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M. LSTM and GRU Neural Networks

as Models of Dynamical Processes

Used in Predictive Control: A

Comparison of Models Developed for

Two Chemical Reactors. Sensors 2021,

21, 5625. https://doi.org/10.3390/

s21165625

Academic Editor: Stefano Lenci

Received: 20 July 2021

Accepted: 17 August 2021

Published: 20 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Faculty of Electronics and Information Technology, Institute of Control and Computation Engineering,
Warsaw University of Technology, Nowowiejska 15/19, 00-665 Warsaw, Poland; M.Lawrynczuk@ia.pw.edu.pl
* Correspondence: Krzysztof.Zarzycki@pw.edu.pl

Abstract: This work thoroughly compares the efficiency of Long Short-Term Memory Networks
(LSTMs) and Gated Recurrent Unit (GRU) neural networks as models of the dynamical processes
used in Model Predictive Control (MPC). Two simulated industrial processes were considered: a
polymerisation reactor and a neutralisation (pH) process. First, MPC prediction equations for both
types of models were derived. Next, the efficiency of the LSTM and GRU models was compared for a
number of model configurations. The influence of the order of dynamics and the number of neurons
on the model accuracy was analysed. Finally, the efficiency of the considered models when used in
MPC was assessed. The influence of the model structure on different control quality indicators and
the calculation time was discussed. It was found that the GRU network, although it had a lower
number of parameters than the LSTM one, may be successfully used in MPC without any significant
deterioration of control quality.

Keywords: dynamical systems; LSTM and GRU neural networks; model predictive control

1. Introduction

In Model Predictive Control (MPC) [1,2], a dynamical model of the controlled process
is used to predict its behaviour over a certain time horizon and to optimise the control
policy. This problem formulation leads to very good control quality, much better than that
in classical control methods. As a result, MPC methods have been used for a great variety of
processes, e.g., chemical reactors [3], heating, ventilation and air conditioning systems [4],
robotic manipulators [5], electromagnetic mills [6], servomotors [7], electromechanical
systems [8] and stochastic systems [9]. It must be pointed out that satisfactory control is
only possible if the model used is precise enough. Although there are numerous types of
dynamical models, e.g., fuzzy systems, polynomials, and piecewise linear structures [10],
neural networks of different kinds [11] are very popular due to their excellent accuracy
and simple structure [12]. In particular, Recurrent Neural Networks (RNNs) [13–16] can
serve as a model as they are able to give predictions over the required horizon.

In theory, RNNs can be extremely useful in various machine learning tasks in which
the data are time-dependent such as modelling of time series, speech synthesis or video
analysis. In contrast to the classical feedforward neural networks, RNNs can be used
to create models and predictions from sequential data. However, in practice, their use
is limited due to their one major drawback: the lack of long-term memory. RNNs have
short-term memory capabilities; however, they tend to forget about the long-term input–
output time dependencies during the backpropagation training. This problem is caused
by the vanishing gradient phenomena, which was described in great detail in [17–19].
Many ways of limiting the vanishing gradient influence on the training process have
been proposed, such as using different activation functions (such as ReLU) or branch
normalisation. Another approach is to modify the network architecture in a way that
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improves the gradient flow during training. Residual Neural Networks (ResNets) proposed
in [20] and the Long Short-Term Memory Network (LSTM) structure proposed first in [18]
and its modification—the Gated Recurrent Unit (GRU) architecture proposed in [21]—can
serve as examples.

The unique long-term memory properties of LSTM and GRU neural networks made
them widely popular in a large variety of machine learning tasks. Example applications of
the LSTM architecture are: data classification [22], speech recognition [23,24], handwriting
recognition [25], speech synthesis [26], text coherence tests [27], biometric authentication
and anomaly detection [28], detecting deception from gaze and speech [29] and anomaly
detection [30]. Similarly, example applications of the GRU structure are: facial expression
recognition [31], human activity recognition [32], cyberbullying detection [33], defect
detection [34], human activity surveillance [35], automated classification of cognitive
workload tasks [36] and speaker identification [37].

Recently, the LSTM networks have been also used to model dynamical processes.
Examples are: a benchmark process [38], a pH reactor [39], a reverse osmosis plant [40],
temperature control [41] or an autonomous mobility-on-demand system [42]. In all cited
publications, it was shown that the LSTM models are able to approximate the properties
of dynamical processes; the models have very good accuracy. Some of these models have
been used for prediction in MPC [40–42]; very good control quality has been reported.
Although GRU networks are similar to the LSTM ones and they have many successful
applications in classification and detection tasks, as mentioned in the previous paragraph,
they are very rarely used as models of dynamical processes, e.g., a tandem-wing quadplane
drone model was discussed in [43]. Hence, two important questions should be formulated:

(a) What is the accuracy of the dynamical models based on the GRU networks, and how
do they compare to the LSTM ones?

(b) How do the GRU dynamical models perform in MPC, and how do they compare to
the LSTM-based MPC approach?

Both of these issues are worth considering since the GRU networks have a simpler
architecture and a lower number of parameters than the LSTM ones.

This work has three objectives:

(a) A thorough comparison of LSTM and GRU neural networks as models of two dy-
namical processes, polymerisation and neutralisation (pH) reactors, is considered.
An important question is whether or not the GRU network, although it has a simpler
structure as the LSTM one, offers satisfying modelling accuracy;

(b) The derivation of MPC prediction equations for the LSTM and GRU models;
(c) The development of MPC algorithms for the two aforementioned processes with

different LSTM and GRU models used for prediction. An important question is
whether or not the GRU network offers control quality comparable to that possible
when the more complex LSTM structure is applied.

Unfortunately, to the best of the authors’ knowledge, the efficiency of LSTM and GRU
networks as dynamical models and their performance in MPC have not been thoroughly
compared in the literature; typically, the LSTM structures are used [40–42].

The article is organised in the following way. Section 2 describes the structures of the
LSTM and GRU neural networks. Section 3 defines the MPC optimisation task algorithm
and details how the two discussed types of neural models are used for prediction in MPC.
Section 4 thoroughly compares the efficiency of LSTM and GRU neural networks used as
models of the two dynamical systems. Moreover, the efficiency of both considered model
classes is validated in MPC. Finally, Section 5 summarises the whole article.
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2. LSTM and GRU Neural Networks
2.1. The LSTM Neural Network

The LSTM approach aims to create a model that has a long-term memory and, at the
same time, is able to forget about unimportant information in the training data. To achieve
this, three main differences in comparison to classical RNNs are introduced:

• Two types of activation functions;
• A cell state that serves as the long-term memory of the neuron;
• The neuron is called a cell and has a complex structure consisting of four gates that

regulate the information flow.

2.1.1. Activation Functions

In the classical RRNs, the most commonly used activation function is the tanh type:

tanh(x) =
ex − e−x

ex + e−x . (1)

The output values of the hyperbolic tangent are in the range <−1, 1>. This helps
to regulate the data flow through the network and avoid the exploding gradient phe-
nomena [17,44]. In the LSTM networks, the usage of tanh is kept; however, the sigmoid
activation function is additionally implemented. This function is defined as:

σ(x) =
1

1 + e−x . (2)

The output values of the sigmoid function are in the range of <0, 1>. This allows the
neural network to discard irrelevant information. If the output values are close to zero,
they are not important and should be forgotten. If the values are close to one, they should
be kept.

2.1.2. Hidden State and Cell State

In the classical RNN architecture, the hidden state is used as a memory of the network
and an output of the hidden layer of the network. The LSTM networks additionally imple-
ment a cell state. In their case, the hidden state serves as a short-term working memory.
On the other hand, the cell state is used as a long-term memory to keep information about
important data from the past. As depicted in Figure 1, only a few linear operations are
performed on the cell state. Therefore, the gradient flow during the backpropagation
training is relatively undisturbed. This helps to limit the occurrence of the vanishing
gradient problem.

+

tanh

tanh

Forget gate Input gate State
candidate gate Output gate

+ + +bg + +

Figure 1. The LSTM cell structure.
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2.1.3. Gates

The LSTM network has the ability to modify the value of the cell state through a
mechanism called gates. The LSTM cell shown in Figure 1 consists of four gates:

1. The forget gate f decides which values of the previous cell state should be discarded
and which should be kept;

2. The input gate i selects values from the previous hidden state and the current input to
update by passing them through the sigmoid function. The function product is then
multiplied by the previous cell state;

3. The cell state candidate gate g first regulates the information flow in the network
by using the tanh function on the previous hidden state and the current input. The
product of tanh is multiplied by the input gate output to calculate the candidate for
the current cell state. The candidate is then added to the previous cell state;

4. The output gate o first calculates the current hidden state by passing the previous
hidden state and the current input through the sigmoid function to select which
new information should be taken into account. Then, the current cell state value
is passed through the tanh function. The products of both of those functions are
finally multiplied.

2.1.4. LSTM Layer Architecture

The LSTM layer of a neural network is composed of nN neurons. The layer has nf
input signals. For a network used as a dynamical model of the process represented by the
general equation:

y(k) = f (x(k)) = f (u(k− 1), . . . , u(k− nB), y(k− 1), . . . , y(k− nA)) (3)

this parameter can be written as nf = nA + nB. The vector of the network’s input signals at
the time instant k is then:

x(k) =



u(k− 1)
...

u(k− nB)
y(k− 1)

...
y(k− nA)


. (4)

When considering the entire LSTM network layer consisting of nN cells, the gates can
be represented as vectors f , g, i, o, each of dimensionality nN × 1. The LSTM layer of the
network contains also a number of weights. The symbol W denotes the weights associated
with the input signals x; the symbol R denotes the so-called recursive weights, associated
with the hidden state of the cell from the previous moment h(k− 1); the symbol b denotes
the constant (bias) components. The subscripts f, g, i or o appear next to all the weights;
they indicate to which gate the weights belong. Network weights can be therefore written
in matrix form as:

W =


Wi
Wf
Wg
Wo

, R =


Ri
Rf
Rg
Ro

, b =


bi
bf
bg
bo

. (5)

The matrices Wi, Wf, Wg and Wo have dimensionality nN × nf; the matrices Ri, Rf,
Rg and Ro have dimensionality nN × nN; the vectors bi, bf, bg and bo have dimensionality
nN × 1.

At the time instant k, the following calculations are performed sequentially in the
LSTM layer of the network:
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i(k) = σ

(
Wix(k) + Rih(k− 1) + bi

)
, (6)

f (k) = σ

(
Wfx(k) + Rfh(k− 1) + bf

)
, (7)

g(k) = tanh
(

Wgx(k) + Rgh(k− 1) + bg

)
, (8)

o(k) = σ

(
Wox(k) + Roh(k− 1) + bo

)
. (9)

The new cell state at the time instant k is then determined:

c(k) = f (k) ◦ c(k− 1) + i(k) ◦ g(k). (10)

Finally, the hidden state at the time instant k can be calculated:

h(k) = o(k) ◦ tanh(c(k)). (11)

The symbol ◦ denotes the Hadamard product of the vectors. In other words, the
vectors are multiplied elementwise. In Equation (10), this operation is used twice. The
cell state from the previous time instant is multiplied by the values output by the forget
gate. If those values are close to zero, the Hadamard product is close to zero as well, and
therefore, the past information stored in the cell state is discarded. If the forget gate values
are close to one, the past information becomes mostly unchanged. Then, the output of the
input gate and cell candidate gate is pointwise multiplied. The purpose of this operation is
similar. If the input gate values are close to zero, no new information is added to the cell
state. Otherwise, the previous cell state values are updated with the values from the cell
state candidate gate. In Equation (11), the Hadamard product is close to zero when the
output gate values are close to zero. In this situation, the hidden state from the previous
time instant becomes mostly unchanged. Otherwise, the new hidden state is updated with
the new values from the cell state.

The LSTM layer of the neural network is then connected to the fully connected layer,
as shown in Figure 2. It has its weight vector Wy of dimensionality 1× nN and bias by. The
output of the network at the time instant k is calculated as follows:

y(k) = Wyh(k) + by. (12)

LSTM/GRU cell
 
1

LSTM/GRU cell

2

LSTM/GRU cell

+

LSTM/GRU
layer

fully connected
layer

input
 layer

Figure 2. The topology of the LSTM and GRU networks.

2.2. The GRU Neural Network

The GRU network is a modification of the LSTM concept, which aims to reduce to net-
work’s computational cost. There are some differences between the architectures, mainly:
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1. The GRU cell lacks the output gate; therefore, it has fewer parameters;
2. The usage of the cell state is discarded. The hidden state serves both as the working

and long-term memory of the network.

The single-GRU cell layout is presented in Figure 3. It consists of three gates:

1. The reset gate r is used to select which information to discard from the previous
hidden state and input values;

2. The role of the update gate z is to select which information from the previous hidden
state should be kept and passed along to the next steps;

3. Candidate state gate g calculates the candidate for the future hidden state. This is
done by firstly multiplying the previous state with the reset gate’s output. This step
can be interpreted as forgetting unimportant information from the past. Next, new
data form the input are added to the remaining information. Finally, the tanh function
is applied to the data to regulate the information flow.

tanh

1-

+

+br

Reset gate

+

Update gate

+

+

State candidate gate

Figure 3. The GRU cell structure.

The current hidden state hk is calculated as follows. Firstly, the output from the update
gate z is subtracted from one and then multiplied with the previous state hk−1. Then,
the state candidate g is multiplied by the unchanged output from the update gate z. The
results of both of those operations are finally added. This means that if the values output
from update gate z are close to zero, more new information is added to the current state h.
Alternatively, if the values output from update gate z are close to one, the current state is
mostly kept as it was in the previous time iterations.

When considering the whole GRU layer of nN cells, the weight matrices W r, Wz, Wo
have dimensions nN × nf, matrices Rr, Rz, Rg have dimensions nN × nN, and vectors br,
bz, bg have dimensions nN × 1. The matrices can be written as:

W =

 W r
Wz
Wg

, R =

 Rr
Rz
bg

, b =

 br
bz
bg

. (13)

The following calculations are performed at the sampling time k:

r(k) = σ

(
W rx(k) + Rrh(k− 1) + br

)
, (14)

z(k) = σ

(
Wzx(k) + Rzh(k− 1) + bz

)
, (15)

g(k) = tanh
(

Wgx(k) + r(k) ◦
(

Rgh(k− 1)
)
+ bg

)
, (16)

h(k) =
(
1nN×1 − z(k)

)
◦ g(k) + z(k) ◦ h(k− 1). (17)
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Similar to the LSTM layer, the GRU layer of the neural network is then connected
to the fully connected layer. It has its weight vector Wy of dimensionality 1× nN and
a constant component by. The output of the network at the time k is determined by the
hidden state of all cells of the GRU layer multiplied by the weights of the fully connected
layer, respectively, according to the following relation:

y(k) = Wyh(k) + by. (18)

3. LSTM and GRU Neural Networks in Model Predictive Control

The manipulated variable, i.e., the input of the controlled process, is denoted by
u, while the controlled one, i.e., the process output, is denoted by y. A good control
algorithm is expected to calculate the value of the manipulated variable, which leads to fast
control, i.e., the process output should follow the changes of the set-point. Moreover, since
fast control usually requires abrupt changes of the manipulated variables, which may be
dangerous for the actuator, such situations should be penalised. Finally, it is necessary to
take some constraints; they are usually imposed on the magnitude and the rate of change
of the manipulated variable. In some cases, constraints can also be imposed on the process
output variable.

3.1. The MPC Problem

The vector of decision variables calculated online at each sampling instant of MPC is
defined as the increments of the manipulated variable:

4u(k) =

 4u(k|k)
...

4u(k + Nu − 1|k)

 (19)

where the control horizon is denoted by Nu. The general MPC optimisation problem is:

min
4u(k)

{
J(k) =

N

∑
p=1

(ysp(k + p|k)− ŷ(k + p|k)) + λ
Nu−1

∑
p=0

(4u(k + p|k))2

}
subject to (20)

umin ≤ u(k + p|k) ≤ umax, p = 0, . . . , Nu − 1

4umin ≤ 4u(k + p|k) ≤ 4umax, p = 0, . . . , Nu − 1

ymin ≤ ŷ(k + p|k) ≤ ymax, p = 1, . . . , N.

The cost function can be divided into two parts. The first part describes the control
error, which is defined as the sum of the differences between the set-point value ysp(k+ p|k)
and the output prediction ŷ(k + p|k) over the prediction horizon N. The (k + p|k) notation
should be interpreted as follows: the prediction of the moment in the future k + p is
calculated in the current moment k. The second part of the cost function consists of the
change of the manipulated variables multiplied by the weighting coefficient λ. When
the whole cost function is taken into account, one can observe that it minimises both
control errors and the change of control signals. Weighting coefficient λ is used to fine-tune
the procedure.

The constraints of the MPC optimisation problem are as follows:

• The magnitude constraints umin and umax are enforced on the manipulated variable
over the control horizon Nu;

• The constraints4umin and4umax are imposed on the increments of the same variable
over the control horizon Nu;

• The constraints put on the predicted output variable ymin and ymax over the prediction
horizon N.
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When the optimisation procedure calculates the decision vector (Equation (19)) from
Equation (20), the first element of it is applied to the process. The most common way of
this application is given by the following equation:

u(k) = ∆u(k|k) + u(k− 1|k). (21)

The whole computational scheme is then repeated at the next sampling instants.
In MPC [2], the general prediction equation for the sampling instant k + p is:

ŷ(k + p|k) = y(k + p|k) + d(k) (22)

where p = 1, . . . , N. The output of the model for the sampling instant k+ p calculated at the
current instant k is y(k + p|k), and the current estimation of the unmeasured disturbance
acting on the process output is d(k). Typically, it is assumed that the disturbance is constant
over the whole prediction horizon, and its value is determined as the difference between
the real (measured) value of the process output and the model output calculated using the
process input and output signals up to the sampling instant k− 1:

d(k) = ym(k)− y(k|k− 1). (23)

3.2. The LSTM Neural Network in MPC

In the case of the LSTM model, to determine the predicted output, it is necessary
to first calculate the prediction values of the cell state given by Equations (6)–(10) in the
following way:

ĉ(k + 1|k) = σ

(
Wfx(k + 1|k) + Rfh(k) + bf

)
◦ c(k)

+ σ

(
Wix(k + 1|k) + Rih(k) + bi

)
× tanh

(
Wgx(k + 1|k) + Rgh(k) + bg

)
(24)

ĉ(k + 2|k) = σ

(
Wfx(k + 2|k) + Rfĥ(k + 1|k) + bf

)
◦ ĉ(k + 1|k)

+ σ

(
Wix(k + 2|k) + Riĥ(k + 1|k) + bi

)
× tanh

(
Wgx(k + 2|k) + Rgĥ(k + 1|k) + bg

)
(25)

...

ĉ(k + p|k) = σ

(
Wfx(k + p|k) + Rfĥ(k + p− 1|k) + bf

)
◦ ĉ(k + p− 1|k)

+ σ

(
Wix(k + 1|k) + Riĥ(k + p− 1|k) + bi

)
× tanh

(
Wgx(k + p|k) + Rgĥ(k + p− 1|k) + bg

)
. (26)
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Using Equations (6)–(9) and (11), one can then calculate the prediction of the hid-
den state:

ĥ(k + 1|k) = σ

(
Wox(k + 1|k) + Roh(k) ◦ tanh(ĉ(k + 1|k)

)
(27)

ĥ(k + 2|k) = σ

(
Wox(k + 2|k) + Roĥ(k + 1|k) ◦ tanh(ĉ(k + 2|k)

)
(28)

...

ĥ(k + p|k) = σ

(
Wox(k + p|k) + Roĥ(k + p− 1|k) ◦ tanh(ĉ(k + p|k)

)
. (29)

Finally, the prediction of the output signal can be calculated based on Equations (18)
and (32) as:

y(k + 1|k) = Wyĥ(k + 1|k) + by + d(k) (30)

y(k + 2|k) = Wyĥ(k + 2|k) + by + d(k) (31)
...

y(k + p|k) = Wyĥ(k + p|k) + by + d(k). (32)

Taking into account the input vector of the network (Equation (4)), for prediction over
the prediction horizon, the vector of arguments of the network is:

x(k + 1|k) =
[

u(k|k) u(k− 1) . . . u(k− nB + 1) y(k) y(k− 1) . . . y(k− nA + 1)
]T

(33)

x(k + 2|k) =
[

u(k + 1|k) u(k|k) . . . u(k− nB + 2) ŷ(k + 1|k) y(k) . . . y(k− nA + 2)
]T

(34)

...

x(k + p|k) =
[

u(k + p− 1|k) u(k + p− 2|k) . . . u(k− nB + p)

ŷ(k + p− 1|k) ŷ(k + p− 2|k)) . . . y(k− nA + p− 1)
]T

. (35)

3.3. The GRU Neural Network in MPC

There is no cell state in the GRU neural networks, and therefore, to calculate the
predicted output signal values ŷ, only the prediction of hidden state h is necessary to
evaluate first. This is performed based on Equations (14)–(17) in the following way:

ĥ(k + 1|k) =
[

1nN×1 − σ
(
Wzx(k + 1|k) + Rzh(k) + bz

)]
◦ tanh

[
Wgx(k + 1|k) + σ

(
W rx(k + 1|k) + Rrh(k) + br

)
◦
(

Rgh(k)
)
+ bg

]
+ σ

(
Wzx(k + 1|k) + Rzh(k) + bz

)
◦ h(k)

)
(36)
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ĥ(k + 2|k) =
[

1nN×1 − σ
(
Wzx(k + 2|k) + Rzĥ(k + 1|k) + bz

)]
◦ tanh

[
Wgx(k + 2|k) + σ

(
W rx(k + 2|k) + Rrĥ(k + 1|k) + br

)
◦
(

Rgĥ(k + 1|k)
)
+ bg

]
+ σ

(
Wzx(k + 2|k) + Rzĥ(k + 1|k) + bz

)
◦ ĥ(k + 1|k)

)
(37)

...

ĥ(k + p|k) =
[

1nN×1 − σ
(
Wzx(k + p|k) + Rzĥ(k + p− 1|k) + bz

)]
◦ tanh

[
Wgx(k + p|k) + σ

(
W rx(k + p|k) + Rrĥ(k + p− 1|k) + br

)
◦
(

Rgĥ(k + p− 1|k)
)
+ bg

]
+ σ

(
Wzx(k + p|k) + Rzĥ(k + p− 1|k) + bz

)
◦ ĥ(k + p− 1|k)

)
(38)

where 1nN×1 is an identity matrix with dimensions nN × 1. The prediction of the output
signal Equation (32), as well as the input vector Equation (35) are the same as in the LSTM
neural network model.

The proposed MPC control procedure may be summarised as follows:

1. The estimated disturbance d(k) is calculated from Equation (22):

a. In the case of the LSTM network, the model output y(k|k− 1) is calculated from
Equations (6)–(12);

b. In the case of the GRU network, the model output is calculated from
Equations (14)–(17) and (12);

2. The MPC optimisation task is then performed. To calculate the output prediction, the
cell and hidden state prediction must be calculated first:

a. For the LSTM model, the predictions are calculated from Equations (24)–(32);
b. For the GRU, the model state prediction are calculated from Equations (36)–(38)

and the output prediction is generated as shown in Equation (32). The cost
function is the same for both models and is given by Equation (20);

3. The first element of the calculated decision vector (Equation (19)) is applied to the
process, i.e., u(k) = 4u(k|k) + u(k− 1|k).

4. Results of the Simulations

In order to compare the accuracy of the LSTM and GRU networks and their effi-
ciency in MPC, we considered two dynamical systems: a polymerisation reactor and a
neutralisation (pH) reactor.

4.1. Description of the Dynamical Systems

First, two considered processes are briefly described. Moreover, a short description of
the data preparation procedure is given.

4.1.1. Benchmark 1: The Polymerisation Reactor

The first considered benchmark was a polymerisation reaction taking place in a
jacketed continuous stirred-tank reactor. The reaction was the free-radical polymerisation
of methyl methacrylate with azo-bis-isobutyronitrile as the initiator and toluene as the
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solvent. The process input was the inlet initiator flow rate FI (m3 h−1); the output was the
value of Number Average Molecular Weight (NAMW) of the product(kg kmol−1). The
detailed fundamental model of the process was given in [45]. The process was nonlinear:
in particular, its static gain depended on the operating point. The polymerisation reactor
is frequently used to evaluate model identification algorithms and advanced nonlinear
control methods, e.g., [12,45,46].

The fundamental model of the polymerisation process, comprising four nonlinear
differential equations, was solved using the Runge–Kutta 45 method to obtain training and
validation and test datasets, each of them having 2000 samples. After each 50 samples,
there was a step change of the control signal. The magnitude of the control signal was
chosen randomly. Next, since process input and output signals had different magnitudes,
these signals were scaled in the following way:

u = 100(FI − F̄I), y = 0.0001(NAMW−NAMW) (39)

where F̄I = 0.016783 and NAMW = 20,000 denote the values of the variables at the nominal
operating point. The sampling time was 1.8 s.

4.1.2. Benchmark 2: The Neutralisation Reactor

The second considered benchmark was a neutralisation reactor. The process input
was the base (NaOH) streamflow-rate q1 (mL/s); the output was the value of the pH of the
product. The detailed fundamental model of the process was given in [47]. The process was
nonlinear since its static and dynamic properties depended on the operating point. Hence,
it is frequently used as a good benchmark to evaluate model identification algorithms and
advanced nonlinear control methods, e.g., [46–48].

The fundamental model of the neutralisation process, comprising two nonlinear
differential equations and a nonlinear algebraic equation, was solved using the Runge–
Kutta 45 method to obtain training and validation and test datasets, each of them having
2000 samples. After each 50 samples, there was a step change of the control signal. The
magnitude of the control signal was chosen randomly. The process signals were scaled in
the following way:

u = q1 − q̄1, y = pH− pH (40)

where q̄1 = 15.5 and pH = 7 denote the values of the variables at the nominal operating
point. The sampling time was 10 s.

4.2. LSTM and GRU Neural Networks for Modelling of Polymerisation and Neutralisation Reactors

A number of LSTM and GRU models were trained for the two considered dynamic
processes. All models were trained using the Adam optimisation algorithm. The maximum
number of training epochs (iterations) was:

• 500 for the models with nN ≤ 3;
• 750 for the models with 3 < nN ≤ 7;
• 1000 for the models with 7 < nN.

The training procedure was performed as follows:

1. The order of the dynamics of the LSTM model was set to nA = nB = 1. The number
of neurons in the hidden layer was set to nN = 1. For the considered configuration,
ten models were trained, and the best one was chosen;

2. The number of neurons was increased to two. Ten models were trained, and the best
was chosen. This procedure was repeated until the number of neurons reached nN = 30;

3. The first two steps were repeated with the increased order of the dynamics
nA = nB = 2, nA = nB = 3.

It is important to stress that setting the order of the dynamics to higher than
nA = nB = 3 did not result in any significant increase of the modelling quality. Therefore,
further experiments with nA = nB > 3 are not presented.
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It is an interesting question if LSTM and GRU models without recurrent input signals
y(k− 1) . . . y(k− nA) can perform well in modelling tasks. In theory, the recurrent nature of
hidden state h should be sufficient to ensure good model quality. To verify this expectation,
an additional series of models was trained. The training procedure was similar to the one
described above, the only difference being that now, the model order of the dynamics was
first set to nA = 0, nB = 1, then increased to nA = 0, nB = 2 and, finally, to nA = 0, nB = 3.

The quality of all trained models was then validated with the mean squared error
chosen as the quality index. The models were validated in the nonrecurrent Autoregressive
with eXogenous input (ARX) mode and the Output Error (OE) recurrent mode. The model
input vectors for the two considered cases are:

xARX(k) =



u(k− 1)
...

u(k− nB)
ydata(k− 1)

...
ydata(k− nA)


xrec(k) =



u(k− 1)
...

u(k− nB)
ymodel(k− 1)

...
ymodel(k− nA)


. (41)

It is important to stress that in the case of the models with nA = 0, the ARX and OE
modes were the same.

Taking into account the objective of this work, it is interesting to compare the accuracy
of the LSTM and GRU models with different structures, defined by the number of neurons,
nN, and the order of the model dynamics, determined by nA and nB. For the polymerisation
reactor, the results for the chosen networks are given in Tables 1 and 2, and Figure 4 depicts
the model validation errors for all considered numbers of neurons. For the neutralisation
reactor, the results for the chosen networks are given in Tables 3 and 4, and Figure 5 depicts
the model validation errors for all considered numbers of neurons. The following notation
is used:

• Et is the the mean squared error for the training dataset in ARX mode;
• Ev is the the mean squared error for the validation dataset in ARX mode;
• Erec

t is the the mean squared error for the training dataset in recurrent mode;
• Erec

v is the the mean squared error for the validation dataset in recurrent mode.
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Figure 4. The polymerisation reactor: LSTM and GRU model validation errors for different numbers
of neurons nN.
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Table 1. The polymerisation reactor: comparison of selected LSTM and GRU networks without the
recurrent inputs (nA = 0) in terms of the training (Et) and validation errors (Ev).

LSTM GRU

nB nN Et Ev Et Ev

1

1 10.22 12.17 6.58 11.08
2 2.51 4.06 1.58 2.26
3 1.85 2.98 1.00 1.87
4 1.21 1.85 0.58 0.99
5 0.35 0.88 0.61 1.06

10 0.08 0.19 0.29 0.65
15 0.02 0.08 0.16 0.30
20 0.06 0.13 0.09 0.16
25 0.07 0.19 0.16 0.31

2

1 5.21 7.33 9.25 14.10
2 0.83 1.46 2.56 4.58
3 1.41 2.67 2.02 3.00
4 0.30 0.59 0.57 1.19
5 0.50 1.09 0.26 0.63

10 0.06 0.19 0.19 0.39
15 0.14 0.26 0.24 0.50
20 0.13 0.23 0.11 0.24
25 0.08 0.17 0.15 0.31

3

1 7.68 11.05 2.96 5.24
2 1.37 2.42 1.09 1.76
3 1.45 2.49 1.01 1.82
4 0.55 1.01 0.66 1.27
5 0.80 1.49 0.22 0.55

10 0.08 0.18 0.10 0.21
15 0.07 0.24 0.24 0.65
20 0.07 0.16 0.14 0.27
25 0.06 0.17 0.20 0.38

Table 2. The polymerisation reactor: comparison of selected LSTM and GRU networks with the
recurrent inputs in terms of the training (Et) and validation errors (Ev).

LSTM GRU

nA nB nN Et Ev Erec
t Erec

v Et Ev Erec
t Erec

v

1 1

1 2.67 3.26 6.83 7.86 3.73 5.64 8.06 11.07
2 1.51 2.84 2.64 4.75 1.39 2.53 3.09 5.11
3 0.23 0.37 0.59 0.95 0.33 0.55 0.66 1.08
4 0.25 0.54 0.37 0.84 0.40 0.83 0.97 1.89
5 0.10 0.19 0.21 0.41 0.19 0.50 0.53 1.18
10 0.08 0.17 0.12 0.27 0.10 0.21 0.26 0.52
15 0.06 0.10 0.10 0.18 0.19 0.40 0.44 0.89
20 0.06 0.12 0.09 0.18 0.03 0.07 0.09 0.19
30 0.02 0.04 0.04 0.08 0.07 0.12 0.17 0.31

2 2

1 3.27 4.50 8.13 10.29 4.07 6.24 6.53 9.78
2 1.81 3.19 2.88 4.90 0.53 0.94 1.29 2.10
3 0.99 1.84 1.60 2.83 0.82 1.42 1.54 2.61
4 0.34 0.69 0.47 1.03 0.45 0.96 1.03 2.08
5 0.18 0.37 0.26 0.59 0.22 0.42 0.55 0.97
10 0.09 0.18 0.13 0.27 0.33 0.68 0.83 1.61
15 0.13 0.31 0.18 0.46 0.04 0.14 0.10 0.30
20 0.06 0.13 0.09 0.23 0.04 0.08 0.10 0.19
30 0.03 0.06 0.05 0.10 0.08 0.14 0.19 0.33
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Table 2. Cont.

LSTM GRU

nA nB nN Et Ev Erec
t Erec

v Et Ev Erec
t Erec

v

3 3

1 1.93 3.18 5.72 8.26 1.48 2.81 2.64 4.59
2 1.09 2.20 1.58 3.13 0.24 0.55 0.51 1.07
3 1.05 1.89 1.39 2.58 0.86 1.95 1.29 2.79
4 0.70 1.18 0.89 1.73 0.15 0.39 0.30 0.80
5 0.17 0.34 0.31 0.62 0.27 0.64 0.41 1.00
10 0.05 0.13 0.07 0.20 0.18 0.31 0.35 0.64
15 0.10 0.20 0.14 0.32 0.08 0.21 0.16 0.39
20 0.08 0.21 0.11 0.31 0.09 0.24 0.19 0.48
30 0.11 0.17 0.15 0.24 0.10 0.18 0.22 0.36
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Figure 5. The neutralisation reactor: LSTM and GRU model validation errors for different numbers
of neurons nN.

The presented results can be summarised in the following way:

• In the case of the polymerisation reactor, the results achieved with the LSTM and
GRU networks were comparable. As seen in Figure 4, the means squared errors were
similar for every combination of nA, nB and nN;

• In the case of the neutralisation reactor, the LSTM models ensured a better quality of
modelling, especially for models with a low number of parameters. However, as seen
in Figure 5, as the number of neurons increased, this difference became more and more
negligible. This is again not surprising. GRU networks have less parameters than
LSTM networks. Therefore, GRU models with a low number of neurons and a low
order of the dynamics performed worse than their LSTM counterparts. As the models
became bigger and more complex, the difference between their quality decreased.

• Models with a higher numbers of neurons (15–30) ensured the best and most consistent
modelling quality. This is not surprising, as the number of model parameters is
directly proportional to the capacity to reproduce the behaviour of more complex
processes. However, this can also be a main drawback of complex models, because
of the enormous number of parameters, as shown in Figures 6 and 7, increases their
computational cost significantly;
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These models had too few parameters to accurately represent the behaviour of the
processes under study;

• For the models with a medium number of neurons (3–10), the modelling quality was
not consistent. In some cases, it was quite poor; in others, it even outperformed
models with a huge number of neurons (an example can be found in Table 4, the GRU
network with nA = nB = 1 nN = 5). One can conclude that this group of models
has a structure complex enough to represent the behaviour of the systems under
investigation. The training procedure must be, however, performed many times, as
training may sometimes not be successful. In other words, if the goal is to find the
model with the minimum number of parameters and good quality, the medium-sized
models are the best option;

• Models with a low (1–2) number of neurons did not ensure a good modelling quality
regardless of the neural network type and the model order of the dynamics, as shown
in Figures 8 and 9.

• Interestingly enough, the order of the dynamics of the model seemed not to greatly
impact the modelling quality. Models with higher order were most commonly only
slightly better than those with nA = nB = 1. Only in the case of the neutralisation
reactor with nA = 0 in Table 3 could a noticeable improvement be observed when nB
was set to two. The unique long-term memory quality of the networks under study
may be a cause of this phenomenon. The information about the important previous
input and output signals from the past can be kept inside the hidden and cell states,
and therefore, the networks can perform very well with only the most recent input
values (i.e., nA = 0, nB = 1);

Table 3. The neutralisation reactor: comparison of selected LSTM and GRU networks without the
recurrent inputs (nA = 0) in terms of the training (Et) and validation errors (Ev).

LSTM GRU

nB nN Et Ev Et Ev

1

1 6.56 5.14 13.07 13.03
2 3.95 4.18 7.93 9.22
3 3.23 4.08 6.36 6.58
4 4.43 4.28 4.98 5.18
5 2.55 2.81 6.06 5.84

10 2.33 3.10 3.45 3.87
15 2.37 2.97 4.52 4.71
20 2.38 2.80 4.73 4.70
30 1.47 2.04 1.03 2.01

2

1 6.33 5.05 11.57 10.80
2 3.99 4.16 7.32 7.52
3 3.09 3.89 6.11 6.41
4 2.94 3.43 6.66 6.49
5 1.29 1.85 5.96 5.33

10 1.48 2.14 1.48 2.27
15 1.68 2.07 1.60 2.54
20 1.28 1.54 1.91 2.32
30 1.15 1.69 1.38 2.37

3

1 7.79 6.88 12.27 12.10
2 4.07 4.51 7.31 7.40
3 3.24 4.08 6.56 7.46
4 3.82 4.70 4.85 5.81
5 3.47 4.11 2.86 3.79

10 2.63 3.46 1.16 1.77
15 1.26 1.88 1.07 1.90
20 1.08 1.60 1.22 1.92
30 0.94 1.75 1.21 2.11
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Table 4. The neutralisation reactor: comparison of selected LSTM and GRU networks with the
recurrent inputs in terms of the training (Et) and validation errors (Ev).

LSTM GRU

nA nB nN Et Ev Erec
t Erec

v Et Ev Erec
t Erec

v

1 1

1 2.46 2.92 5.00 5.17 2.39 3.25 5.98 7.79
2 4.22 3.91 5.11 4.50 1.62 2.28 4.38 5.73
3 2.22 2.74 3.89 4.44 1.58 2.31 3.80 5.30
4 3.02 3.20 4.70 4.61 1.98 2.72 3.91 4.77
5 2.56 2.97 3.81 3.98 0.77 1.32 1.55 2.33
10 1.55 1.96 2.36 2.72 1.62 2.26 3.42 4.50
15 2.19 2.76 3.64 4.05 2.19 2.76 3.64 4.05
20 1.44 2.13 2.50 3.58 1.44 2.13 2.50 3.58
30 1.11 1.68 2.13 2.86 1.11 1.68 2.13 2.86

2 2

1 2.19 2.72 3.80 4.50 2.36 3.25 5.51 7.25
2 2.63 3.02 5.15 5.38 1.99 2.78 4.34 5.44
3 2.01 2.77 3.16 3.99 1.97 2.84 3.88 5.17
4 2.74 3.43 4.14 4.61 2.36 3.19 4.32 5.28
5 2.60 3.15 3.21 3.53 2.22 2.93 3.64 4.68
10 1.14 1.67 1.64 2.40 1.93 2.45 3.51 3.99
15 1.55 2.03 2.28 2.67 1.55 2.03 2.28 2.67
20 0.93 1.29 1.45 1.82 0.93 1.29 1.45 1.82
30 1.30 1.68 1.85 2.19 1.30 1.68 1.85 2.19

3 3

1 2.05 2.50 3.78 4.25 2.79 3.39 6.15 6.66
2 2.87 3.34 4.11 4.22 3.91 4.37 7.75 7.13
3 1.99 2.70 2.82 3.56 1.76 2.40 4.14 5.31
4 2.57 3.12 3.69 3.98 1.84 2.50 3.63 4.57
5 2.59 2.99 3.73 3.72 2.16 2.82 3.98 4.68
10 0.76 1.22 1.36 2.12 1.69 2.42 3.47 4.50
15 0.78 1.22 1.15 1.65 0.78 1.22 1.15 1.65
20 1.48 2.00 2.03 2.51 1.48 2.00 2.03 2.51
30 1.29 1.77 1.82 2.14 1.29 1.77 1.82 2.14
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Figure 6. The number of the parameters of the LSTM and GRU models as a function of the number
of neurons and the order of the dynamics determined by nA = nB.

Based on the observations summarised above, it can be concluded that it is a good
practice to train a model with a medium number of neurons and a low order of the
dynamics. This approach may require many training trials, but as a result, the model has a
relatively low number of parameters; therefore, a lower computational cost can be achieved.
A direct comparison of the polymerisation reactor models can be seen in Figures 10 and 11.
Both models performed very well, and the modelling errors were minimal. A similar
comparison for the pH reactor can be seen in Figures 12 and 13. The modelling quality was
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again very satisfactory. Here, it is important to stress that in the case of the GRU model
with nA = 0, it was necessary to choose one with a higher order of the dynamics to achieve
results similar to those ensured by the simpler LSTM models.
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Figure 7. The number of parameters of the LSTM and GRU models as a function of the number of
neurons and the order of the dynamics determined by nB; nA = 0.
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Figure 8. The polymerisation reactor: the validation dataset vs. the output of the LSTM and GRU
models for nN = 1, nA = nB = 1.
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Figure 9. The neutralisation reactor: the validation dataset vs. the output of the LSTM and GRU
models for nN = 1, nA = nB = 1.
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Figure 10. The polymerisation reactor: the validation dataset vs. the output of the LSTM and GRU
models for nN = 9, nA = 0, nB = 1.
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Figure 11. The polymerisation reactor: the validation dataset vs. the output of the LSTM and GRU
models for nN = 10, nA = nB = 1.

0 200 400 600 800 1000 1200 1400 1600 1800 2000

4

6

8

10

4 6 8 10
2

4

6

8

10

12

4 6 8 10
2

4

6

8

10

12

Figure 12. The neutralisation reactor: the validation dataset vs. the output of the LSTM and GRU
models for nN = 5, nA = nB = 1.
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Figure 13. The neutralisation reactor: the validation dataset vs. the output of the LSTM and GRU
models for nN = 8, nA = 0, nB = 3.

4.3. LSTM and GRU Neural Network for the MPC of Polymerisation and Neutralisation Reactors

A few of the best-performing models were been chosen with the aim of being applied
in the MPC control scheme for prediction. First, let us describe the tuning procedure of
the MPC controller. It starts with the selection of the prediction horizon. It should be long
enough to cover the dynamic behaviour of the process. However, if the horizons are too
long, the computation cost of the optimisation task increases. The control horizon cannot
be too short since it gives insufficient control quality, while its lengthening also increases
the computational burden. The process of tuning was therefore as follows:

• The constant weighting coefficient λ = 1 was assumed;
• The prediction horizon N and the control horizon Nu were set to have the same,

arbitrarily chosen lengths. If the controller was not working properly, both horizons
were lengthened;

• The prediction horizon was gradually shortened, and its minimal possible length was
chosen (with the condition Nu = N);

• The effect of changing the length of the control horizon on the resulting control quality
was then assessed experimentally (e.g., assuming successively Nu = 1, 2, 3, 4, 5, 10,
. . . , N). The shortest possible control horizon was chosen;

• Finally, after determining the horizon’s lengths, the weighting coefficient λ was adjusted.

After applying the tuning procedure on both processes under study, the following
settings were determined:

• N = 10, Nu = 5, λ = 0.5 for the polymerisation process;
• N = 10, Nu = 3, λ = 0.5 for the neutralisation process.

Simulations of the MPC algorithms were performed with MATLAB. For optimisation,
the fmincon() function was used with the following settings:

• Optimisation algorithm—Sequential Quadratic Programming (SQP);
• Finite differences type—centred.

MPC performance using the models without the recursive input signals (nA) proved to
be very satisfactory. In the case of the polymerisation reactor, in Figure 14, minimal overshoot
and a short settling time can be observed. Similar control quality was achieved for the
neutralisation reactor system as depicted in Figure 15. Interestingly enough, for MPC with
more complex models (nA = nB), the results were comparable, as demonstrated in Figure 16.
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In the case of the polymerisation system and the LSTM model, small oscillations around the
set-point could be observed, as shown in Figure 17, and the overall control quality was slightly
worse. Tables 5 and 6 compare the simulation results of the MPC algorithms based on the
LSTM and GRU models, for the polymerisation and neutralisation processes, respectively. The
following indicators used in process control performance assessment were considered [49]:

• The sum of squared errors (E);
• The Huber standard deviation (σH) of the control error;
• The rational entropy (Sr) of the control error.

Additionally, the average time of calculation (t) during the whole simulation horizon
(in seconds) was specified.

Table 5. The polymerisation reactor: quality indexes and average time of calculation comparison.

LSTM GRU

nN nA nB E σH Sr t E σH Sr t

5 0 1 2.67 × 107 667.70 1782.41 6.67 2.76 × 107 661.55 1608.18 7.64
6 0 1 2.71 × 107 677.17 1758.72 6.64 2.72 × 107 771.12 1653.33 7.68
7 0 1 2.80 × 107 630.39 1665.62 6.50 2.73 × 107 518.58 1568.32 7.62
8 0 1 2.75 × 107 627.67 1758.21 6.49 2.80 × 107 639.27 1742.63 7.89
9 0 1 2.74 × 107 477.86 1701.53 6.52 2.75 × 107 588.22 1603.82 8.15

10 0 1 2.79 × 107 454.59 1659.05 6.71 2.78 × 107 549.56 1623.56 8.05
5 1 1 2.63 × 107 1562.43 2092.48 6.69 2.77 × 107 509.75 1577.64 8.01
6 1 1 2.68 × 107 1536.20 1962.02 6.64 2.77 × 107 898.48 1743.70 7.62
7 1 1 2.73 × 107 367.47 1587.79 6.65 2.77 × 107 1209.39 1964.14 7.48
8 1 1 2.70 × 107 617.22 1729.51 6.67 2.71 × 107 759.49 1843.60 7.49
9 1 1 2.76 × 107 455.08 1688.71 6.72 2.75 × 107 686.34 1734.03 7.41

10 1 1 2.73 × 107 463.27 1688.71 6.61 2.78 × 107 469.35 1612.84 7.86
5 2 2 2.68 × 107 839.53 1785.23 6.79 2.78 × 107 591.74 1706.74 7.46
6 2 2 2.77 × 107 528.51 1705.00 6.50 2.80 × 107 860.32 1878.82 7.98
7 2 2 2.77 × 107 826.31 1710.11 5.61 2.72 × 107 413.74 1569.33 7.79
5 0 2 2.72 × 107 573.75 1726.27 7.68 2.74 × 107 824.28 1841.88 8.56
6 0 2 2.76 × 107 458.17 1731.28 7.66 2.74 × 107 611.42 1713.80 8.80
7 0 2 2.75 × 107 449.80 1676.01 7.93 2.74 × 107 499.09 1592.73 8.52

Table 6. The neutralisation reactor: quality indexes and average time of calculation comparison.

LSTM GRU

nN nA nB E σH Sr t E σH Sr t

5 0 1 213.67 0.21 0.53 3.47 208.404 0.18 0.48 3.73
6 0 1 208.52 0.17 0.50 3.44 209.06 0.20 0.49 4.04
7 0 1 210.56 0.26 0.53 3.46 210.63 0.19 0.49 3.86
8 0 1 212.52 0.26 0.52 3.66 212.12 0.17 0.49 3.89
9 0 1 210.51 0.25 0.56 3.64 210.49 0.18 0.48 3.88

10 0 1 211.33 0.27 0.53 3.55 210.73 0.20 0.51 3.95
5 1 1 215.70 0.33 0.56 3.78 208.59 0.19 0.50 4.07
6 1 1 220.54 0.23 0.51 3.97 214.44 0.23 0.50 3.79
7 1 1 217.20 0.19 0.52 3.76 209.26 0.21 0.51 4.13
8 1 1 219.03 0.27 0.53 3.71 213.90 0.22 0.53 4.61
9 1 1 220.60 0.52 0.59 3.86 215.56 0.20 0.52 4.23

10 1 1 225.69 0.21 0.52 3.86 208.41 0.18 0.48 4.02
5 0 2 412.73 0.22 0.48 3.48 206.90 0.16 0.46 3.99
6 0 2 218.32 0.22 0.52 3.66 215.56 0.23 0.52 4.01
7 0 2 208.80 0.18 0.51 3.66 208.98 0.20 0.51 3.84
5 2 2 227.50 0.22 0.49 4.60 217.95 0.22 0.52 4.44
6 2 2 222.80 0.25 0.51 4.34 212.76 0.25 0.52 4.69
7 2 2 217.91 0.24 0.53 4.52 221.07 0.23 0.51 4.80
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Figure 14. The polymerisation reactor: MPC results with the LSTM and GRU models nN = 9, nA = 0,
nB = 1.

From the performed experiments, we were able to draw the following conclusions:

1. Both types of neural networks allowed for a successful application of the MPC control
scheme. All control performance indicators, i.e., E, σH and Sr, showed that GRU
network models, when applied for prediction in MPC, lead to very similar control
quality when the rudimentary LSTM networks are used. What is more, as GRU
models have fewer internal parameters, their computation cost and, therefore, the
time of calculations are lower, as shown in Tables 5 and 6;

2. It is advisable to choose models with a relatively simple structure and a low number
of parameters to implement in the MPC scheme. More complex models often provide
comparable or even worse quality of control, and the computation cost rises with the
number of parameters of the model;

3. Minor model imperfections are reduced with great success by feedback in MPC. An
example of this phenomenon can be observed in the bottom plots in Figure 12, where
the model outputs differ slightly from the validation data in some areas. However,
when the models are implemented in the MPC scheme, as shown in Figure 16, the
quality of control is very satisfactory. However, the negative feedback is not sufficient
to ensure satisfactory control if the model itself has poor quality. Example simulation
results for the polymerisation process are presented in Figure 18. As a result of a
very bad model, the MPC algorithm leads to unacceptable control quality, i.e., the
set-point is never achieved, and strong oscillations are observed. Example simulations
results when an inaccurate model is used in MPC for the neutralisation process are
presented in Figure 19. In this case, the overshoot is larger and the setting time is
longer when compared with the MPC algorithm based on a good model, e.g., as
shown in Figure 15.

It is important to stress that the above observations are true for the two considered
processes.
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Figure 15. The neutralisation reactor: MPC results with the LSTM and GRU models for nN = 8,
nA = 0, nB = 3.
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Figure 16. The neutralisation reactor: MPC results with the LSTM and GRU models for nN = 5,
nA = nB = 1.
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Figure 17. The polymerisation reactor: MPC results with the LSTM and GRU models for nN = 10,
nA = nB = 1.
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Figure 18. The polymerisation reactor: MPC results with the LSTM and GRU models for nN = 1,
nA = nB = 1.
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Figure 19. The neutralisation reactor: MPC results with the LSTM and GRU models for nN = 1,
nA = nB = 1.

5. Conclusions

Having performed numerous experiments with different structures of LSTM and
GRU neural networks as models of dynamical systems used in the MPC of two chemical
reactors, we found that the GRU network gives very good results. Firstly, it approximates
the properties of the dynamical systems with good accuracy, comparable with that possible
when the rudimentary LSTM model is used. Secondly, it gives very good results when
used for prediction in MPC, very similar to those observed in the case of the LSTM models.
It is necessary to point out that the number of model parameters is lower in the case of
the GRU network. Hence, the use of the GRU network is recommended for modelling of
dynamical processes and MPC.

Future work is planned to develop more computationally efficient MPC control
schemes based on the GRU structure and for Multiple-Input Multiple-Output (MIMO)
processes. Moreover, it is planned to develop GRU models and use them in MPC applied
to the ball-on-plate laboratory process [8].
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