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Abstract: Gait disorders accompany a number of neurological and musculoskeletal disorders that
significantly reduce the quality of life. Motion sensors enable high-quality modelling of gait stereo-
types. However, they produce large volumes of data, the evaluation of which is a challenge. In this
publication, we compare different data reduction methods and classification of reduced data for use
in clinical practice. The best accuracy achieved between a group of healthy individuals and patients
with ataxic gait extracted from the records of 43 participants (23 ataxic, 20 healthy), forming 418
segments of straight gait pattern, is 98% by random forest classifier preprocessed by t-distributed
stochastic neighbour embedding.

Keywords: gait; ataxia; SARA; classification; machine learning

1. Introduction

Motion disorders are a frequent manifestation of many diseases in neurology, rheuma-
tology, orthopaedics or rehabilitation [1]. Approximately 70% of neurological inpatients
show an abnormal gait [2]. The development of affordable technology capable of automatic
recognition and further monitoring of pathological states is a method for improving disease
management and reducing the load on the healthcare system. Tools that are specific for the
neurological condition and clinical assessment are needed [3].

Motion analysis has a wide range of applications in these fields, allowing the detection
of motion disorders, enabling an early diagnosis and further monitoring of patient state and
treatment efficacy [4]. Wearable gait sensors have a significant correlation with the Scale
for the Assessment and Rating of Ataxia (SARA) [5]. Even triaxial accelerometer-based
smartphone applications showed a strong correlation with the score obtained with the clin-
ical scales [6]. The values measured in the laboratory environment may differ significantly
from the values measured during normal life activities. For example, the average daily
gait speed was significantly lower than the average in-laboratory gait speed [7]. Motion
sensors enable examination both in outpatient conditions and in the conditions of patients’
natural environment. The same motion sensors can be used in these patients, for example,
to monitor cycling activities [8]. When monitoring walking outdoors, it is advisable to
combine data from motion sensors with a global positioning system [9].

Human movement can be captured by different microelectromechanical sensor units
(MEMS), video and depth camera systems, wireless communication links or pressure-
sensitive walkways. Accelerometer sensors are generally more user friendly and less
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invasive than other sensors for the gait analysis [10]. Gait measured using wearables is
generally more sensitive to group differences than instrumented walkways [11]. Inertial
measurement units (IMU) made of MEMS usually consist of three-axis accelerometer
sometimes accompanied by a magnetometer or gyroscopic sensor [12].

The Perception Neuron 2 (Noitom Ltd., Beijing, China) is a tool to deliver small,
adaptive, versatile and affordable motion capture technology. The modular system is based
on the neuron, an IMU composed of a 3-axis gyroskope, 3-axis accelerometer and 3-axis
magnetometer. The strength of the system lies in the Perception Neuron’s 2 proprietary
embeded data fusion, human body dynamics and physical engine algorithms which deliver
smooth and true motion with minimal latency [13]. The Perception Neuron 2 consists the
interconnected synchronized motion sensors based on a triaxial accelerometer, a gyroscopic
sensor and a magnetometer. Depending on the number of sensors, the sampling frequency
is 60 or 120 Hz. Scanned data can be stored on a micro-SD card in the device hub or can be
sent via WiFi or bluetooth to an external device.

The large volume of data produced is a challenge for processing for clinical purposes.
Reduction of the volume of stored data from motion sensors can be achieved, for example,
by applying cubic splines [14]. Principal Component Analysis (PCA) and Linear Discrimi-
nant Analysis (LDA) are often used for feature extraction and dimensionality reduction.
Karahoca et al. compared different methods of data reduction and classification. The
best accuracy—93.8%—had combination Hu moments and k-nearest neighbours. Other
methods used for the data reduction include PCA and LDA and methods for classifica-
tion include support vector machines [15]. Those methods rely on the assumption that
the data must lie approximately on a linear subspace of the high-dimensional data [16].
Mandery et al. [17] achieved an accuracy of 94.8% on their data set in four-dimensional
feature space with dimensionality reduction method based on Hidden Markov Models.
Publications testing discrete gait changes in multiple slerosis by shallow machine learning
methods in combination with data dimensionality reduction methods were not found.
Shallow and deep machine learning methods are better suited for classifying motion sensor
data than statistical methods [18]. When processing a large amount of data obtained from
motion sensors, parameterization or other data reduction methods are usually used. The
feature extraction methods map the data from high-dimensional space to low-dimensional
space and may use linear or non-linear mapping (Table 1). The reduced data is used to teach
classifiers [19]. For shorter sections of recorded steps, it is more appropriate to use shallow
learning methods after previous data reduction and parameterization. For example, in
cerebellar ataxia, the amplitude of lateral deflections is an important parameter [20]. A
significant reduction of acceleration parameters in neurological patients with ataxia and
Parkinson’s disease was observed [21]. Machine learning methods have been successfully
applied to recognise gait abnormalities in Friedrich’s ataxia [22], early-onset ataxia and
developmental coordination disorder [23]. The principal component analysis of data from
accelerometers was used to estimate the severity of ataxic gait quantitatively using a triaxial
accelerometer [24]. Deep learning methods require long stretches of walking, which are
difficult to obtain in patients with ataxia. The accuracy of the gait classification depends on
the position of the sensors [25].

The purpose of this study is to compare accuracy of different methods of data reduction
and shallow learning and to choose the most effective methods to use for classification of
gait data from motion sensors in clinical practice. We hypothesise that the combination
of random forest with the most modern method of data reduction uniform manifold
approximation and projection will have the highest accuracy. In the following text, we
first deal with the method of data acquisition, then data preprocessing, selection and
description of their features and scaling and balancing. Next, we describe the methods of
dimensionality reduction and data classification.
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Table 1. Common data reduction methods.

Method Linear Description

Principal component analysis Yes
Adaptive exploratory method which creates new
non-correlated variables that maximise variance

Non-negative matrix
factorisation Yes

Algorithm which decomposes one non-negative
matrix into two smaller non-negative matrixes

Kernel principal component
analysis No

Kernel method projects not linearly separable data
set into higher dimensional space where it is
linearly separable, then PCA is applied

Linear discriminant analysis Yes
This algorithm constructs he lower dimensional
and minimises the within class variance

Generalised discriminant
analysis No

Kernel method projects not linearly separable data
set into higher dimensional space where it is
linearly separable, then GDA is applied

Autoencoder No
Neural network architecture with bottleneck
forcing a learned compression of the input data

T-distributed stochastic
neighbour embedding No

Visualisation method which keeps similar data
points close together using heavy-tailed Student-t
distribution to compute similarity between two
data points

Uniform manifold
approximation and projection No

UMAP is used both for visualisation and for
general non-linear dimension reduction. It is based
on Riemannian geometry and algebraic topology.

2. Materials and Methods

The study was conducted in accordance with the principles for human experimen-
tation as defined in the Declaration of Helsinki and International Conference on Harmo-
nization Good Clinical Practice guidelines and approved by the Ethics Committee of the
University Hospital Hradec Kralove. Informed consent was obtained from each study
participant after they had been told of the potential risks and benefits as well as the investi-
gational nature of the study. The data processing procedure is schematically illustrated in
the flow below (Figure 1).

Figure 1. Flow diagram of data processing.

2.1. Data Acquisition

The data was acquired using a Perception Neuron 2 device from 43 participants
walking 100 m. The walk was performed on a connecting corridor in the hospital with a
length of 50 m. Turning was excluded from the data processing. Of these, 23 patients had
multiple sclerosis with ataxia and 20 healthy study participants served as controls. The
mean age of the patients was 43.4 ± 9.7 years, and the mean age of the control group was
35.9 ± 15.0 years (p = 0.055). The mean body mass was 174.4 ± 7.1 cm in the patients group
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and 172.9 ± 6.8 cm in the control group(p = 0.485). The mean weight was 71.7 ± 5.2 cm in
the patients group and 74.3 ± 4.3 kg in the control group (p = 0.084).

2.2. Data Preprocessing

The sampling frequency was 60 Hz or 120 Hz, depending on the number of sensors
used (60 fps with 32 neurons, 120 fps with 17 neurons). The recordings taken at 120 Hz
were subsampled to 60 Hz. The usual number of sensors used was 16. The records varied
in length of the walked path and the number of repetitions depending on the severity of
the patient’s disability. An algorithm for turn and step detection was developed to avoid
this discrepancy among samples.

2.3. Feature Description

The shallow machine learning methods usually require parametrization of the record-
ings. Frequently used parameters of walking include gait velocity, cadence, step length,
step regularity, step repeatability and the degree of body sway [26]. The coefficient of
variance of stride length, smoothness and rhythm have the highest discriminatory value in
the classification of gait disorders in cerebellar ataxia [27]. In neurologically ill patients, the
symmetry of the disability is also important [28]. The following features were used:

• Step cadence is defined as a number of steps per unit time. In normal gait, cadence is
approximately 100 to 115 steps per minute.

• The step length is defined as the Euclidean distance between adjacent foot contacts
with the surface. There are several steps within each segment, and step length is
defined as the median value from these distances.

• Step trajectory of one step is the length of a sampled curve between adjacent foot
contacts with the surface. Trajectories are computed for each step and the median
value for each segment to build a feature step trajectory.

• The relative step length as the ratio between step length (SL) and step trajectory (ST).
This ratio attempts to reveal the optimality of a trajectory. Value closer to number 1,
the minimum distance of the foot was travelled from point A to B, which should lead
to the optimal step.

• Standard deviation of centre of mass (COM STD) trajectory
• Energy in frequency bands takes on input accelerometer data. The maximum valid

frequency for all samples is 29 Hz; therefore, two energy bands were empirically
chosen: [3, 15] Hz and [15, 29] Hz.

2.4. Feature Scaling

Different features may have different magnitudes, units and ranges. Some classifica-
tion algorithms can adapt to the data with not normalised inputs, but the majority of them
cannot. For example, if there is the Euclidean distance between two data points imple-
mented in the algorithm, only the highest order feature will affect the overall classification
results of this classifier and the others will have only a small effect on the classifier learning
status. The following methods were used where appropriate:

• Rescaling. Synonym to rescaling is min-max normalisation; from each value the
minimum is subtracted and divided by a range of values (the difference between the
maximum and minimum values). The rescaled values lie within range [0, 1].

• Mean normalisation. The feature vector is normalised by subtracting the average
value and divided by a range of values.

• Standardisation or z-score normalization is the most commonly used rescaling tech-
nique. Mean values are subtracted, followed by division by the standard deviation.

2.5. Class Balancing

To comply with the conditions of providing proper input data for applying various
classification algorithms, we need to balance the number of segments by the class affiliation.
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The main reason for class balancing is maintaining the robustness and generality of classifier
learning to avoid overfitting effects. The following methods were used for class balancing:

• Subsample majority class.
• Oversample minority class.
• Oversample by adding noise to the minority class.
• Oversampling by SMOTE (synthetic minority oversampling technique).

2.6. Dimensionality Reduction Techniques

• Principal component analysis (PCA [29]). Linear dimensionality reduction using
singular value decomposition (SVD) for data projection to a lower-dimensional space.
The input data are centred but not scaled for each feature before applying the SVD.

• T-distributed stochastic neighbour embedding (TSNE [30]) is a technique for the
dimensionality reduction that is particularly well suited for the visualisation of high-
dimensional data sets.

• Uniform manifold approximation and projection (UMAP [31]) is a dimension reduc-
tion technique that can be used for visualisation similarly to t-SNE but also for general
non-linear dimension reduction.

2.7. Classification

• Logistic regression [32] is an extension of the linear regression model for classification.
The difference against linear regression is the ability to perform classification on an
accepted level of generality even for more complex data.

• Linear support vector machine [33]. Support vector machine algorithms attempt
to find the optimal hyperplane in an N-dimensional space that distinctly classifies
input data points. There are many possible hyperplanes to choose from, and the SVM
algorithm selects hyperplane with the maximum margin (maximum distance between
samples across all classes).

• Kernel support vector machine [34].
• Naive Bayes [35] used a probabilistic machine learning model for classification.
• A quadratic classifier [36] is a general version of the linear discriminant analysis (LDA).

Unlike the LDA, it assumes that each class can have a different covariance matrix.
• k-nearest neighbour [37] can be used to solve both classification and regression prob-

lems. Implementation is easy, straightforward and understandable. The major draw-
back of becoming significantly slow as the size of the data in use increases. The basic
idea is that similar things (data points) exist in close proximity.

• Decision tree [38] is a supervised learning algorithm. In the tree structure an internal
node represents feature, the branch represents a decision rule, and each leaf node rep-
resents the outcome. This algorithm can be used for both prediction and classification.

• Random forest [39]. Decision trees have a problem with overfitting to the specific
training set. The random forest is a combination of several decision trees. Decision
rules given by individual trees are weighted and combined, and such methods, in
general, are called ensemble methods.

• The neural network [40] (NN) is a computational model inspired by naive ideas about
animals’ central nervous systems functions. NNs are capable of machine learning, pattern
recognition, image compression or time-series prediction. The NN systems are composed
of interconnected ”neurons” (real or hidden) that can compute values (weights) from
patterns (inputs) by feeding (transfer functions) information through the network.

• AdaBoost [41] is an iterative ensemble method. It combines multiple weak learn-
ers, which are called decision stumps and can be used for both classification and
regression problem.

2.8. Cross Validation

The principle of the cross-validation technique is to split the data into training and
testing sets. For the training set 60% of the data was used and for the testing set, it was
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40% of the data. The classifier is trained on the training set only, and for evaluation
of accuracy, precision and other scores, the testing set is used. In addition, we used
leave–one–group–out cross validation for our data. Hyperparameters of all models are
available in Supplementary Materials.

3. Results

Both different types of the dimensionality reduction techniques (Figures 2a,b and 3a,b)
and shallow classifiers (Figure 4) were compared.

3.1. Dimensionality Reduction Techniques

The compared methods of the data reduction show a different ability to discriminate
ataxia and healthy controls as well as grouping according to the data of the study partici-
pants. Sensitivity, specificity and accuracy for the individual data reduction methods are
given in Tables 2–3.

3.2. Classification

Of all the data reduction and shallow learning methods tested, the random forest
achieved the highest accuracy 98% in combination with TSNE data reduction. In combina-
tion with PCA, random forest reached 95%, while in combination with UMAP, it reached
only 92% (Figure 4, Table 4).
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Figure 2. Principal component analysis is a tool that ranks the features by the eigenvalues, which
corresponds to the desired ability of discrimination between classes (A). Of all the techniques
compared, it has the worst ability to categorise individual participants (B).

−5 0 5 10 15 20

UMAP 1

−4

−2

0

2

4

6

8

10

12

UM
AP

 2

(A) UMAP COLORED BY TYPE

Norma
Ataxia

−5 0 5 10 15 20

UMAP 1

−4

−2

0

2

4

6

8

10

12

UM
AP

 2

(B) UMAP COLORED BY SUBJECT 1
10
13
14
15
15051994
16
17
18
19
20
22
23
24
25031996
28
29
3
30
31
32
34
38
39
4
40
41
535525
6
615829
681001
7
715211
736123
740516
755730
766012
9
920828

Figure 3. The uniform manifold approximation and projection model can be used for predicting a
new sample to group (A) or similarity to the other study participant (B).
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Figure 4. Classifier decision surface plotted for selected classifiers in dimension of two T-distributed
stochastic neighbour embedding components. The achieved accuracy of classification for each specific
case is shown in the yellow box in the right bottom corner.

Table 2. Accuracy, sensitivity and specificity for UMAP and all tested combinations of shallow
learning methods.

Name Accuracy Sensitivity Specificity

LogisticRegression 0.88 0.76 0.95
Linear SVM 0.87 0.76 0.94
Poly SVM 0.89 0.80 0.94
RBF SVM 0.94 0.84 1.00

Naive Bayes 0.87 0.84 0.89
Nearest Neighbours 0.94 0.90 0.96

Decision Tree 0.95 0.94 0.95
Random Forest 0.96 0.90 0.99

Neural Net 0.70 0.20 1.00
AdaBoost 0.96 0.88 1.00
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Table 3. Accuracy, sensitivity and specificity for PCA and all tested combinations of the shallow
learning methods.

Name Accuracy Sensitivity Specificity

LogisticRegression 0.93 0.88 0.96
Linear SVM 0.90 0.73 1.00
Poly SVM 0.90 0.78 0.98
RBF SVM 0.91 0.88 0.93

Naive Bayes 0.93 0.84 0.99
Nearest Neighbours 0.93 0.90 0.95

Decision Tree 0.93 0.96 0.92
Random Forest 0.93 0.96 0.92

Neural Net 0.75 0.33 1.00
AdaBoost 0.94 0.96 0.93

Table 4. Accuracy for all tested combinations of shallow learning methods and data reduction.

Condition PCA TSNE UMAP

AdaBoost 0.93 0.97 0.90
Decision Tree 0.93 0.93 0.90
Linear SVM 0.80 0.91 0.65

Logistic Regression 0.93 0.93 0.61
Naive Bayes 0.93 0.93 0.61

Nearest Neighbors 0.91 0.94 0.90
Neural Net 0.93 0.93 0.65
Poly SVM 0.91 0.92 0.65

Random Forest 0.95 0.98 0.92
RBF SVM 0.91 0.93 0.89

4. Discussion

The aim of the study was to find a combination of a shallow classifier with the method
of data reduction, which has the highest accuracy in the assessment of gait ataxia. The
combination of TSNE to reduce the data evaluated by the random forest method seems to
be the most appropriate procedure for classifying the gait recordings from motion sensors
(Table 5).

Table 5. Accuracy, sensitivity and specificity for TSNE and all tested combinations of the shallow
learning methods.

Name Accuracy Sensitivity Specificity

LogisticRegression 0.93 0.88 0.95
Linear SVM 0.91 0.76 1.00
Poly SVM 0.95 0.88 0.99
RBF SVM 0.95 0.88 0.99

Naive Bayes 0.90 0.90 0.90
Nearest Neighbours 0.96 0.92 0.98

Decision Tree 0.96 0.94 0.96
Random Forest 0.96 0.94 0.98

Neural Net 0.90 0.73 1.00
AdaBoost 0.95 0.92 0.96

The highest achieved accuracy of atactic gait classification in our study was 98%.
Karahoca et al. obtained accuracy of 93.8% with combination Hu moments and k-nearest
neighbours [15]. Mandery et al. [17] had comparable accuracy of 94.8% on their data set in
four-dimensional feature space with dimensionality reduction method based on Hidden
Markov Models. However, it is difficult to compare the accuracy of the classification
of different degrees and types of the neurological gait disorders. The application of
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different methods of data reduction and classification on the same data set would bring
comparable results.

Machine learning approaches are mainly applied to assess abnormal gait patterns
due to their ability to work with multidimensional non-linear features [42]. The question
is how ataxia affects the accuracy of gait parameter estimation. For example, analyses
demonstrate that there is no correlation between the gait speed estimation error and
impairment severity [43]. When classifying gait in patients with gait disorders, it is usually
not possible to collect enough data to learn deep neural networks. In this case, the use
of shallow learning methods is possible. The deep convolutional neural network can
handle relatively small data sets [44]. Of the shallow learning methods, the random forest
is good for a large number of problems. This method is based on trees; therefore, the
scaling of the variables does not matter. The random subspace method and bagging are
used to prevent overfitting. The automated feature selection was successfully used in
the evaluation of cerebellar ataxia, where the key features were velocity irregularity and
resonant frequency characteristics of truncal and lower limb movements [45]. The random
forest was successfully used to evaluate which individual characteristics had the highest
influence on the gait local dynamic stability [46]. The TSNE data reduction method in
contrast with PCA retains non-linear variance. UMAP is similar to TSNE. The reason
for the lower performance in this case may be UMAP’s inability to separate the nested
clusters. Furthermore, TSNE can successfully separate subjects according to the severity of
the clinical disability, as shown in Figure 5.
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Figure 5. T-distributed stochastic neighbour embedding is also able to well separate subjects accord-
ing to the severity of the clinical disability measured by the Scale for the Assessment and Rating of
Ataxia score (the higher score the more severe ataxia).

The torso and movements of the upper limbs are also involved in the walking stereo-
type. In the further studies, it is necessary to focus on the inclusion of parameters describing
the compensatory movements of the torso and upper limbs during ataxic gait.

The limitation of the study is the relatively small number of study participants. The
difference in age and weight in both groups of participants was just above the 5% level of
significance and could affect the accuracy of the classification.

Binary classification is not of great importance for clinical practice or for pharmaco-
logical studies. However, T-distributed stochastic neighbour embedding is able to well
separate subjects according to the severity of the clinical disability measured by the Scale
for the Assessment and Rating of Ataxia score. This can be a good basis for multiclass
classification using a random forest. This approach should already be used in both clinical
practice and pharmacological studies.

Both clinical practice and expensive pharmacological studies in gait disorders are
based on clinical impression and inaccurate clinical scales. Measurement and classification
of gait disorders using motion sensors offers reproducible results that can refine the diag-
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nosis and reduce the cost of testing new drugs by reducing the variance in the evaluation
of the achieved results.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/s21165576/s1.
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