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Abstract: Currently, simultaneous localization and mapping (SLAM) is one of the main research
topics in the robotics field. Visual-inertia SLAM, which consists of a camera and an inertial mea-
surement unit (IMU), can significantly improve robustness and enable scale weak-visibility, whereas
monocular visual SLAM is scale-invisible. For ground mobile robots, the introduction of a wheel
speed sensor can solve the scale weak-visibility problem and improve robustness under abnormal
conditions. In this paper, a multi-sensor fusion SLAM algorithm using monocular vision, inertia, and
wheel speed measurements is proposed. The sensor measurements are combined in a tightly coupled
manner, and a nonlinear optimization method is used to maximize the posterior probability to solve
the optimal state estimation. Loop detection and back-end optimization are added to help reduce
or even eliminate the cumulative error of the estimated poses, thus ensuring global consistency
of the trajectory and map. The outstanding contribution of this paper is that the wheel odometer
pre-integration algorithm, which combines the chassis speed and IMU angular speed, can avoid
the repeated integration caused by linearization point changes during iterative optimization; state
initialization based on the wheel odometer and IMU enables a quick and reliable calculation of the
initial state values required by the state estimator in both stationary and moving states. Comparative
experiments were conducted in room-scale scenes, building scale scenes, and visual loss scenarios.
The results showed that the proposed algorithm is highly accurate—2.2 m of cumulative error after
moving 812 m (0.28%, loopback optimization disabled)—robust, and has an effective localization
capability even in the event of sensor loss, including visual loss. The accuracy and robustness
of the proposed method are superior to those of monocular visual inertia SLAM and traditional
wheel odometers.

Keywords: multi-sensor fusion; robot pose measurement; simultaneous localization and mapping;
visual inertia system

1. Introduction

At present, the influential simultaneous localization and mapping (SLAM) systems
with monocular vision include ORB-SLAM2 [1], LSD-SLAM [2], DSO [3], and SVO [4].
Among them, ORB-SLAM2 [4] has high adaptability and strong robustness to indoor and
outdoor environments. However, the algorithm itself is based on pure vision. When there
are no visual features, the accuracy and robustness of the pose estimation will decrease
rapidly, and the algorithm may fail. Therefore, in the follow-up development of visual
SLAM, in order to overcome the shortcomings of pure vision, the strategy of multisensor
fusion is adopted.
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Accordingly, sensors with scale measurement capabilities and monocular vision sen-
sors are used to perform fusion vision SLAM to increase accuracy and robustness. Rel-
atively stable and reliable solutions can be obtained with lasers [5]; however, at present,
this method is generally only suitable for large-scale scenarios, such as unmanned driving,
and is unsuitable for applications with limited costs. The inertial measurement unit (IMU)
has become a generally accepted option. However, it exhibits a non-negligible cumulative
error if run for a long period of time [6], especially in visually restricted conditions without
texture or under weak illumination, in which case the visual mile cannot be used to correct
the IMU error. In [7], the scale observability of a monocular visual inertial odometer on a
ground mobile robot was analyzed in detail. When the robot moved at a constant speed,
due to the lack of acceleration excitation, the constraint on the scale was lost, resulting in a
gradual increase in the scale uncertainty and positioning error.

A wheel speed inertial odometer was integrated with a monocular visual odometer
using the extended Kalman filter (EKF) [8,9], assuming the robot to be running on an
ideal plane, and 3-DOF pose measurement was performed. The wheel speed inertial
odometer uses wheel speed measurement for EKF status prediction; the angular speed
measurement is integrated for dead reckoning; and the visual odometer method is used for
an EKF measurement update. In the above-mentioned EKF-based loose coupling method,
when the visual odometer cannot accurately calculate the pose due to insufficient visual
characteristics, some proportion of its output in the filter will fall, resulting in ineffective
visual observation. Consequently, the accuracy is reduced. VINS-Mono used tightly
coupled nonlinear optimization [10,11]. By combining the IMU pre-integral measurement
and visual measurement in a tightly coupled form to achieve the maximum posterior
probability, we use the nonlinear optimization method to reach the optimal state. An open-
source visual inertia SLAM algorithm VINS-Fusion [12,13] was developed based on VINS-
Mono, supporting multiple sensor combinations (binocular camera + IMU; monocular
camera + IMU; binocular camera only); GPS is used to improve the accuracy of the global
path. In pursuit of better performance, wheel speed is used in SLAM system [14]—the
wheel speed sensor and the visual odometer were integrated tightly. In this way, they make
least-squares rather than optimization. However, they do not consider the unreliability of
wheel speed. When a robot moves on uneven surfaces, or a wheel slip occurs, an incorrect
wheel speed measurement will significantly affect the scale accuracy, and can potentially
lead to system failure. In [15], a batch optimization framework with formulated edges
was proposed. Moreover, tightly coupled nonlinear optimization methods were used to
integrate vision, IMU, and wheel speed, and to perform pose. The error cost function
was composed of vision errors, inertial measurement errors, and wheel speed sensor dead
reckoning errors. In addition, assuming that the vehicle was moving on an approximate
plane, a “soft” plane constraint term was added to the error cost function. While the robot
is running with fixed acceleration or going straight, we do not know how long it moves in
real time or what the direction is. Therefore, the encoder and soft plane constraints will
make the task easier.

According to whether the visual feature points are added to the state vector of the filter
or the optimization equation, the visual inertial odometry method based on filtering can
be divided into two types: loose coupling and tight coupling. Further, the loose coupling
method is divided into two parts: the visual odometer and state estimator. The visual
odometer tracks the feature points and calculates the current camera pose, and the state
estimator uses the IMU to measure and adjust the camera pose obtained by the visual
odometer. As the visual features are invisible to the state estimator, they cannot be adjusted
based on the IMU measurement, and the poor position accuracy of the visual features
causes the accuracy of the visual odometer to decline. As a result, the correlation between
measurements is not fully utilized for pose measurement, thereby reducing the accuracy.
In the tight coupling method, the carrier pose and position of the feature point are used as
variables to be estimated, and the filter method or optimized method is used for estimation.
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Thus far, for the existing visual inertia SLAM algorithm, when the robot is moving
at a constant speed, or purely rotating, and encounters scenes with insufficient visual
features, the problems of low accuracy and poor robustness arise. Tightly coupled wheel
speed information can help solve this problem. However, there are few studies on multi-
sensor fusion SLAM for wheeled mobile robots based on vision, inertia, and wheel speed
measurements that are tightly coupled and optimized. There is no complete solution
similar to ORB-SLAM. Therefore, research on tightly coupled monocular visual odometer
combined with wheel speed measurement is significant. Therefore, we use IMU and wheel
odometry to make a monocular visual odometry system to gain the scale reconstruction.

The main novelty and contributions of this paper include:

1. A multi-sensor fusion SLAM algorithm using monocular vision, inertial measurement,
and wheel speed measurement is proposed. The wheel speed and IMU angular
velocity pre-integration of the wheel odometer can avoid the repeated integration
caused by the linearization point change in the iterative optimization process.

2. Based on the state initialization of the wheel odometer and IMU, the initial state
value required by the state estimator can be quickly and reliably calculated in both
stationary and moving states.

The method in this paper solves the problem of poor pose estimation accuracy caused
by the weak observability of monocular visual inertial SLAM, and further improves the
robustness of pose estimation.

2. Multi-Sensor State Estimation Based on Tight Coupling Optimization
2.1. SLAM Based on Multi-Sensor Fusion

The multi-sensor fusion state estimator in this study uses monocular vision, IMU, and
wheel odometer measurements based on feature point optical flow tracking [16]. None
of these sensors can measure the absolute pose. Therefore, the multi-sensor fusion state
estimator, as an odometer algorithm, has an unavoidable cumulative error. Therefore,
we used key frame selection, loop detection [17], and back-end optimization algorithms
based on the VINS-Mono framework and applied them to the multi-sensor fusion state
estimator to form a complete SLAM system. Figure 1 shows a system block diagram of the
SLAM method.

In a multi-sensor state estimation process, the main data processing and analysis
processes include raw sensor input, data pre-processing (including calibration compensation,
time alignment, and pre-fused wheel odometer), state initialization, state estimation problem
solving, loopback detection, and backend optimization. The processes of optimal state
estimator, wheel odometer pre-integration, and initialization reflect the contributions and
innovations of this paper. The rest is our flexible use of existing methods. Sections 2.2–2.7
analyze the core multi-sensor fusion state estimation problem and the pre-integration
process of IMU and wheel speed. Section 2.8 analyzes the initialization process of the state.
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Figure 1. Block diagram of monocular vision inertial SLAM. 
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Figure 1. Block diagram of monocular vision inertial SLAM.

2.2. Variables to Be Estimated and Observation

Considering that the IMU zero offset always exists, when defining the variable X to
be estimated, the IMU zero offset of each key frame needs to be included. Therefore, in the
k key frame, we have:

X = {xk, λl}k∈K,l∈L
xk =

[
pW

Bk
, vW

Bk
, qW

Bk
, bak, bgk

] (1)

For the IMU, xk ∈ R16×1 is the state, pW
B ∈ R3×1 denotes the position, qW

B ∈ R4×1 is
the attitude (quaternion form), vW

B ∈ R3×1 denotes the speed, and ba ∈ R3×1 and bg ∈ R3×1

are the accelerometer and gyroscope bias, respectively. K is the key frames and L is the
feature points. Further, λl is the inverse depth of L (the inverse of the Z-axis coordinate).

Additionally, pre-fusion wheel odometer observations are added based on VINS-
Mono. The original wheel odometer is defined as:

m̂odomk ,
[

pxk pyk θk
]T (2)

where {pxk pyk} is the coordinate of the wheel odometer relative to the starting point and θk
is the angle of rotation relative to the starting direction. Therefore, the observation Z used
to constrain the X :

Z = {ZCi ,Bij,Oij}(i,j)∈K (3)

where visual feature point observation ZCi = {ẑil}l∈Li
, containing all feature points Li

observed under the i key frame; Bij = {ât, ω̂t}ti≤t≤tj
is IMU pre-integration of accel-
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erated speed and angular speed; and Oij = {∆m̂odomt, âavgt, ω̂avgt}ti≤t≤tj
is pre-fusion

wheel odometer.

2.3. Optimal Estimation Problem

The maximum posterior estimation and Bayes’ theorem shows:

X ∗ = argmax
X

p(Z|X )p(X ) (4)

Here, p(Z|X ) is the conditional probability of observing the occurrence of Z under
the existed state X , which can be obtained by the observation equation and the covariance.
p(X ) is the prior probability (edge probability) of X . According to formula (3), we have:

p(Z|X )p(X ) = p(X ) ∏
(i,j)∈K

p(ZCi ,Bij,Oij | X )

= p(X ) ∏
i∈K

∏
l∈L

p(ẑil |xi, λl) ∏
(i,j)∈K

p({ât, ω̂t}ti≤t≤tj
|xi, xj)

× ∏
(i,j)∈K

p({∆m̂odomt, âavgt, ω̂avgt}ti≤t≤tj
|xi, xj)

(5)

We use the least-squares method to find the maximum posterior estimate, and use
Mahalanobis distance to measure the difference between the residual and the covariance
matrix.

X ∗ = argmin
X
{‖rp − HpX‖2 + ∑

i∈K
∑

l∈L
ρ(‖rC(ẑil , xi, λl)‖2

ΣCil
)

+ ∑
(i,j)∈K

‖rB({ât, ω̂t}ti≤t≤tj
, xi, xj)‖2

ΣBij

+ ∑
(i,j)∈K

ρ(‖rO({∆m̂odomt, âavgt, ω̂avgt}ti≤t≤tj
|xi, xj)‖2

ΣOij

)}

(6)

Here, r‖(·)‖2
Σ is the Mahalanobis distance and Σ is the covariance matrix. {rp, Hp} is

the prior information from marginalization; rC ∈ R is the visual residual; rO ∈ R3×1 is the
wheel odometer residual; and rB ∈ R15×1 is the IMU residual. In addition, the Huber loss
function ρ [18] is used to improve the robustness, where ρ is

ρ(s) = { 1 s ≥ 1
2
√

s− 1 s < 1
(7)

2.4. Visual Measurement Constraints

The specific process is as follows: while the feature point l is first observed in the
key frame i, it is recorded and tracked. Its spatial pose is defined as a function of the key
frame i pose (pCi , qCi ) and the inverse depth λl of the feature point. While the feature point
l is observed again in the key frame j, a visual residual term is generated. The residual
term rCjl represents the error of the feature point l in the position of j. It is also called the
re-projection error, which is a function of the key frame i pose (pCi , qCi ).

rC(ẑjl ,X ) = rCjl (pW
Bi

, pW
Bj

, qW
Bi

, qW
Bj

, λl)=
[

b1 b2
]T ·(P̂Cj

l −
Pl

Cj

‖Pl
Cj‖

) (8)

Here,

P̂Cj
l = π−1

c (ẑil)= π−1
c

([
û

cj
l

v̂
cj
l

])
Pl

Cj = (RC
B(R

Bj
W

(
RW

Bi

(
RB

C·
1
λl
·π−1

c

([
ucu

l
vcu

l

])
+ pB

C

)
+ pW

Bi
− pW

Bj

)
− pB

C)

(9)
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In the formula, RF1
F2
∈ SO(3) represents the rotation matrix from F2 coordinate system

to F1 coordinate system; P̂ cj
l ∈ R2×1 is the position where the feature point l is projected

onto the unit ball in the key frame j; π−1
c is the back projection function, which can project

the pixel coordinates into the camera coordinate system Cj; Pl
Cj ∈ R2×1 is the position

projected on the unit ball in the key frame j; to compare the error with Pl
Cj , it needs to be

transformed into the camera coordinate system Cj of the key frame j; and
[

b1 b2
]

are
the two orthogonal base vectors on the tangent plane of the unit ball and the projection
lines with the feature points in the orthogonal direction.

2.5. IMU Constraints

In the visual odometer method based on bundle adjustment, the state of the carrier
is optimized and visual measurement is used to constrain. The IMU measurement be-
tween frames is added as a constraint on the optimization framework, thereby improving
robustness.

2.5.1. IMU Pre-Integration

To reduce the complicated operation caused by reintegration, we used the IMU pre-
integration method [19] to fuse IMU measurements between two consecutive key frames.

2.5.2. Residual Term

The IMU pre-integration processes the IMU measurement for a continuous period
based on the given IMU zero offset and obtains the relative pose constraint between
the initial and end states of the time period. The IMU pre-integration residual term is
defined as:

rB({ât, ω̂t}tk≤t≤tk+1
, xk, xk+1)

=



δα
Bk
Bk+1

δβ
Bk
Bk+1

δθ
Bk
Bk+1

δba
Bk
Bk+1

δbg
Bk
Bk+1


=



R{qW
Bk
}T

(pW
Bk+1 − pW

Bk
− vW

Bk
∆t + 1

2 g∆t2)− α̂
Bk
Bk+1

R{qW
Bk
}T

(vW
Bk+1 − vW

Bk
+ g∆t)− β̂

Bk
Bk+1

2{q̂Bk
Bk+1 ∗ ⊗qW

Bk
∗ ⊗qW

Bk+1}xyz
baBk+1 − baBk
bgBk+1 − bgBk


(10)

The random distribution of the residual term rB conforms to N(0, ΣB) and ΣB is
obtained by updating the covariance equation. δθ

Bk
Bk+1 ∈ R3×1 is three-dimensional small

perturbation and δ represents the error term. The IMU pre-integration provides constraints
on the variables to be optimized contained in the two key frames before and after. In the
process of nonlinear optimization, the essence of the constraint is to provide the direction
and gradient of the variable to be optimized by calculating the Jacobian matrix of the
residual. As the direction of gravity is obtained during the initialization of the visual
inertial odometer, the gravity acceleration gW is not used as a variable to be optimized.

2.6. Wheeled Odometer Constraints

On ground mobile robots, a wheel speed meter is typically used to perform dead
reckoning to obtain continuous relative poses of the robot. The continuous position and
reliable scale estimation of the wheel odometer make it suitable for tasks such as path
planning and navigation.

2.6.1. Two-Dimensional Wheel Odometer Algorithm

The two-dimensional wheel odometer has an unavoidable cumulative, error but can
provide a continuous carrier trajectory. As the wheel speed meter measures the average
wheel speed over a period of time, the chassis speed measurement m̂base measures the aver-
age speed during this time. The position and attitude update methods of the wheel speed
odometer include Euler points, median points, and higher-order Runge–Kutta methods. As
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the sampling speed of the wheel speed meter is high (1 kHz), the Euler integration method
is used to reduce the calculation time of the main control microcontroller. This is achieved
while assuming that the chassis moves with fixed direction and speed in the original
direction during the period and rotates to a new direction at the end of the time period.

The initial state of the wheel odometer is m̂odom0 =
[
px0 py0 θ0

]T
= 0. Given the

previous state m̂odomk−1 =
[

pxk−1 pyk−1 θk−1

]T
of the wheel odometer, the current chassis

speed measurement v̂basek =
[
vxk vyk ωk

]T
, and the time difference dtk = tk − tk−1, we can

obtain the new wheel odometer state m̂odomk as:

m̂odomk =
[

pxk pyk θk

]T
(11)

[
pxk
pyk

]
=

[
pxk−1
pyk−1

]
+

[
cosθk−1 −sinθk−1
sinθk−1 cosθk−1

][
vxk
vyk

]
dtk (12)

θk = θk−1 + ωkdtk (13)

2.6.2. Wheel Odometer Pre-Integration

In this paper, we propose a pre-integration method for wheel odometer. We use IMU
and wheel speed to measure the relative pose between two key frames. The data of the
two sensors makes pre-fusion m̂ f used odom. Thereafter, only the m̂ f used odom is measured,
according to the wheel odometer kinematics equation, and a continuous calculation and
integration is made to find the displacement.

The incremental update equation of the wheel odometer is:
pOk

Oi+1
= pOk

Oi
+ R{qOk

Oi
}∆pOi

Oi+1
= pOk

Oi
+ R{qOk

Oi
}(∆ p̂Oi

Oi+1
+ DOk

Ok+1
ηos)

qOk
Oi+1

= qOk
Oi
⊗ qOi

Oi+1
= qOk

Oi
⊗ q{RO

B (ω̂avgi+1 − bg − ηg)∆t}
bgi+1 = bgi + ηbg ∆t

(14)

where ∆ p̂Oi
Oi+1

,
[
∆ p̂xi+1 ∆ p̂yi+1 0

]T denotes wheel odometer with noise measurement; the

initial state value p0 = 0, q0 = [1 0 0 0]T . x =
[
pOk qOk bg

]T is the pre-credit term.
The nominal weight of the wheel odometer pre-integration item can be incrementally

updated based on the pre-fusion wheel odometer measurement:
p̂Ok

Oi+1
= p̂Ok

Oi
+ R{q̂Ok

Oi
}∆ p̂Oi

Oi+1

q̂Ok
Oi+1

= q̂Ok
Oi
⊗ q̂Oi

Oi+1
= q̂Ok

Oi
⊗ q̂{RO

B (ω̂avgi+1 − bg)∆t}
b̂gi+1 = b̂gi

(15)

The initial value of nominal weight: p̂0 = 0, q̂0 = [1 0 0 0]T .
According to the definition of the error amount of the pre-integration term, an incre-

mental update formula of the error amount of the pre-integration term is:
δpOk

Oi+1
= δpOk

Oi
+ R{qOk

Oi
}DOk

Ok+1
ηos

δθ
Ok
Oi+1

= δθ
Ok
Oi
− (ω̂avgi+1 − bg )̂δθ

Ok
Oi

∆t− δbg∆t + ηg∆t}
δbgi+1 = δbgi + ηbg ∆t

(16)

(·)ˆ is 3× 3 anti-symmetric matrix of Lie algebra SO (3). The nominal value of the wheel
odometer pre-integration term depends on the pre-fusion wheel odometer measurement
and the gyroscope zero offset. For the variable to be optimized, the zero bias of the
gyroscope needs to be continuously adjusted in the pose measurement process to reduce
the residual error. Therefore, in the optimization process, the partial derivatives Jp

bg
and Jθ

bg
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of the nominal value of the pre-integral term of the wheel odometer with respect to the
zero offset of the gyroscope need to be used.

According to the incremental update of the error value of the pre-integration term of
the wheel odometer, the Jacobian matrix of the error value between the two frames before
and after can be obtained as:

Jδxi+1
δxi

=
δxi+1

δxi
= I + Fi (17)

According to the definition of the nominal value of the pre-integration item of the
wheel odometer, the Jacobian matrix of the error value is the nominal Jacobian matrix of
J x̂i+1
x̂i

= Jδxi+1
δxi

. Therefore, according to the chain-derivation rule, J x̂i+1
x̂0

= J x̂i+1
x̂i

J x̂i
x̂0

, the update
equation of the nominal value of the pre-integration term of the wheel odometer with
respect to the zero-biased Jacobian matrix is:

J x̂i+1
x̂0

= (I + Fi)J x̂i
x̂0

(18)

The initial value of the Jacobian matrix: J0 = J x̂0
x̂0

= diag(9).

2.6.3. Residual Term

Definition: In the least-squares problem of robot pose measurement, the wheel odome-
ter residual term rO represents the error distance between the frame-to-frame relative
displacement p̂Ok

Ok+1
and the key frame displacement pOk

Ok+1
in the variable to be optimized,

where p̂Ok
Ok+1

is the observation, and pOk
Ok+1

is the estimator.

rO({∆m̂odomt, ω̂avgt}tk≤t≤tk+1
, xk, xk+1) =

[
δpOk

Ok+1

]
= pOk

Ok+1
− p̂Ok

Ok+1
(19)

The wheel odometer residual does not include the errors δθ
Ok
Ok+1

and δbg
Ok
Ok+1

with
respect to the rotation and gyro zero offset. This is as these terms are already defined in the
residual term of the IMU pre-integration. The IMU pre-integration uses the original IMU
measurement as the angular velocity input, which provides higher rotational integration
accuracy than the wheel odometer pre-integration measured with a lower frequency pre-
fused wheel odometer.

To use the variable xk, xk+1 to represent the wheel odometer pre-integration residual
term, pOk

Ok+1
needs to be transformed:

pOk
Ok+1

= ROk
W (pW

Ok+1
− pW

Ok
)

= RB−1
O R{qW−1

Bk
}(pW

Bk+1
− pW

Bk
) + RB−1

O R{qW−1
Bk
}R{qW

Bk+1
}pB

O − RB−1
O pB

O
(20)

We obtain the residual term expressed using only the variables to be optimized and
the wheel odometer pre-integration:

rO = RB−1
O R{qW−1

Bk
}(pW

Bk+1
− pW

Bk
) + RB−1

O R{qW−1
Bk
}R{qW

Bk+1
}pB

O − RB−1
O pB

O − p̂Ok
Ok+1

(21)

Here, RB
O and pB

O are known constants.
As a maximum posterior problem, the robot pose measurement is the same as least-

squares by introducing a covariance matrix of the residuals to transform the residu-
als with dimensions into a unified probability representation. The wheeled odometer
residual rO obeys the covariance matrix ΣO of the wheeled odometer pre-integration,
rO ∼ N(0, [ΣO ]p). Here, [ΣO ]p represents the displacement covariance in the wheel
odometer pre-integration covariance matrix ΣO , [ΣO ]p = [ΣO ]le f t right 3×3.

Regarding the Jacobian matrix, according to the definition of the wheel odometer
residual rO , in the optimization process, the residual value rO will change with the adjust-
ment of the previous key frame poses pW

Bk
and qW

Bk
, and the poses pW

Bk+1
and qW

Bk+1
of the next
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key frame, and the gyroscope zero offset bgi of the previous frame. To provide the necessary
gradient direction for optimization, the system needs to be linearized in the current state
xk, xk+1 and the ratio between the increment of the residual ∂rO and the increment of the
variable to be optimized is calculated. Thus, the Jacobian matrix JrO

xk ,xk+1 is defined:

∂rO = JrO
xk ,xk+1

[
∂xk

∂xk+1

]
(22)

[
δpOk

Ok+1

]
= JrO

xk ,xk+1



δpW
Bk

δvW
Bk

δθW
Bk

δbaBk
δbgBk
δpW

Bk
δvW

Bk
δθW

Bk
δbaBk
δbgBk


(23)

Here, JrO
xk ,xk+1 ∈ R3×30. As the increment is small, using the quaternion definition will

produce additional degrees of freedom. The increment for the rotation state in the formula
is defined as the shaft angle representation.

As the wheel odometer residual is only related to some variables in the previous key
frame state xk and next key frame state xk+1, the value of the Jacobian matrix JrO

xk ,xk+1 is:

JrO
xk ,xk+1 =

∂δpOk
Ok+1

∂δpW
Bk

0
∂δpOk

Ok+1

∂δθW
Bk

0
∂δpOk

Ok+1

∂δbgi

∂δpOk
Ok+1

∂δpW
Bk+1

0
∂δpOk

Ok+1

∂δθW
Bk+1

0 0

 (24)

∂δp
Ok
Ok+1

∂δpW
Bk

= −RB−1
O R{qW−1

Bk
}

∂δp
Ok
Ok+1

∂δθW
Bk

= −RB−1
O

[
R{qW−1

Bk
}(pW

Bk+1
− pW

Bk
+ R{qW

Bk+1
}pB

O)
]
ˆ

∂δp
Ok
Ok+1

∂δbgi
= −Jp

bg

∂δp
Ok
Ok+1

∂δpW
Bk+1

= RB−1
O R{qW−1

Bk
}

∂δp
Ok
Ok+1

∂δθW
Bk+1

= −RB−1
O R{qW−1

Bk
}R{qW

Bk+1
}(pB

O)ˆ

(25)

2.7. Marginalization and Prior Constraints

The state of the key frame and its related observations are constantly removed from
the optimization equation. If all observations related to the removed key frames are
directly discarded, the constraints of state estimation will be reduced, and the loss of
valid information will lead to a decrease in accuracy. Here, a marginalization algorithm
is used, while removing the key frames, retaining the removed observations to constrain
the optimization variables. According to [6], the use of the Gauss–Newton method can be
understood as adding an increment to the variable to be optimized; the objective function
is the smallest.

If the residual function r(x) is linearized at x, and the Jacobian matrix Jr
x is obtained,

the nonlinear least-squares problem becomes a linear least-squares problem:

min
δx
‖r(x + δx)‖2 =⇒ min

δx
‖r(x) + Jr

xδx‖2 (26)
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Here, ‖r(x) + Jr
xδx‖2 = [r(x) + Jr

xδx]T [r(x) + Jr
xδx]. Taking the derivative of this

formula with respect to δx be 0, we obtain:

Jr
x

T Jr
xδx = −Jr

x
Tr(x) (27)

Let H = Jr
x

T Jr
x, b = −Jr

x
Tr(x); thus, we obtain the incremental equation Hδx = b,

where H is called the Hessian matrix.
Divide the variable x to be optimized into the part xa, which needs to be removed,

and the part xb, δx = [δxa δxb]
T , which needs to be retained, then the incremental equation

becomes: [
Ha Hb

Hb
T Hc

][
δxa
δxb

]
=

[
ba
bb

]
(28)

The Schur method is used to eliminate the element to obtain the solution of δxb:[
I 0

−HT
b H−1

a I

][
Ha Hb

Hb
T Hc

][
δxa
δxb

]
=

[
I 0

−HT
b H−1

a I

][
ba
bb

]
(29)

[
Ha Hb
0 Hc − HT

b H−1
a Hb

][
δxa
δxb

]
=

[
ba

bb − HT
b H−1

a ba

]
(30)

Intercepting the second row of the above matrix, we obtain:

(Hc − HT
b H−1

a Hb)δxb = bb − HT
b H−1

a ba (31)

In the above formula, only xb is unknown, and no information in H and b is lost.
This process removes the rows and columns related to xa from the incremental equation,
marginalizes the state xa that needs to be removed, and retains the historical observation
constraints on the state xb. When the next image frame arrives, the prior information in
the above Formula (31) will be used as a prior constraint term to construct a nonlinear
least-squares problem.

2.8. State Initialization

VINS-Mono uses multiple steps to initialize the state: gyroscope zero offset correction,
initializing gravity, speed, and scale coefficients, and modifying the direction of gravity.
The disadvantage of this method is that it depends on sufficient visual measurement of
parallax and sufficient acceleration excitation. When there is no abnormal situation, such
as skidding, the wheel odometer has better accuracy and reliability over a short distance
and a short duration. Compared with monocular vision, there is no scale uncertainty, and
it is easier to initialize the keyframe pose, velocity, and gravity directions.

2.8.1. Gyro Zero Offset Initialization

As the gyroscope and wheel odometer measurements are on the same rigid body, the
rotations of the two are the same. The relative rotation between the two key frames can be
obtained through IMU pre-integration and wheel odometer pre-integration, respectively:
qBk

Bk+1
and qOk

Ok+1
. The rotation term of the pre-integration of the wheeled odometer above is

also obtained through the gyro integration and has no reference value. Therefore, during
the initialization process, the gyroscope pre-integration will use the heading angle for
rotation integration. Rotation term qBk

Bk+1
is a function of the gyroscope bias qBk

Bk+1
. If the

error between qBk
Bk+1

and qOk
Ok+1

is used as a constraint, the gyroscope bias bg can be estimated.
Assuming that the gyro bias bgk of each key frame during the initialization process is the
same bgk = bg, the construction of the least-squares problem is as follows:

bg
∗ = argmin

bg

k−1

∑
i=1
‖qB

O ⊗ q̂Oi
Oi+1

−1 ⊗ qO
B ⊗ qBk

Bk+1
‖

2
(32)
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Linearizing the rotation transform at q̂Bk
Bk+1

, we obtain:

qBk
Bk+1

= q̂Bk
Bk+1
⊗ q{Jq

bg
bg} ≈ q̂Bk

Bk+1
⊗
[

1
1
2 Jq

bg
bg

]
(33)

Here, Jq
bg

is the partial derivative of the inter-frame rotation qBk
Bk+1

. bg is the gyroscope
zero bias. The objective function of the least-squares problem is written as:

qB
O ⊗ q̂Oi

Oi+1

−1 ⊗ qO
B ⊗ qBk

Bk+1
=

[
1
0

]
q̂Bk

Bk+1
⊗
[

1
1
2 Jq

bg
bg

]
= qB

O ⊗ q̂Oi
Oi+1
⊗ qO

B[
1

1
2 Jq

bg
bg

]
= q̂Bk

Bk+1

−1 ⊗ qB
O ⊗ q̂Oi

Oi+1
⊗ qO

B

(34)

Considering only the imaginary part of the quaternion, we obtain:

Jq
bg

bg = 2{q̂Bk
Bk+1

−1 ⊗ qB
O ⊗ q̂Oi

Oi+1
⊗ qO

B }xyz
(35)

The above Formula (35) conforms to the format of Hx = b, and the Cholesky decom-
position can be used to find the least-squares solution:

Jq
bg

T Jq
bg

bg = 2Jq
bg

T{q̂Bk
Bk+1

−1 ⊗ qB
O ⊗ q̂Oi

Oi+1
⊗ qO

B }xyz
(36)

If the robot rotates rapidly during the gyro work offset initialization process, the
elasticity of the wheel, the rigid connection between the wheel and the IMU, the misalign-
ment of the wheel odometer clock and the IMU clock, and a calibration error of the wheel
odometer rotation scale factor may lead to poor gyro work offset initialization results.

2.8.2. Initialization of Key Frame Speed and Gravity

As the Mecanum wheel will tremble during movement, and the wheeled odometer
algorithm can only obtain the heading angle information, it is difficult to obtain accurate
relative rotation between key frames through wheeled odometer integration. In the pre-
vious step, the zero offset of the gyroscope has been initialized, and the relative rotation
between all key frames can be obtained through IMU pre-integration. As the rotation is
known, the key frame speed and gravity can be calculated by solving linear equations.
Decomposing the position term α

Bk
Bk+1

and speed term β
Bk
Bk+1

in the IMU pre-integration and

transforming it into the form of matrix multiplication ẑBk
Bk+1

= HBk
Bk+1

xBk
Bk+1

, we obtain:

[
α

Bk
Bk+1
− pB

O + RBk
Bk+1

pB
O

β
Bk
Bk+1

]
=

[
−I∆t 0 1

2 RBk
B0

∆t2 RB
O p̂Ok

Ok+1

−I RBk
Bk+1

RBk
B0

∆t 0

]
vBk

Bk

vBk+1
Bk+1

gB0

s

 (37)

Here, ẑBk
Bk+1

is the IMU pre-integration measurement between the key frames Bk and
Bk+1. The variable to be estimated related to the key frames Bk and Bk+1 is defined as
xBk

Bk+1
, and HBk

Bk+1
represents the constraint between the measurement ẑBk

Bk+1
and the xBk

Bk+1
.

The s in the xBk
Bk+1

represents the distance of the wheel odometer with respect to the actual
distance, that is, the X-axis and Y-axis scale factors of the wheel odometer Sx, Sy. If the IMU
excitation is sufficient, it can be used to calibrate the scale factor. S = 1 is defined here for
the reliability of initialization.
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To reduce initialization errors and improve reliability, multiple key frame measure-
ments need to be used as constraints to calculate the key frame speed and gravity direction.
By combining the multiple linear equations above, we can obtain the least-squares problem:

x∗ = argmin
x

∑
k∈Frames

‖ẑBk
Bk+1
− HBk

Bk+1
xBk

Bk+1
‖

2
, x =



vB0
B0

vB1
B1
...

vBk
Bk

gB0

s


(38)

Here, x is the variable to be estimated, and x∗ is the optimal estimated value of x. The
program uses Cholesky decomposition to solve the least-squares problem:

HT Hx = HT ẑ (39)

In the formula, the matrix H is obtained by inserting all HBk
Bk+1

into empty columns
at the corresponding positions of the unrelated variables and summing them, and ẑ is
obtained by combining all ẑBk

Bk+1
.

3. Experiments

In this paper, a mobile robot platform is built, using a dual-processor architecture. The
high-performance PC upper computer is used for data processing of each sensor and the
SLAM algorithm operation, and the embedded controller lower computer is used for the
motion control of the mobile robot chassis. The parameters of the high-performance PC are
Intel Core i7-9750H CPU @ 2.6 GHz, 16 GB RAM. The camera is IntelRealSense ZR300.

3.1. Accuracy Verification Experiment
3.1.1. Room-Scale Pose Measurement Experiment

Experimental conditions: In a laboratory where objects are placed in a complex
environment, as shown in Figure 2, the control robot walked through all the channels.
The channel width is narrow, and the width at the narrowest point is less than 1 m; the
movement speed was maintained at approximately 0.5 m/s; a large number of fixed
marking points are arranged inside the room to obtain the real position of the robot in order
to analyze the positioning error of the robot. Abnormal conditions during the experiment
included:

3. magnetic guide bars with a height of approximately 0.5 cm were fixed on the ground,
and the wheels slipped slightly as they passed;

4. due to turning too close to the weakly textured wall surface, the visual tracking was
completely lost several times.
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The RViz interface at the end of the test data playback is shown in Figure 3, which
includes the raw picture, feature points, matched feature points, and the path of pose
measurement.
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The path diagrams of pose measurement, as shown in Figure 4, start along the positive
X-axis. Therefore, the distance between the start point and end point shows the exper-
imental accuracy. Throughout the experiment, the car traveled for 184.3 s, the average
speed was 0.264 m/s, the maximum speed was 0.591 m/s, the cumulative translation was
51.321 m, the cumulative rotation was 3428.318◦, and the chassis had no abnormalities.
As this experiment was performed in an actual scene, the experimental system did not
have the equipment to measure ground truth; therefore, it could only measure the distance
error of the car passing several fixed road marking points. In each experiment, the robot
was controlled to accurately pass the road marking point and keep the rotation direction
consistent. Therefore, the pose error in Table 1 is average position error and yaw angle
error among several road marking points. When the robot passes through each road mark-
ing point, a timestamp is marked. Calculate the coordinate error (∆X and ∆Y), position
error (∆P(m), absolute value), and yaw angle error (∆A) between the algorithm trajectory
pose and the road marking point when it is at the time stamp. For each algorithm, take
the average of the errors generated by all road marking points as the final experimental
result. The position error rate (∆P(%)) is the ratio of the position error to the cumulative
translation. The table shows our algorithm performed best, with and without closed loops.
The position error was 0.206 m and 0.015 m, respectively. As shown in Figure 4, we can
clearly see the error of the different methods.

Table 1. Room-scale pose measurement results.

Algorithm ∆X (m) ∆Y (m) ∆P (m) ∆P (%) ∆A (◦)

wheel −0.785 −0.389 0.87 1.71 1.907

wheel inertial −0.905 −0.040 0.906 1.77 −0.507

VINS-Mono 0.851 −0.220 0.879 1.71 −0.574

VINS-Mono (loop) 0.009 0.020 0.022 0.04 −0.530

ours 0.148 −0.143 0.206 0.40 −0.213

ours (loop) −0.003 0.015 0.015 0.03 −0.443

As listed in Table 1, we compared the error of the X-axis, Y-axis, position, and heading
angle. According to the data presented in Table 1, the accuracy of posture estimation using
the monocular vision inertial wheel odometer algorithm was better than that of the VINS-
Mono algorithm, and the accumulated position error was only approximately 0.2 m after



Sensors 2021, 21, 5522 14 of 19

51 m. We divided the cumulative position error by the cumulative translation distance to
obtain the cumulative position error rate. The position error rate of the proposed algorithm
was only 0.4%, which was lower than that of VINS-Mono (1%). This experiment verified
that a multi-sensor fusion odometer algorithm could perform high-precision positioning in
a room-scale indoor environment, and the result was better than that of the monocular and
wheel separately. By further combining complete SLAM system, ours almost have no bias.
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3.1.2. Floor Scale Experiment

Experimental conditions included:
1© On the first floor of the building where the laboratory was located, the floor area was

approximately 250 × 100 m;
2© The robot ran in the central hall with 1 m/s (the area of the hall was approximately

15 × 15 m);
3© A large number of fixed marking points are arranged inside the corridor to obtain the

real position of the robot in order to analyze the positioning error of the robot.

Anomalies during the experiment included:
1© There was a considerable amount of dust on the ground, which decreased the friction

between the wheels, leading to a slight slip during rapid turns and a significant slip
during left-to-right translation;

2© Due to the fast movement of the robot, the picture of the rolling shutter camera
continued to exhibit disturbances;

3© There were cable manhole covers in numerous places in the corridor, the ground
surface was uneven, and there were 2–3 cm step-like undulations. The robot vibrated
significantly while passing over these obstacles;

4© The corridor contained semi-open areas and closed areas, the environment brightness
changed significantly, and some areas were almost completely dark;

5© The walls around the robot in some areas were covered with tiles and had reflections;
6© The corridor and hall scenes had a high degree of similarity, lacking special landmarks.

Loop detection was successfully performed only when the robot passed the hall
halfway and finally returned to the hall;
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7© During the experiment, pedestrians appeared several times.

The RViz interface at the end of test data playback is shown in Figure 5, which includes
the raw picture, feature points, matched feature points, and the path.
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Throughout the experiment, the car traveled for 889.2 s, the average speed was
0.87 m/s, the maximum speed was 1.36 m/s, the cumulative translation was 809.27 m, the
cumulative rotation was 15,502.1◦, and the chassis abnormal time was 26.983 s. As shown
in Figure 6 and Table 2, the uneven ground made the wheel slip, so the error was very high.
As shown in the floor-scale scenario, both the VINS-Mono algorithm with loop detection
disabled and ours performed better; however, there was still a cumulative positioning
error that could not be neglected. Compared with the complete SLAM system, VINS-Mono
and ours both significantly improved the accuracy. Additionally, ours was better than that
of VINS-Mono.

Table 2. Floor-scale pose measurements results.

Algorithm ∆X (m) ∆Y (m) ∆P (m) ∆P (%) ∆A (◦)

wheel −83.768 0.295 83.768 10.31 32.868

wheel inertial −52.108 −0.826 52.115 6.42 6.404

VINS-Mono 10.692 −31.422 33.191 4.09 4.080

VINS-Mono (loop) 0.138 −5.281 5.281 0.65 3.086

ours −2.025 0.947 2.235 0.28 3.661

ours (loop) −0.295 0.165 0.338 0.04 3.172

3.2. Robustness Verification Experiment

This time, we created experiments with sensor measurement errors or even loss.
Experimental conditions included intentionally blocking the camera, resulting in the visual
signal being lost for approximately 15 s. This was undertaken in the laboratory, during the
movement of the robot, during which the robot kept moving and turning.
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Figure 6. (a) Path of floor-scale without loop and (b) path of floor-scale with loop.

Throughout the experiment, the car traveled for 104.4 s, the average speed was
0.142 m/s, the maximum speed was 0.803 m/s, the cumulative translation was 17.809 m,
the cumulative rotation was 1110.32◦, and the chassis had no abnormalities. In the process
of visual measurement loss, upon which the VINS-Mono is based, the state estimator was
downgraded to inertial navigation dead reckoning. The error increased rapidly, thereby
reducing the final positioning accuracy. As shown in Figure 7 and Table 3 during the loss
of visual features, the path of the SLAM algorithm was the same as that measured by the
wheel odometer. This shows that, although the positioning accuracy was affected by the
loss of visual measurement, the pre-integration constraint can still provide absolute speed
measurement; thus, the final positioning error was less than that of VINS-Mono.
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Table 3. Pose measurement results when visual tracking was lost.

Algorithm ∆X (m) ∆Y (m) ∆P (m) ∆P (%) ∆A (◦)

wheel −0.042 0.106 0.114 0.64 −1.078

wheel inertial −0.137 −0.014 0.137 0.77 −2.811

VINS-Mono −0.442 0.890 0.994 5.58 −2.057

VINS-Mono (loop) −0.030 0.015 0.025 0.19 −1.599

ours 0.295 0.011 0.295 1.66 −2.883

ours (loop) 0.020 −0.014 0.023 0.14 −1.718

4. Discussion

Aiming to solve the problems of low accuracy and poor robustness of the visual
inertial SLAM algorithm, we designed and implemented a tightly coupled monocular
visual inertial pose estimation algorithm that integrates wheel speed information. The state
estimator, based on tightly coupled multi-sensor information, is used as the core of the
algorithm, and the wheel odometer pre-integration that integrates wheel speed and IMU
angular velocity avoids repeated integration in the iterative optimization process. The pose
of the robot in the sliding window and the visual feature points are the state to be estimated.
Then, the state is initialized based on the wheel odometer and IMU, so that the initial value
of the state can be calculated quickly and reliably in both stationary and moving states.
Finally, the residual constraint is added to the state estimator, and the optimal robot pose is
solved through nonlinear optimization. Compared with the existing SLAM algorithm for
many experiments, the SLAM algorithm in this paper can achieve higher pose accuracy
and robustness in environments with more extreme situations. Experimental comparison
results show that the SLAM algorithm proposed in this paper is feasible and effective.

In future research, our algorithm can be improved in the following ways. First, a
motion capture system or D-GPS can be employed to obtain ground truth for quantitative
pose comparison analysis. Second multiple monocular cameras with non-common view
relationships can be used, which can improve robustness. When some cameras are blocked,
the other cameras can still provide reliable visual measurement. Further, based on the
robust robot pose measurement, using binocular or depth cameras to build a dense map of
the environment can meet the requirements of robot navigation and obstacle avoidance.
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Abbreviations

Symbols Meaning
X variables to be estimated
i, j, k key frame
K set of key frames
l feature point
L set of feature points
xk state under key frame k
λl inverse depth of feature point l
pW

B position(displacement coordinate of B relative to W)
qW

B attitude(quaternion form)
vW

B speed
ba accelerometer bias
bg gyroscope bias
m̂odomk wheel odometer under key frame k
m̂ means term m is the observation
, defined as
{pxk pyk} coordinate of the wheel odometer under key frame k
θk angle of rotation of the wheel odometer under key frame k
Z observation
ZCi visual feature point observation under key frame i
ẑil feature points observed under key frame i
Bij IMU pre-integration between key frame i and key frame j
t time
ât pre-integration of accelerated speed at time t
ω̂t pre-integration of angular speed at time t
Oij pre-fusion wheel odometer between key frame i and key frame j
X ∗ maximum posterior estimation of variables
p(Z|X ) conditional probability of observing the occurrence of Z under the existed

state X
p(X ) prior probability (edge probability)
‖r(·)‖2

Σ Mahalanobis distance
Σ covariance matrix
{rp, Hp} prior information from marginalization
rC visual residual
rO wheel odometer residual
rB IMU residual
ρ(·) Huber loss function
(pCi , qCi ) spatial pose under key frame i
rCjl error of the feature point l in the position of key frame j
RF1
F2

rotation matrix from F2 coordinate system to F1 coordinate system
P̂ cj

l position where the feature point l is projected onto the unit ball in the key
frame j

π−1
c back projection function

Cj camera coordinate system of the key frame j

P̂Cj

l position projected on the unit ball in the key frame j
[b1b2] two orthogonal base vectors on the tangent plane of the unit ball and the

projection lines with the feature points in the orthogonal direction
α̂Bk

Bk+1, β̂Bk
Bk+1, q̂Bk

Bk+1 pre-integrated IMU measurement terms, observationα is
position term; β is velocity term; q is rotation term

δ represents the error term
δθBk

Bk+1 three-dimensional small perturbation

pOk
Oi

, p̂Ok
Oi

displacement between key frame k and key frame i(the term with “ˆ” is the
observation, without “ˆ” is the estimate)

ηos position measurement noise, Gaussian
DOk

Ok+1
noise variance coefficient between key frame k and key frame k+1
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ηg angular velocity white noise
ηbg angular velocity zero error
(·)ˆ 3×3 anti-symmetric matrix of Lie algebra
Jδxi+1
δxi

Jacobian matrix of the error value between the two frames before and after

J x̂i+1
x̂i

Jacobian matrix of the nominal
RB

O known constant
ẑBk

Bk+1
IMU pre-integration measurement between the key frames Bk and Bk+1

xBk
Bk+1

variable to be estimated related to the key frames Bk and Bk+1

HBk
Bk+1

constraint between the measurement ẑBk
Bk+1

and the xBk
Bk+1

Sx, Sy X-axis and Y-axis scale factors of the wheel odometer
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