries.

The slope of the linear regression in Figure 8a was found relatively close to the bisector
line, showing an acceptable value of the correlation coefficient (R = 0.62) and distribution of
the errors (µ = 0; σ = 4.8 mm/yr). This is also related to the effect of the averaging operations
carried out on the PSASC. The analysis of the results showed that the vertical component of
the displacement is dominant with respect to the horizontal component. Hence, this was
neglected from the statistical analyses carried out in this paper. Accordingly, the vertical
displacement has been calculated for each PS as:

dv =
DDESC

cos(θDESC)
(8)

Therefore, ground-truth displacements by topographic levelling on Runway n.3 (see
Section 5.2.2) were used to compute the accuracy of the geostatistical model derived by the
InSAR processing on the C-Band dataset. The output of these analyses allowed detecting
and quantifying millimetre-scale displacements and their average deformation velocity in
the time range investigated (Figure 9). This information was crucial for a validation of the
displacements detected by the PSI technique.
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Figure 9. Layout of the levelling data collected on site along Runway n.3: (a) Density of the measuring points on the ground
in the area interested by subsidence (North region of the runway); (b) Density of the measuring points in the stable area of
the runway (South region of the runway).

6.2. The Geostatistical Analysis

A buffer of 30 m was used for the geostatistical analysis of the data on the runway.
The chromatic quantile classification of the mean velocity values (mm/yr) in Figure 10,
distributing the set of values into groups with same number of values, represents the spatial
density of the information obtained by (a) Levelling, (b) Sentinel-1 and (c) COSMO-SkyMed
methods.
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(c) COSMO-SkyMed. The basemap is a satellite orthophoto from the Sentinel 2 sensor (ESA-Copernicus).



Sensors 2021, 21, 5769 19 of 28

The PSs derived by the PSI processing of the Sentinel-1 and the COSMO-SkyMed
SAR datasets are characterised by different sampling networks, both in terms of spatial
sampling density and spatial clustering. This is related to the diverse operating frequencies
providing different pixel resolutions. In the case of the Sentinel-1 imagery, the data are
clustered along lines oriented in the NE-SW direction; the mean spacing values are 14 m
and 3.9 m in the NW-SE and NE-SW directions, respectively.

Similar to the Levelling and the COSMO-SkyMed data, the Sentinel 1 data are also
characterised by a clear bimodal distribution, as shown in Figure 11, due to different
settlement trends between the North and South areas of the runway. From a spatial
statistical viewpoint, it was considered as not necessary to divide the dataset in two further
subsets, i.e., the South zone (high subsidence) and the North zone (low subsidence), as
reported in Figure 10. To elaborate, the interactive analysis of the variogram cloud and
the directional variograms developed for the two zones did not highlight any remarkable
difference between the north and the south areas. Moreover, it is worthy of mention that a
stratified approach [61] would not contribute significantly to improve the quality of the
results, whereas it could increase the complexity of the analysis, due to the large amount of
data available.
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Nevertheless, it is fair to say that in other circumstances, e.g., studies involving larger
areas with a higher heterogeneity in the spatial patterns of the ground deformations,
stratified or locally adaptive approaches [75] could be instead required, including a major
complexity of the adopted approach and software implementation.

Sentinel-1 data (Figure 12) are characterised by an anisotropy in their spatial continuity,
with the direction of the maximum spatial continuity aligned with the runway direction
(i.e., direction 340◦) and the minimum spatial continuity in the transversal direction (i.e.,
direction 70◦). This observation has been confirmed also for the Levelling and the COSMO-
SkyMed data. The possibility to attribute this anisotropy to the presence of a trend has been
also evaluated. However, the spatial patterns of settlements have proven rather complex to
be modelled by the use of simple polynomial functions [61]. Accordingly, this anisotropy
was considered as related to the stochastic component of the random function. The validity
of this assumption can be considered as acceptable, since the calculation of the variogram
was conducted for relatively short distances (up to 80 m), to reduce the impact of potential
long-range trends and considering the limited width of the runway (Figure 13).
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Figure 13. Comparison between the directional variograms (empty circle 70◦ and full circle direction
340◦), of the Sentinel 1 (black), the COSMO-SkyMed (blue) and the topographic levelling (red) data.

The analysis of the directional variograms for the Sentinel 1 data allowed their compar-
ison with the semi-variance obtained by topographic levelling. This operation is possible
due to the availability of a very dense dataset of ground-truth levelled points throughout
the full cross-sectional development of the airport runway. Following an iterative inves-
tigative procedure, a geostatistical analysis has been performed for the Sentinel 1 data, the
COSMO-SkyMed and the ground-truth levelling data to define a maximum value for the
interpolation distance.

The high nugget and variability values of the Sentinel-1 data inevitably implies that
the kriging interpolations are characterised by relatively high prediction variances, with a
minimum prediction variance of 7 mm2/y2 (i.e., a standard deviation of 2.65 mm/y).

The experimental variogram has been fitted by an anisotropic Power model, which
is an unbounded variogram (Figure 14). Given the spatial characteristics of the data, an
OK algorithm has been selected to interpolate the Sentinel-1 data at the Levelling section
points.
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Figure 14. Fitting of the experimental variogram with a Power model.

To investigate the capability of the Sentinel-1 data in detecting the actual ground
displacements, a geostatistical analysis is conducted considering the potential impact of
the interpolation uncertainty. In this stage, a denser database of ground-truth levelling
data is a fundamental condition for an effective calibration of the geostatistical parameters
(e.g., the maximum distance of interpolation, the anisotropy, etc.) as well as for the proper
selection of the fitting power model.

The interpolation has been conducted with a search neighbourhood of 60 m using
a minimum of 15 data (with less data the prediction is not performed). The reference
parameters have been defined after different trials, considering cross-validations results
and the spatial-statistical structure of the data. In particular, the search neighborhood was
kept small to reduce the potential impact of long-range trends, especially in the transverse
direction (70◦) to the runway. The consistency of the interpolation parameters has been
evaluated by means of a cross-validation (Figure 15).
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This reports relatively good diagnostics (Table 4), including the absence of a spatial
correlation in the residuals for the modelled distances. For distances longer than 80 m
in the direction 70◦, signs of a spatial structure in the residuals are identified, due to the
unmodelled long-range trends.
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Table 4. Results of the CV of the PSI derived by Sentinel 1 interpolated by Ordinary kriging, and the Error between OK
Sentinel 1 and topographic levelling.

Statistical Parameters of the Power Model of the Ordinary Kriging Sentinel 1—Cross Validation (CV)

RMSE (mm/yr): 3.04 RMSSE: 0.99
Min 1st Quartile Median Mean 3rd Quartile Max

Error (mm/yr) −19.94 −1.63 −0.07 −0.01 1.57 26.81
Absolute Error (mm/yr) 0 0.73 1.59 2.13 2.86 26.81

Statistical Parameters: Ordinary Kriging Sentinel Error on Topographic Levelling (mm/yr)

RMSE (mm/yr): 2.67
Min 1st Quartile Median Mean 3rd Quartile Max

Error (mm/yr) −9.47 −1.84 −0.14 −0.21 1.32 10.69
Absolute Error (mm/yr) 0.01 0.73 1.58 2.03 2.82 10.69

Furthermore, a comparison between the PSI outcomes from the Sentinel-1A SAR data—
interpolated through an Ordinary Kriging—and the ground-truth topographic levelling
data demonstrated a high accuracy of the Sentinel 1 data. This is proven by the high values
of the correlation coefficient (r = 0.94), the multiple R-squared coefficient (R2 = 0.88) and
the Slope value (0.96), as reported in Figure 16.
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The Sentinel data have been interpolated at the levelling section points, allowing
evaluating the difference between settlements (i.e., VSentinel − VLevelling) measured by the
two approaches. It is worth to emphasise that, due to a relatively spatial dense sampling
geometry of the Sentinel data, the prediction standard deviation has a limited variation
(from 2.9 to 3.3 mm/y), which is most likely due to the nugget.

The evaluation of the accuracy of the Sentinel dataset compared to the COSMO-
SkyMed is also depicted by the directional variograms in the two main directions with the
ones calculated from levelling and COSMO-SkyMed data. Levelling and COSMO-SkyMed
data, for the same distances, have coherent values of the variogram.

Moreover, the COSMO-SkyMed data are characterized by a very low nugget of ap-
proximately 1 mm2/y2. Assuming the nugget to be completely due to the data uncertainty,
this means a standard deviation of 1 mm/y. Differently, the experimental variogram values
of the Sentinel-1 data (represented by the black dots in Figure 13) are shifted with respect
to the values from other datasets. The nugget is also much higher with an approximate
value of 7 mm2/y2, implying a lower accuracy of the data.



Sensors 2021, 21, 5769 23 of 28

The variogram characteristics of the Sentinel-1 data are unexpected to some extent.
The larger support of the Sentinel-1 footprint should in fact lead to a variogram regulari-
sation [75] and, hence, to lower values compared to the levelling or the COSMO-SkyMed
data. In turn, these should be representative of a much smaller spatial support. The general
higher spatial variability of the Sentinel-1 data indicates the presence of higher noise,
which can be most likely related to accuracy constraints in the deformation measurements,
(associated to the C-Band frequency of the SAR sensor), or the location of the PSs in the
resolution cell.

As a qualitative assessment of the reliability of the analysis, Figure 17 shows a com-
parative view of the displacement velocity values (mm/yr) given by both topographic
levelling and the vertical component of the Sentinel-1 PSI, interpolated by an Ordinary
Kriging model. Therefore, it was possible to compute the velocity values, at the exact posi-
tions measured by topographic levelling. A visual comparison of the results, grouped into
low (Figure 17a–d), intermediate (Figure 17b–e), and severe (Figure 17c–f) displacement
conditions, preliminary indicates a remarkable reliability of the satellite data.
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As a quantitative comparison of the above observations, Figure 18 shows the displace-
ment velocity of the survey profiles for the vertical component of the Sentinel-1 PSI data,
interpolated by Ordinary Kriging and the longitudinal survey profiles by topographic
levelling against the space (WGS84 N Coordinate). It is possible to note that as the displace-
ment trend reaches values higher than 15 mm/year (e.g., see Figure 18b,c), the PSI method
turns out to slightly underestimate the deformation rate. However, besides this specific
on-site topographic levelling observation, Figure 18 widely confirms the effectiveness of
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the Sentinel-1 data processed by the PSI technique and interpolated by an Ordinary Kriging
method, in reconstructing the actual deformation pattern on the inspected airport runway.
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7. Conclusions and Future Developments

This study investigates into the reliability of the C-Band Sentinel-1 mission data and
the capability of the Persistent Scatterers Interferometry (PSI) remote-sensing technique to
be used as an enhanced methodology for the monitoring of airport runways.

To this effect, a PSI analysis was developed to monitor the surface deformations of
“Runway n.3” at the “Leonardo Da Vinci International Airport” in Fiumicino, Rome, Italy.
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With reference to the methodology discussed in this paper, the presented Multi-Temporal
Interferometric Synthetic Aperture Radar (MT-InSAR) technique was effective at detecting
areas subject to potential active subsidence and differential down-lifting displacements.

The main conclusions from this research can be summarised as follows:

• The Sentinel1 (C-Band) SAR datasets, processed by means of the PSI technique, allow
detecting airport runway displacements and quantify their velocity of motion (mm/yr)
with high accuracy and correlation levels (e.g., correlation coefficient (r = 0.94)),
compared to established on-site topographic levelling data.

• The proposed geostatistical analysis based on the Ordinary Kriging (OK) approach
can be successfully implemented to compare results achieved by the application of the
PSI technique to medium-resolution Sentinel-1 data with the measurements collected
using the ground-based topographic levelling method. This is proven by the high
values of the multiple R-squared coefficient (R2 = 0.88) and a Slope of 0.96.

• The presented geostatistical analysis has proven effective in comparing satellite-based
and ground-based displacement information for airport runway monitoring. The
relatively dense information gathered through the InSAR technique as well as the
controlled conditions and the strict compliance to high standards of pavement quality
and the operations in airport traffic management lends itself to be incorporated in
specialist geostatistical investigations of millimetre-scale structural displacements.
The information can be crucial for inclusion in next generation Airport Pavement
Management Systems (APMSs).

Future research could task itself with additional geostatistical analyses for the struc-
tural monitoring of airport runways using integrated non-destructive ground-based tech-
nology for surface (e.g., laser scanner [9]) and subsurface (e.g., Ground Penetrating Radar
(GPR), Falling Weight Deflectometer (FWD) [14–16,76]) characterisation of displacements
in runways and the improvement of their safety operating conditions.
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