
sensors

Communication

Generation of the NIR Spectral Band for Satellite Images with
Convolutional Neural Networks

Svetlana Illarionova 1,* , Dmitrii Shadrin 1, Alexey Trekin 1, Vladimir Ignatiev 1 and Ivan Oseledets 1,2

����������
�������

Citation: Illarionova, S.; Shadrin, D.;

Trekin, A.; Ignativ, V.; Oseledets, I

Generation of the NIR Spectral Band

for Satellite Images with

Convolutional Neural Networks.

Sensors 2021, 21, 5646. https://

doi.org/10.3390/s21165646

Academic Editors: Marcin

Ciecholewski and Cosimo Distante

Received: 11 June 2021

Accepted: 19 August 2021

Published: 21 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Skolkovo Institute of Science and Technology, 143026 Moscow, Russia;
Dmitry.Shadrin@skolkovotech.ru (D.S.); A.Trekin@skoltech.ru (A.T.); V.Ignatiev@skoltech.ru (V.I.);
i.oseledets@skoltech.ru (I.O.)

2 Institute of Numerical Mathematics of Russian Academy of Sciences, 119333 Moscow, Russia
* Correspondence: s.illarionova@skoltech.ru

Abstract: The near-infrared (NIR) spectral range (from 780 to 2500 nm) of the multispectral remote
sensing imagery provides vital information for landcover classification, especially concerning vegeta-
tion assessment. Despite the usefulness of NIR, it does not always accomplish common RGB. Modern
achievements in image processing via deep neural networks make it possible to generate artificial
spectral information, for example, to solve the image colorization problem. In this research, we aim to
investigate whether this approach can produce not only visually similar images but also an artificial
spectral band that can improve the performance of computer vision algorithms for solving remote
sensing tasks. We study the use of a generative adversarial network (GAN) approach in the task of
the NIR band generation using only RGB channels of high-resolution satellite imagery. We evaluate
the impact of a generated channel on the model performance to solve the forest segmentation task.
Our results show an increase in model accuracy when using generated NIR compared to the baseline
model, which uses only RGB (0.947 and 0.914 F1-scores, respectively). The presented study shows
the advantages of generating the extra band such as the opportunity to reduce the required amount
of labeled data.

Keywords: GAN; satellite imagery; convolutional neural network; near-infrared channel; feature
engineering

1. Introduction

Machine learning techniques allow researchers to achieve high performance in a wide
range of remote sensing tasks by leveraging spectral bands of different wavelengths [1].
One essential spectrum interval for the remote sensing image analysis is represented by
the near-infrared (NIR) channel. The classical approaches in landcover classification tasks
often use NIR-based spectral indices such as the Normalized Difference Vegetation Index
(NDVI) or the Enhanced Vegetation Index (EVI) to assess the vegetation state [2]. This
spectral band is widely used in many applications, including forestry [3,4], agriculture [5,6],
and general landcover classification [7,8]. However, there are still cases when the NIR
band is not presented in the available data [9,10]. Thus, the researchers rely only on RGB.
For example, the Maxar Open Data Program [11] provides only RGB images. Many aerial
imaging systems are also limited to visible wavelength ranges.

The NIR band cannot be extracted from RGB bands. A simple example is provided in
Figure 1. For both the green tree and the green roof, the RGB values are the same. However,
the values differ drastically in the NIR spectral range, as the metal roof does not have
the vegetation properties that affect the NIR. On the other hand, indirect features can be
used to evaluate the NIR value. In general, all roofs have a lower NIR values than any
healthy tree during the vegetation period. Therefore, it is possible to make assumptions
about the NIR value based on the object’s shape and texture. This study investigates how
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neural networks can be applied to solve the NIR generation task by learning the statistical
distribution of a large unlabeled dataset of satellite images.

Figure 1. Objects with the same spectral values in the RGB range can belong to significantly different
classes. For these objects, spectral values beyond the visible range differ. These differences can be
illustrated using vegetation indices such as the NDVI in the case of an artificial object and a plant
during the vegetation period.

In [12], a similar problem of generating the NIR channel from RGB was described.
The proposed solution was based on the K-Nearest Neighbor classification algorithm and
was focused on the agricultural domain. The researchers show in [12] a high demand
for the generated NIR data, which can solve particular problems. However, the neural
network approach was beyond the scope of the present study for image generation. In [13],
they generated synthetic spectral bands for archive satellite images using Landsat data.
Synthetic satellite imagery generation from Sentinel-2 (with the spatial resolution more
than 10 meters per pixel) was considered in [14,15]. However, in our work, we were focused
on high-resolution satellite images as they provide valuable texture information.

Generative adversarial networks (GANs) have achieved great results in recent years [16].
The basis of this approach consists of two neural network models that are trained to beat
each other. The first network (generator) aims to create instances as realistically as possible,
and the second network (discriminator) learns to verify whether the instance is fake or real.
Conditional GANs (cGAN) have proven to be a promising approach in various fields using
additional conditions in the generation process. Conditional GANs were implemented
to solve different tasks such as image colorization [17], including infrared input [18] and
remote sensing data [19–22], and style transfer [23,24].

Pix2pix GAN, as described in [24], proposes an image-to-image translation approach.
Previous studies have shown a lack of generalization for other problems. Authors of [24]
aimed to develop an efficient framework that can be successfully implemented to solve
a wide variety of tasks, such as image colorization, synthesizing images from a labeled
map, generating land-cover maps from remote sensing images, changing the style, etc.
Pix2pix GAN uses a “U-Net”-based architecture as a generator and a convolutional
“PatchGAN” as a discriminator. The model was trained to estimate image originality
separately for each small region. The authors used the following objective function
G∗ = arg min

G
max

D
LcGAN(G, D) + λLL1(G) to train the model. The Pix2pix approach

enhancements were provided by the authors of [25].
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One prevalent computer vision task is image colorization, which is required to obtain
color images from grayscale ones [26]. One of the earliest works using texture information
for this task is [27]. In recent years, GANs (in particular cGANs) have become a popular
approach for such a challenge, in particular, in the remote sensing domain [20,28]. In the
image colorization task, cGANs take a condition that should be utilized for new image
generation. The results for such a task can be evaluated visually. This challenge share
similarities with the NIR generation problem. As an input, grayscale images are received,
and as an output, an RGB image is created. In contrast, for NIR, we strive to obtain one
channel from three channels. Unlike mapping grayscale to RGB, NIR does not include a
mixture of RGB; NIR even lies in a distant wavelength region from RGB. It makes the task
more challenging. Moreover, in the colorization problem, the choice of color sometimes
depends on the statistical distribution in the training set (for example, the color of the
car might depend on the number of cars for each color). Such mismatches in colorization
might not be treated as a severe mistake, and it does not corrupt the sense of the natural
source of objects or phenomena. In contrast, for NIR in vegetation tasks, there is a strong
connection between chlorophyll content and the intensity of the channel value [29]. A
neural network can extract structure features such as shape and texture characteristics. We
attempt to combine them with RGB values to generate the NIR band artificially and save
the physical sense of this channel as much as possible.

In the remote sensing domain, the opportunity to work with multiple satellite data
simultaneously is essential in various cases [30]. In [31], the authors consider WorldView
and Planet imagery. WorldView has a higher spatial resolution, while Planet has a higher
temporal resolution. Therefore, by combining these data, researchers can solve particular
problems rapidly and with better quality. In [32], Modis and Landsat images fusion was
considered in the flood mapping case. In [33], they combine images from WorldView2,
Rapid Eye, and PlanetScope platforms to solve the forest degradation problem. When
images from several sensors were available, the highest spatial resolution images were
always preferred. Therefore, in the remote sensing domain, acquisition dates can vary
for different satellites, and for monitoring, it is crucial to work with all available data
sources. However, when a computer vision model uses data from different distributions,
it can decrease prediction quality. One of the objectives of our study was to examine the
importance of the NIR band for cross-domain stability.

In our study, we examine whether the cGAN image generation approach can produce
sufficient results for image segmentation purposes. Multiscale contextual features and
spatial details are highly important in the remote sensing domain [34]. Therefore, we aim
to apply the NIR generation as a feature-engineering method, creating a new feature (NIR
reflectance) that is not present in the original feature space (RGB reflectance). We also
study original and artificially generated NIR in the cross-domain stability problem, as
convolutional neural network (CNN) robustness for various data is vital in the remote
sensing domain [35]. We aim to use a vast amount of RGB & NIR data without markup
that can be further leveraged in semantic segmentation tasks when NIR is not always
available Figure 2.

Figure 2. A large amount of RGB & NIR data without markup that can be further leveraged in
semantic segmentation tasks when NIR is not available in some particular cases.
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We propose and validate an efficient approach to produce an artificial NIR band
from the RGB satellite image. A state-of-the-art Pix2pix GAN technique is implemented
for this task and compared with a common CNN-based approach for the regression
task. WorldView-2 high-resolution data are leveraged to conduct image translation from
RGB to NIR with further verification on PlanetScope and Spot-5 RGB images. We also
investigate how original and artificially generated NIR bands affect both CNN and Random
Forest (RF) [36] predictions in forest segmentation tasks compared to only RGB data.
The experiments involve two significant practical cases: two data source combinations
(PlanetScope and Spot-5) and different amount of labeled training data (the total dataset
size for the segmentation task is 500.000 hectares). The contribution of the presented work
is as follows:

• We propose the approach for feature-engineering based on the NIR channel generation
via cGANs.

• We investigate the impact of artificially generated and real NIR data on the model
performance in the satellite image segmentation task. We also examine the NIR
channel contribution in reducing labeled dataset size with minimum quality loss. The
NIR channel for satellite cross-domain stability is considered.

2. Materials and Methods
2.1. Dataset

We leveraged WorldView-2 satellite imagery downloaded from GBDX [37] to train
the generative models. For forest segmentation experiments, we used the satellite data
provided by the SPOT-5 [38] satellite and the PlanetScope [39] satellite group. The imagery
has a high spatial resolution of 2–3 meters per pixel in four spectral channels (red, green,
blue, near-infrared). All images were georeferenced and had values equal to the surface
reflectance. Overall, two datasets were used in this work:

The first dataset used in this work was for cGAN model training. The dataset consists
of RGB and NIR channels from the same satellite (WorldView-2). It covers different regions
of Russia and Kazakhstan with approximately the same climate and ecological conditions.
The total territory is about 900,000 ha. The datasets consist of varying land cover classes
such as crops, forests, non-cultivated fields, and human-made objects. Images with dates
from May to September were chosen to represent the high-vegetation period.

The second dataset was used to test the real and artificial NIR channel’s influence
compared to the bare RGB image. This dataset includes PlanetScope and Spot-5 imagery.
The resolution of images ranges between 2 and 3 meters, depending on the view angle.
The markup for the study region consists of the binary masks of the forested areas and
other classes in equal proportion, covering 500,000 ha. The labeled markup was used for
the binary image segmentation problem. The region was split into test and train parts in
the proportion of 0.25:0.75.

2.2. Artificial NIR Channel Generation

To generate the NIR band from RGB, we used cGAN. We chose the Pix2pix approach
for this task because it performs quite well for image translation problems [40,41]. For
the generator, we used the U-Net [42] architecture with the Resnet-34 [43] encoder. For
the discriminator, the PatchGAN as described in [24] with various receptive field sizes
was used. The training procedure is shown in Figure 3. There were two models: the
generator and the discriminator. The generator was trained to create artificial NIR images,
using the RGB image as a conditional input. The discriminator received an RGB image in
combination with the alleged NIR image. Then, there were few possible scenarios: (1) the
NIR was original, and the discriminator succeeded in ascertaining it; (2) the NIR was fake,
but the discriminator failed by treating it as original; (3) the NIR was original, but the
discriminator mistook for fake; (4) the NIR was fake, and the discriminator exposed it.
Although this model was trained simultaneously, we ultimately strove to receive a high
performing generative model, to solve the objective of the study. For further analysis, only
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the generator was considered. Unlike classical machine learning techniques, which usually
work only with one particular point (see [12]), the U-Net generator processes a particular
neighborhood and learns how to summarize 3-dimensional information.

Figure 3. Training procedure for GAN using the RGB image as an input and the NIR band as
a condition.

We compared the cGAN-based approach with the simple CNN-based one where
U-Net with Resnet-34 encoder was trained to solve the regression problem.

We considered the root mean square error (RMSE), mean absolute error (MAE), and
mean bias error (MBE) for the model’s performance evaluation as follows:

RMSE =

√
∑n

i=1(yi − ŷi)2

n
(1)

MAE =
∑n

i=1 |yi − ŷi|
n

(2)

MBE =
∑n

i=1(yi − ŷi)

n
(3)

where y is the mean target value among all pixels, ŷi is the predicted value of the ith pixel,
yi is the target value of the ith pixel, and n is the pixel number.

2.3. Forest Segmentation Task

To empirically evaluate the usefulness of the original and artificially generated NIR
channel to solve real image segmentation problems, we considered the forest segmentation
task with high-resolution satellite imagery. In this task, a CNN model was trained to
ascribe each pixel with the forest content label.

We used the common solution for the image semantic segmentation: U-Net [42] with
the ResNet-34 [44] encoder. The chosen architecture is widely implemented in the remote
sensing domain [45]. We conducted experiments with different input channels: only RGB,
RGB & original NIR, and RGB & generated NIR. The model output was a binary mask of
the forest landcover, which was evaluated against the ground truth with an F1-score. We
also assessed the original and artificially generated NIR in the same task using classical
machine learning approach. We trained a Random Forest (RF) classifier [36]. The RF
implementation was from [46] with the default parameters the same as in [36]. Each pixel
was considered as an object for the classification.

precision =
TP

TP + FP
,

recall =
TP

TP + FN
,

F1 =
2 ∗ precision ∗ recall

precision + recall

(4)

where TP is the True Positive (the number of correctly classified pixels of the given class),
FP is the False Positive (the number of pixels classified as the given class while, in fact,
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being of the other class, and FN is the False Negative (the number of pixels of the given
class, that were missed by the method).

2.4. NIR Channel Usage

We conducted an experiment that estimated the dependency of the segmentation
quality on the training dataset size in both RGB and RGB & NIR cases. We randomly split
and chose 50% and 30% of the initial training dataset (test data were the same for these
random splits). The same experiment was repeated both for the SPOT and Planet imagery
but separately for each data source.

In the second study, we considered data from different sources (both PlanetScope
and SPOT data) simultaneously. Even if we have two images of the same date, region,
and resolution but from various providers, sensors systems and image preprocessing can
make them radically different from each other. The intensity distribution for images from
Spot and Planet are shown in Figure 4. Such differences can be crucial for machine vision
algorithms and lead to a reduction in prediction quality. Therefore, it can be treated as a case
of a more complex multi-domain satellite segmentation task. To estimate the importance
of the original and artificial NIR channels for different satellite data, we conducted the
following experiment. The CNN model was trained using the Planet and SPOT data
simultaneously. To evaluate the model’s performance, three test sets were considered: only
the Planet test images, only the SPOT test images, and both the Planet and SPOT images.
The images for Planet and Spot covered the same territory.

Figure 4. Original SPOT and Planet images (without any enhancements) and their RGB spectral
values distribution. The histograms were computed within the forest area. Although the presented
images are from the summer period, their spectral values differ drastically, as the histogram shows.

2.5. Training Setup

The training of all neural network models was performed on a PC with GTX-1080Ti
GPUs, using Keras [47] with a Tensorflow [48] backend. For the simple regression model,
the following training parameters were set. An optimizer RMSprop was chosen with a learn-
ing rate of 0.001, which was reduced with patience 5. There were 20 epochs with 100 steps
per epoch. The batch size was specified to be 30 with an image size of 256× 256 pixels [24].
A model based on GAN training parameters was constructed as follows. The loss functions
were chosen to be binary cross-entropy and MAE. The optimizer was Adam. The batch
size and image size were the same as for the simple model. The models were trained
for 600 epochs, 100 steps per epoch, and a batch size of 30. For the Planet data, we also
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conducted a fine-tuning procedure of the pretrained generative model using a small area
without the necessity of markup. For the SPOT data, there was no additional training.

3. Results and Discussion

The results for NIR generation by cGAN are presented in Table 1 for the WorldView,
SPOT, and Planet satellite data. All values for real and generated NIR were in the range
[0, 1]. The simple CNN regression approach showed significantly poor results (the MAE
was 0.21 for WorldView). Therefore, we did not select this approach for future study. The
principal difference between cGANs and the regression CNN model is the type of loss
function. As our experiments show, both MAE and MSE loss in the regression CNN model
led to the local optimum, which was far from the global one. The loss function can be
affected by the distribution of RGB values. Compared to the regression CNN model, the
results of cGAN were significantly closer to the real NIR values.

Table 1. Error of the artificial NIR band for the test WorldView, SPOT, and Planet imagery.

MAE RMSE Mean Bias

WorldView 0.09 0.31 0.058
SPOT 0.037 0.194 −0.0029
Planet 0.16 0.41 0.088

Another approach to evaluate the generated NIR band involves the forest segmenta-
tion task. The segmentation model was trained on the original NIR channels to predict the
forest segmentation mask using RGB & generated NIR. The results are presented in Table 2,
which shows that the additional NIR channel improved the cross-domain stability of the
model. The example of segmentation prediction is shown in Figure 5. The model using
the generated NIR provided more accurate results than the model trained only on RGB
bands. The original NIR usage obtained an F1-score of 0.953, the generated NIR obtained
an F1-score of 0.947, and the model using only RGB bands obtained an F1-score of 0.914.
The predicted NIR channel is shown in Figure 6, which confirms a high level of similarity
between generated and original bands. Therefore, this approach allows more efficient
CNN model usage in practical cases when data from different Basemaps are processed and
cross-domain tasks occur.

We also assessed the generated and original NIR bands using classical machine
learning approach. Results are presented in Table 2. For RF, the NIR band usage improves
the classification quality from 0.841 to 0.877. The F1-score for the generated NIR is 0.874.
This experiment shows that for the classification approach without spatial information the
generated band is also provide significant information.

Table 2. The results of the forest segmentation experiments with different data sources. Both the RGB
model and the RGB and NIR model were trained on Planet and Spot images simultaneously. The
F1-score was computed on the test set individually for Planet and Spot and for the joined Planet and
Spot test set.

U-Net RF

Test images RGB RGB RGB and RGB RGB RGB and
and NIR artificial NIR and NIR artificial NIR

SPOT 0.954 0.961 0.96 0.874 0.892 0.889
Planet 0.857 0.939 0.936 0.815 0.863 0.861
SPOT + Planet 0.932 0.96 0.945 0.836 0.876 0.872
Average 0.914 0.953 0.947 0.841 0.877 0.874

(+0.039) (+0.033) (+0.036) (+0.033)



Sensors 2021, 21, 5646 8 of 12

Figure 5. Forest segmentation predictions on the test regions (SPOT). One model was trained just on
RGB images; another model used RGB and generated NIR.

Figure 6. Example of generated NIR on the test set. The first row presents the SPOT image; the
second row is the WorldView image.

The results for different dataset sizes are presented in Table 3 and show that leveraging
the NIR channel was beneficial in the case of smaller dataset sizes, whereas its effect
decreased with the growing amount of the training data.

Table 3. The results for the forest segmentation experiments with different dataset sizes. The F1-score
for SPOT and Planet on the test set. The entire data size was 500,000 ha.

Bands All Data 1/2 1/3

SPOT RGB 0.97 0.956 0.942
RGB and NIR 0.97 0.963 0.961

Planet RGB 0.939 0.933 0.874
RGB and NIR 0.95 0.942 0.927
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GANs aim to learn dataset distribution. It is conducted by minimizing the overall
distance between the real and the generated distribution. We made an assumption that
the dataset size is enough to approximate the distribution. Thus, we train the generator to
sample according to the target distribution. The trained generator allowed a high-realistic
image-to-image translation (G : {RGB}→ NIR) such that the obtained NIR band is similar
to those belonging to the target domain.

Example of a green roof is presented in Figure 7. Although, the color of the object is
green, NIR value is low. It shows that the model had a sufficient amount of the training
samples to learn such cases.

The experiments indicate that the generated NIR provides additional information to
the segmentation model. We assume that the generative model incorporates the hidden
statistical connections between the spectral channels that can be learned from the significant
amount of real RGB and NIR data. As opposed to the segmentation or classification
approach, the channel generation does not require the manual ground truth markup to
significantly increase the dataset size. Therefore, this approach can be used as a feature-
engineering tool to create a new feature similar to the NIR band of multispectral remote
sensing imagery.

We set the goal to predict exactly the NIR band instead of vegetation indexes such as
NDVI or EVI. These indexes use the NIR band in combination with the Red band. The
NIR band generation allows further computation of other indexes without a requirement
for extra model training. The future study can be extended by implementing different
vegetation indexes. Moreover, in the case of using neural networks with the generated NIR
band, it is enough to provide input NIR and Red bands separately (not in the form of the
computed indexes) because a neural network can approximate nonlinear functions such as
vegetation indexes.

One example of a failure case is a green lake (Figure 8) that might be mistaken for a
green lawn. The reason is insufficient representation in the training dataset. Another possi-
ble example is an artificial turf such as an open-air stadium. The model can erroneously
treat it as a landcover with high NIR value. On the other hand, if we add a significant
amount of such samples, it is possible that the model learns such a distribution both.

Pix2pix architecture includes 54M parameters in the generator part and 6M parameters
in the discriminator part. The future study can be focused on trainable parameters reduc-
tion. Light-weighted neural network models are studied currently and show promising
results in the remote sensing domain [34] (just 4M parameters are used).

Training models independently for each data source often leads to better results.
However, it is a more expensive approach. In this study, we considered the case when we
minimize the cost. In future research, separate models training for each datasource should
be studied and analyzed.

Data providers aim to minimize time and other costs while providing imagery to
customers. For this purpose, online services for data acquisition are created [49,50] that
allows one to analyze data “on the fly”. The most spread and cheap format for such
platforms is RGB images, even when original imagery includes more spectral channels. The
proposed NIR generation approach can be implemented for such products as “basemaps”.
That requires further study.

In the future, we seek to implement this feature-engineering approach to other remote
sensing tasks, such as agriculture classification and land-cover semantic segmentation. In
addition, the proposed approach holds potential to solve challenges when only drones’
RGB channels are available. Another direction is to combine this feature-engineering
approach with different augmentation techniques for remote sensing tasks [51,52].

It is promising to investigate the application of NIR generation methods beyond
remote sensing problems in future works. Since NIR provides valuable auxiliary data in
plant phenotyping tasks, NIR generation can be extended for greenhouses where high
precision is vital [53].
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Figure 7. Example of a case with a green roof (SPOT image). The green roof has low NIR values both for original and
generated NIR bands.

Figure 8. Example of a failure case (SPOT image). Green lake is erroneously treated as a surface with high NIR value.

4. Conclusions

The NIR band contains essential properties for landcover tasks. However, in particular
cases, this band is not available. This study investigated Pix2pix cGAN implementation
for image-to-image translation from RGB space imagery to the NIR band. We proposed
an efficient feature-engineering approach based on an artificial NIR band generation. We
conducted forest segmentation experiments to assess the importance of the NIR band
in cases of small datasets and different satellite data sources. The proposed approach
improved the model’s robustness to data source diversity and reduced the requirement
to mark the dataset size, which is crucial for machine learning challenges. We assume
that this data generation strategy can be implemented in practical tasks that require the
NIR channel. This method can be extended to other spectral channels and remote sensing
data sources.
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