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Abstract: We propose a memristive interface consisting of two FitzHugh–Nagumo electronic neurons
connected via a metal–oxide (Au/Zr/ZrO2(Y)/TiN/Ti) memristive synaptic device. We create a
hardware–software complex based on a commercial data acquisition system, which records a signal
generated by a presynaptic electronic neuron and transmits it to a postsynaptic neuron through the
memristive device. We demonstrate, numerically and experimentally, complex dynamics, including
chaos and different types of neural synchronization. The main advantages of our system over
similar devices are its simplicity and real-time performance. A change in the amplitude of the
presynaptic neurogenerator leads to the potentiation of the memristive device due to the self-tuning
of its parameters. This provides an adaptive modulation of the postsynaptic neuron output. The
developed memristive interface, due to its stochastic nature, simulates a real synaptic connection,
which is very promising for neuroprosthetic applications.

Keywords: memristive device; neuron-like oscillator; stochastic dynamics; synchronization; neuro-
morphic circuit; FitzHugh–Nagumo neuron

1. Introduction

The design of compact neuromorphic systems, including micro- and nanochips, ca-
pable of reproducing information and computational functions of brain cells is a great
challenge of modern science and technology. Such systems are of interest for both funda-
mental research in the field of nonlinear dynamics and the synchronization of complex
systems [1–7], as well as medical applications in the devices for monitoring and stim-
ulating brain activity in the framework of neuroprosthetic tasks [8–10]. Due to their
importance, memristive devices have recently become the subject of intense research, espe-
cially in the area of neuromorphic and neurohybrid applications [11–17]. Neuromorphic
technologies are especially relevant for intelligent adaptive automatic control systems—
biorobots. It is also worth noting that the construction and creation of electronic neurons
and synapses (connections between neurons) based on thin-film memristive nanostructures
is a fast-growing area of interdisciplinary research in the development of neuromorphic
systems [18–20].

The history of neuromorphic technologies began in the late 1980s with the emergence
of computation machines, and since then, significant advances have been achieved in elec-
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tronics, physics of micro- and nanostructures, and solid-state nanoelectronics. The careful
development of neuron-like electrical circuits made it possible to reproduce basic neural
behaviors, such as resting, spiking, and bursting dynamics, as well as more sophisticated
regimes, including chaos and multistability [21–25].

A memristive device is usually based on the Chua’s model [19], which is an element
of an electrical circuit capable of changing resistance depending on an electrical signal
entering its input. In recent decades, various thin-film memristive nanostructures have
been created. They are capable of changing their conductivity under the action of a
pulsed signal [26,27], which makes the memristor an almost ideal electronic analogue of a
synapse [13]. A synapse is known to be a communication channel between neurons that
provides unidirectional signal transmission from a transmitting (presynaptic) neuron to a
receiving (postsynaptic) neuron. This communication channel ensures the propagation of a
nerve impulse along the axon of the transmitting cell.

The synaptic communication results in synchronization of postsynaptic and presynap-
tic neurons. Neural synchronization was extensively studied using various mathematical
models and described in terms of periodic solutions [3,6,28–35]. Such artificial synapses
were implemented as electronic circuits that convert pulses of presynaptic voltage into
postsynaptic currents with some synaptic amplification. Different strategies were used
for the hardware implementation of synaptic circuits, e.g., an optical interface between
electronic neurons [4,5,7].

Recent advances in nanotechnology allowed for miniaturization of artificial synapses
by creating memristive nanostructures that mimic dynamics of real synapses. Among
various candidates for the role of electronic synapses, memristive devices have a great
potential for implementing massive parallelism and three-dimensional integration in order
to achieve good efficiency per unit volume [36–38]. In this regard, it is important to create
a memristor-based neuromorphic system capable of processing neuron-like signals.

Recently, the interaction between electronic neurons through a metal-oxide memristive
device was successfully implemented in hardware [39]. The prerequisite for such a device
was the study of the interaction of Van der Pol generators via a memristor [40]. Later, a
significant effort was invested in theoretical research to study synchronization between
neuron-like generators connected through a memristive device [14,41]. However, to the
best of our knowledge, experimental studies of the dynamics of FitzHugh–Nagumo (FHN)
neurons connected by a memristive synapse have not yet been carried out. We believe
that the creation of neuromorphic memristive systems will lead to the production of
simple and compact neuroelements based on memristive devices capable of imitating the
electrophysiological behavior of real neurons.

At the same time, a memristive device made of metal oxides is of interest not only
for experimental research, but also for theoretical studies. Neuromemristive models were
found to exhibit complex dynamics, including chaos and chimeras [42,43], the study of
which can contribute to the fundamental theory. On the other hand, many theoretical
“memristive” neural models reported in the literature have nothing to do with the concept
of memristive elements [44]. Therefore, the development of adequate mathematical models
that can simulate real laboratory neuromemristive experiments is an actual problem.

Summarizing all the above, significant theoretical investigations of memristors and
the possibility of their use as a part of neuromorphic systems were performed. In particular,
not only dynamical were effects simulated, but also the simplest learning rules were imple-
mented [45–52]. Currently, technologies are being developed to improve the characteristics
of memristive devices in order to create reliable memristive networks capable of solving
some mathematical tasks [53], classifying images [54–58], etc. [59–61]. Despite impressive
theoretical results in the development of neuromorphic memristive systems, the experi-
mental research of laboratory memristive devices, rather than their substitutes based on
transistors or resistors as parts of dynamical systems, was not carried out because of high
complexity of this task, which requires the cooperation of nanotechnologists, physicists,
and neuroscientists.



Sensors 2021, 21, 5587 3 of 12

In this work, we experimentally implement a memristive interface based on the metal–
oxide nanostructure that acts as a synaptic interface connecting two electronic FHN neural
generators. The interface allows for the analog simulation of the adaptive behavior and
neural timing effects, which can be associated with synaptic plasticity. We also investigate
the stochastic properties of the memristive device. For the first time, to the best of our
knowledge, we perform an experimental study on such a memristive neural system and
compare experimental results with numerical simulations.

2. Materials and Methods

In order to simulate neural dynamics, we explored two FHN neuron generators with
cubic nonlinearity constructed using diodes [7,22]. The dynamics of the presynaptic FHN
neuron was modeled by the normalized equations obtained with the Kirchhoff law [21]
as follows:

du1
dt = f (u1)− v1

dv1
dt = ε(g(u1)− v1)− I1

(1)

where u1 is the membrane potential of the presynaptic neuron, ν1 is the “recovery” variable
related to the ion current, f (u1) = u1−u1

3/3 is the cubic nonlinearity, I1 is the depolarization
parameter characterizing the excitation threshold, and ε is a small coefficient. If u1 < 0,
the function g(u1) = αu1, and if u1 ≥ 0, g(u1) = βu1 (α, β being the parameters that control,
respectively, the shape and location of the ν-nullcline [22]).

The memristive device model was developed based on a standard approach to reflect
the dynamical response of a memristor to electrical stimulation. The model describes
a change in resistance, similar to potentiation and depression, based on physical laws
identified in experiments [62]. The memristor model is given by the complex function:

j = wjlin + (1− w)jnonlin
jlin = u1/ρ
jnonlin = u1 exp(b

√
u1 − Eb)

w(u1) = A exp(− Em−α1u1
kT )

(2)

This approach supposes the introduction of internal state variable w, which is deter-
mined by the fraction of the insulator region occupied by filaments. The change in this state
is associated with the processes of migration of oxygen ions (vacancies) with the height of
the effective migration barrier Em. In turn, the migration is provided by the Joule heating
kT and applied electric voltage u1. The total current density j through the memristor is the
sum of the linear jlin and nonlinear jnonlin components. The former corresponds to ohmic
conductivity with resistivity ρ, whereas the latter is determined by the transport of charge
carriers through defects in the regions of the insulator not occupied by filaments (including
those in the filament rupture region). It was previously found that, in the insulating state
of the studied ZrO2-based memristive devices, the current transport is implemented by
the Poole–Frenkel mechanism with an effective barrier Eb [62]. The smooth transition
between high- and low-resistance states (HRS and LRS, correspondingly) is determined by
the dynamic contribution to the total current of the conductive filaments and, therefore, the
state variable. In Equation (2), b, α1, and A are coefficients derived from experimental data.
In our numerical simulations we used the Runge–Kutta integration methods for stochastic
differential equations in Matlab [63–65].

In order to compare the experimentally observed dynamics of the memristive device
with the results of numerical simulations, we needed to take into account stochasticity
of microscopic processes leading to a change in the internal state w of the dynamical
system. Random fluctuations of the normal distribution were added to energy barrier
Em for ion hopping (dispersion 10%), energy barrier Eb for electron jumps in the Poole–
Frenkel conduction mechanism in the HRS (dispersion 1%), and ohmic resistance ρ of
the structure in the LRS (dispersion 10%). This led to the scattering of the experimental
current–voltage characteristics. The finite spread of the switching voltages is mainly related
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to the stochasticity of the energy barrier for ions, whereas the change in the resistive states
from cycle to cycle is associated with the electron transport stochasticity.

One-way communication between two neurons through the memristive device was
modeled by the following equations:

du1
dt = f (u1)− v1

dv1
dt = ε1(g(u1)− v1)− I1

du2
dt = f (u2)− v2 + j(u1)Sd

dv2
dt = ε2(g(u2)− v2)− I2

(3)

where d is the equivalent load resistance, j(u1) is the current density through the memristive
device, S is the area of conductive filaments obtained from the experiment, and ε is a small
recovery parameter. The signal from the presynaptic neural generator (u1) was sent to the
postsynaptic neural generator (u2) through the memristive device.

Thus, the two neurogenerators were connected in such a way that part of the current
j(u1) generated by the presynaptic neuron passed through the load resistor, which was
connected in series with the memristive device, before reaching the postsynaptic neuron.
The initial conditions and model parameters corresponded to the experimental conditions.
In particular, both neural oscillators were initially in a self-oscillatory regime.

The designed neuromorphic circuit consisted of an FHN electronic circuit, a mem-
ristive device formed by the thin-film metal–oxide–metal nanostructure based on yttria-
stabilized zirconia (Au/Zr/ZrO2(Y)/TiN/Ti) [66], and a load resistor (Figure 1a). This
memristive interface operated as follows. The electronic FHN neuron generated a pulse
signal that affects the memristive device and thus modulates the oxidation and recovery
of conductive filaments in the oxide film of the memristive device. The analog electronic
FHN neuron consisted of the following blocks: an oscillatory contour unit, a nonlinearity
unit, and an amplifier unit (see Figure 1b). The detailed design of this device is described
in [7,22]. The FHN neural generator demonstrates the main qualitative features of neuro-
dynamics: the presence of an excitability threshold and the existence of resting and spiking
regimes. These regimes were controlled using a potentiometer. The spiking frequency was
varied in the range of 10–150 Hz, the spike duration in the range of 10–25 ms, and the spike
amplitude u1 in the range of 1–6 V.

In this work, we used the National Instruments USB-6212 data acquisition system,
which consists of a digital-to-analog converter (DAC) and two analog-to-digital converters
(ADC). The data acquisition system was controlled using LabVIEW software. The pre-
recorded neuron-like signal was applied to a memristive device with a sampling frequency
of 5 kHz via the DAC. The ADCs recorded the voltage drop across the memristive device
and the load resistor, which made it possible to calculate the memristive device resistance
in real time. The potential difference across the memristive device (Rm) and the load
resistor (R2) was digitized at a sampling frequency of 10 kHz. Matlab was used to analyze
the results.

After testing and tuning, the neuron-like oscillators were connected through the
memristive device. Both analog neurogenerators were turned in the oscillatory regime.
Under the neuron-like signal action, the memristive device changed its state from high
resistive to low resistive. The amplitude of the presynaptic neuron was adjusted by the
potentiometer in order to obtain a frequency-locking regime between two oscillators.
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Figure 1. The system description: (a) block diagram of the interaction between presynaptic (u1) and postsynaptic (u2)
electronic neurons through a memristive device. The neurons are initially in an oscillatory regime. The output of the
presynaptic neuron is increased during the experiment; (b) analog electrical circuit of the FitzHugh–Nagumo neuron. The
inductance is implemented by the circuit with operational amplifier, cubic nonlinearity is set using diodes D1–D6, capacitor
C2 is related to the capacitance of the neuron membrane, and potential V1 is associated with an equilibrium controlled by
the power source.

3. Results and Discussion

The output signal of the presynaptic electronic neuron is shown in Figure 2a. This
signal is applied to the memristive device. The used neuron-like signal (u1) is asymmetric
(the minimum voltage is −5 V and the maximum voltage is 4 V) due to the asymmetry of
the current–voltage characteristic (I–V curves) of the memristive device. For a more detailed
study of the effect of the neuron-like signal on the memristive device, the curve in Figure 2a
is visually divided into four intervals with different colors. Each interval corresponds to a
specific fragment of the I–V curves in Figure 2b. The I–V curves in Figure 2b display the
switching between LRS and HRS. The RESET process (switching from LRS to HRS) occurs
with a positive voltage and SET (switching from HRS to LRS) with a negative voltage. The
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scattering of the I–V curves in Figure 2b results from random fluctuations applied to the
memristor parameters Em, Eb, and ρ. Figure 2c demonstrates the increase in the amplitude
of the presynaptic neuron from 1.558 V to 4 V. Figure 2d shows that, even when exposed to
a small amplitude signal of 2 V (purple curve), the memristive device can switch from HRS
to LRS.
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Figure 2. Experimental resistive switching in the response to a neuron-like signal: (a) neural-like pulse. The blue, red,
yellow, and green colors show, respectively, the curve segments increasing from 0 to −5 V, from −5 to 0 V, from 0 to 4 V,
and 4 to 0; (b) I–V curves. Each colored I-V section corresponds to a colored section of the input signal to memristor;
(c) increasing amplitude of the neuron-like signal. The red, purple, blue, green, light blue, and yellow curve corresponds,
respectively, to the peak amplitude of 1.558 V, 2 V, 2.5 V, 3V, 3.5 V, and 4 V; (d) resistive switching of the memristive device
under the action of corresponding neuron-like signals on the I-V curves. Each colored I–V curve corresponds to a colored
curve of the input signal to memristor.

The laboratory memristor demonstrates different responses to an input signal with a
small stochastic spread. Figure 2d shows that, for one curve in Figure 2c, with the yellow
curve used as an example, the numerical memristor model yields 10 possible curves (also
a yellow color) with a small spread. The I–V curves in Figure 2d illustrate the effect of
stochastic switching in the memristor response to the voltage signals of the corresponding
amplitudes. Since memristor conductivity is adaptively changed according to the input
signal, the memristive device demonstrates the property of plasticity.

There is a threshold value of the amplitude (u1) of the neuron-like signal at which the
memristor state switches at each spike. At high amplitudes of the input signal (u1), the
system enters a state of extreme resistance and does not respond to each spike anymore.
The memristive device remains in this state. The switching degree strongly depends on
the internal changes in the memristive device related to the interrelated transport phenom-
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ena in oxide dielectrics, due to electric potential gradients, ion concentration, and local
heating [67,68]. These reasons result in the partial recovery and oxidation of conducting
filaments in the oxide film. The corresponding dynamical change in conductivity is limited
by the applied voltage and leads to the modulation of the strength of neuron coupling and
different types of synchronization. In the course of the study, the optimal coupling strength
is z = j(u1); SR = (0.02–0.06) for 1:1 frequency-locking (Figure 3c) and z = (0.06–0.095) for
intermittent synchronization (Figure 3d).
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Figure 3. Results of numerical simulations of the dynamics of FHN neuron generators with memristive coupling: (a,b) phase
portraits and (c,d) time series representing (a,c) 1:1 and (b,d) intermittent frequency-locking regimes. Blue and red curves
show action potentials of presynaptic (u1) and postsynaptic (u2) neurons, respectively.

The experiments show that, when the amplitude of the presynaptic neuron u1 is varied
from 1.6 to 2 V, the oscillation frequencies of the coupled neurons are locked either as 2:1
(Figure 4a) or 3:1 (Figure 4b), i.e., the presynaptic neuron u1 fires the postsynaptic neuron
u2 twice or thrice. This ratio can be randomly changed when chaotic synchronization is
reached at higher voltage amplitudes. Although the phase portraits obtained numerically
and experimentally do not completely match, the experiment confirms the diversity of
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phase-locking regimes predicted by the model. Moreover, our model demonstrates dynam-
ics close to the experimentally observed one, despite of to the first-order memristor model,
if the stochasticity of switching is accounted for.
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Black and green curves show action potential of presynaptic (u1) and postsynaptic (u2) neurons, respectively.

The stochasticity is an inalienable property of resistive-switching devices, enabling
the so-called stochastic plasticity used to mimic neural synchrony in a simple electronic
cognitive system [69]. To the best of our knowledge, the present work is the first attempt to
study this important phenomenon both numerically and experimentally. In our case, the
stochasticity is modeled through the introduction of fluctuations in the model parameters
in a way similar to [70]. Recently, Agudov et al. [71] developed a more generic stochastic
model of a memristive device that can be further used to adequately describe the observed
complex dynamics of the proposed memristive interface. Another option is to use the
deterministic, but at the same time higher-order memristor models based on two or more
state variables in order to simulate the experimentally observed intermittency route to
chaos [72].

4. Conclusions

In this work, we have studied the dynamics of two coupled FitzHugh–Nagumo neu-
ron generators coupled through a memristive device of a metal–oxide type that adapts



Sensors 2021, 21, 5587 9 of 12

the synaptic connection according to the amplitude of the presynaptic neuron oscillations.
The stochastic switching of the memristive device from a high-resistance state to a low-
resistance state is achieved by the variation of the internal parameters. Therefore, the
memristive synaptic device demonstrates the property of stochastic plasticity. Different
synchronous regimes were observed, including 1:1, 2:1, and 3:1 frequency-locking, inter-
mittent synchronization, and more complex dynamics. Its relative compactness and high
sensitivity make the proposed neuromemristive device very promising for biorobotics and
other bioengineering applications [73].
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