
sensors

Article

The Device–Object Pairing Problem: Matching IoT Devices
with Video Objects in a Multi-Camera Environment

Kit-Lun Tong 1 , Kun-Ru Wu 2,* and Yu-Chee Tseng 3,4,5

����������
�������

Citation: Tong, K.-L.; Wu, K.-R.;

Tseng, Y.-C. The Device–Object

Pairing Problem: Matching IoT

Devices with Video Objects in a

Multi-Camera Environment. Sensors

2021, 21, 5518. https://doi.org/

10.3390/s21165518

Academic Editors: Kun-chan Lan,

Teen-Hang Meen, Chi-Yuan Chen and

Shih-Lin Wu

Received: 19 July 2021

Accepted: 13 August 2021

Published: 17 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Computing Sciences, University of East Anglia, Norwich NR4 7TJ, UK; k.tong@uea.ac.uk
2 Department of Computer Science, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
3 College of AI, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan; yctseng@cs.nctu.edu.tw
4 Academia Sinica, Taipei 11529, Taiwan
5 College of Health Sciences, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
* Correspondence: wufish@nycu.edu.tw

Abstract: IoT technologies enable millions of devices to transmit their sensor data to the external
world. The device–object pairing problem arises when a group of Internet of Things is concurrently
tracked by cameras and sensors. While cameras view these things as visual “objects”, these things
which are equipped with “sensing devices” also continuously report their status. The challenge is
that when visualizing these things on videos, their status needs to be placed properly on the screen.
This requires correctly pairing visual objects with their sensing devices. There are many real-life
examples. Recognizing a vehicle in videos does not imply that we can read its pedometer and fuel
meter inside. Recognizing a pet on screen does not mean that we can correctly read its necklace
data. In more critical ICU environments, visualizing all patients and showing their physiological
signals on screen would greatly relieve nurses’ burdens. The barrier behind this is that the camera
may see an object but not be able to see its carried device, not to mention its sensor readings. This
paper addresses the device–object pairing problem and presents a multi-camera, multi-IoT device
system that enables visualizing a group of people together with their wearable devices’ data and
demonstrating the ability to recover the missing bounding box.

Keywords: device–object pairing; IoT; computer vision; data fusion; surveillance

1. Introduction

The advance of IoT technologies enables millions of devices to transmit their sensor
data to the external world. On the other hand, empowered by deep learning, today’s
computer vision has significantly improved its object recognition capability. When an IoT
device is placed on an object, we intend to not only recognize the object in videos but also
recognize the IoT device bundled with the object.

Surveillance systems are widely used in homes, buildings, and factories. However,
when abnormal events occur, it usually takes a lot of human effort to check the surveillance
videos. With the advance of AI technologies, automatically analyzing video content
becomes feasible. RetinaNet [1] and You Only Look Once (YOLO) [2] can identify a variety
of objects with high accuracy and efficiency. OpenPose [3] and Regional Multi-person Pose
Estimation (RMPE) [4] can perform human pose recognition without using depth cameras
or ToF (time-of-flight) sensors.

In most surveillance and security applications, the central issue is to capture abnormal
people, objects, and events in the environment. This work studies the device–object pairing
problem in surveillance videos. Previous and common practices include, but are not limited
to, barcode, Radio Frequency ID (RFID), and biometric sensing (e.g., fingerprint and iris
recognition). However, these methods require keeping at a very short distance to devices.
On the other hand, facial recognition relies on obtaining a face database and does not work
under larger shooting angles and occlusions. Furthermore, there are privacy concerns

Sensors 2021, 21, 5518. https://doi.org/10.3390/s21165518 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-8421-8394
https://orcid.org/0000-0002-3942-2345
https://orcid.org/0000-0001-6551-0720
https://doi.org/10.3390/s21165518
https://doi.org/10.3390/s21165518
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21165518
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21165518?type=check_update&version=1

Sensors 2021, 21, 5518 2 of 16

in public domains. Another way to identify persons is to exploit IoT devices, such as
smartphones and smartwatches, which have become virtually the users’ IDs. Personal
devices can also store owners’ profiles and be used in sensitive domains such as factories,
hospitals, and restricted areas [5,6]. Further, with the global deployment of 5G, IoT devices
nowadays can communicate almost anywhere. When tracking a group of people by camera,
it would be nice to also know their purchase histories and preferable social network tools
on their smartphone. This motivates us to study combining computer vision and IoT
devices under multi-camera environments.

The device–object pairing system considers an environment consisting of multiple
cameras, with users wearing their IoT devices walking around. Figure 1 shows our system
scenario. There is an IoT network for collecting data from cameras and wearable IoT
devices in the environment. We use a YOLO module to obtain and track the human objects
appearing in the cameras. The homography matrices of these cameras are estimated to
transform each camera view to common surface space. Because there are multiple cameras
that concurrently capture the same set of people, the possibilities of occlusions and tracking
failures are reduced. Our system then tries to extract objects’ motion features from both
visual and wearable sensors and generates (devices, object) pairs that can be displayed on
video objects. Therefore, with IoT devices serving as the personal identification of users,
our system can visualize user identities and sensor data for smart surveillance.

 Object detection and tracking
 Projection estimation
 Feature extraction
 Pairing

Visualization

Video

IoT data

Alice
(staff)

Bob
(guest)

Fusion
server

C1 C2

A

B

R1 R2R1 R2

C

Figure 1. The device–object pairing system architecture.

We have built a prototype system that runs at 12 Frames Per Second (FPS). It con-
tains a server and two cameras and wearable devices connected by Wi-Fi networks. We
designed three mobility patterns (namely random, following, and mimicking) to evaluate
its performance.

This paper is organized as follows. Related works are reviewed in Section 2. The
proposed system architecture is presented in Section 3. Prototyping and evaluation results
are in Section 4. Conclusions are drawn in Section 5.

2. Related Work

Surveillance has been a critical issue in smart city for decades. The study in [7] is an
early work that shows how a camera with an embedded system and network connection
works for smart analysis. Reference [8] proposes sensor-based surveillance with interactive
multiple models to track targets. To solve the person re-identification problem, Reference [9]
designs a temporal residual learning module to learn the feature of pedestrian sequences.
To monitor illegal or suspicious activities, extracting skeletons by deep learning from video
frames is studied in [10]. Our research work is more extensive because we consider both
video and sensor data.

Human detection technologies have been rapidly developed recently. Reference [11]
proposes detecting objects by a Haar Feature-based Cascade Classifier. With the advance
of artificial intelligence, References [1,2] achieve real-time detection by deep learning.
Skeletons can be extracted from a mono camera frame in [3,4]. For Multiple Object Tracking
(MOT), Reference [12] proposes a k-shortest paths algorithm, Reference [13] adopts a

Sensors 2021, 21, 5518 3 of 16

Kalman filter, and [14] uses a deep learning approach. Multi-camera, multi-person tracking
by homography matrices is studied in [15]. In the city-scale environment, reference [16]
addresses vehicles re-identification and tracking under a multi-camera scenario. Another
multi-camera pedestrian tracking is proposed in [17], in which the IoT devices are edge
nodes to analyze video by a deep learning module. A sensor-based IoT architecture for
smart surveillance is proposed in [18]. A wireless video surveillance system is presented
in [19]. On the contrary, our work explores both wearable devices (with sensors) and cameras.

Sensor fusion-based tracking has been studied in a simpler environment. Refer-
ence [20] uses a depth camera to extract skeletons and pair them with the Inertial Mea-
surement Unit (IMU) devices carried by users. Fusion-based human and object tracking is
shown in [21]. In [22], they use a camera to capture human motion by OpenPose [3] and
match the motion with an IMU device to address ID association. These works all exploit
user movements to identify persons. Nevertheless, their detection ranges are limited since
skeletons can only be detected within a short distance. Reference [23] addresses the fusion
of hand gestures and wearable sensors to identify people in crowded mingle scenarios,
but it still requires a short distance to track the movements. Reference [24] is an example
using a Received Signal Strength Indicator (RSSI) of Wi-Fi as signal trajectories to pair a
person on camera. However, the system is unstable since the RSSI signal may suffer more
interference and the variance is large. Reference [25] demonstrates how to tag personal ID
on people from a drone camera through trajectory pairing. However, it is limited to one
drone. Fusing computer vision and the 5G network for driving safety is proposed in [26].
A reconfigurable platform for data fusion is presented in [27].

In this work, we develop machine learning-based feature extraction and a more
efficient fusion model with time synchronization under multi-camera environments.

3. Fusion-Based Device–Object Pairing

Figure 2 shows the proposed data fusion process. The hardware components include
multiple surveillance cameras, some smart wearable devices with built-in IMU (accelerom-
eter and magnetometer), a fusion server, and an IoT network. To pair devices with video
objects, the data collected from cameras and wearable devices will be fused based on
features extracted. The main software components include: (A) IoT network, (B) projection
estimation, (C) local object detection and tracking, (D) global object tracking, (E) feature
extraction, and (F) device and global object pairing. Section 3.1 introduces our IoT net-
work. How to map camera views to a common ground space is addressed in Section 3.2.
The object tracking task for each camera is discussed in Section 3.3. How to merge all
cameras’ views to a global view is addressed in Section 3.4. Then, feature extraction and
device–object pairing are covered in Sections 3.5 and 3.6, respectively.

3.1. IoT Network

In our system, multiple cameras are deployed to fully cover the surveillance site. Users
appearing in front of cameras are expected to put on their wearable devices (otherwise,
such users will be marked as “unknown” by the pairing module). An IoT network is
designed to manage these devices. Data are exchanged by MQTT (Message Queuing
Telemetry Transport [28]), which is a lightweight, publish–subscribe protocol allowing
message transportation among massive devices without obvious latency. Furthermore,
NTP (Network Time Protocol) is adopted to synchronize time among all components.

For convenience, we use smartphones to simulate wearable devices. Each smartphone
has IMUs, including a three-axis accelerometer and magnetometer. These sensors periodi-
cally report their data to the fusion server at a rate of 50 Hz in JSON format [29]. Readings
are marked by timestamps and pre-processed by a low pass filter. Furthermore, each device
is uniquely distinguishable by its ID.

Sensors 2021, 21, 5518 4 of 16

Ci+1

[C. Local Object Detection and Tracking]
 Detected local ID set: Ot

Ci

 Local ID: IDx
Ci

[E2. Sensor Feature Extraction]
 Sensor data: St

Dj

 Extracted Sensor Feature Set: ft
Dj

 Personal profile Dj+1

Fusion server

Camera frames

IoT data

C1 C2

A

B

R1 R2R1 R2

C

[A. IoT Network]

[B. Projection Estimation]
 Homography Matrix: Hi

 Intersection: Ri Rj

[F. Device and Global Object Pairing]
 Munkres Pairing Results:
o Short-term: MKt

ST
o Long-term: MKt

LT

[D. Global Object Tracking]
 Global Object Table: GO
 Global Tracking Table: GTt

 FN Recovery

IoT devices (Input: IoT data)Input: Environment Setup

Visualization (Pairing Result)

Alice
(staff)

Bob
(guest)

[E1. Video Feature Extraction]
 Extracted Video Feature Set: ft

GIDa

[E2. Sensor Feature Extraction]
 Sensor data: St

Dj

 Extracted Sensor Feature Set: ft
Dj

 Personal profile Dj

Ci

[C. Local Object Detection and Tracking]
 Detected local ID set: Ot

Ci

 Local ID: IDx
Ci

Camera (Input: Camera frames)

Output: Device-object pairing results

Figure 2. Data fusion procedure.

There are multiple cameras. For each camera, an M-JPEG (Motion Joint Photographic
Experts Group) server is set up for streaming frames by HTTP (Hypertext Transfer Protocol)
in the JPEG format. To validate our framework, we do not use the keyframe method [30],
where complete frames are interleaved by compressed frames, causing broken textures
when a frame is lost. Therefore, all frames are complete frames, and no retransmission
is performed. Every frame from camera Ci is assigned a timestamp t and is denoted as
FCi

t . Frames are remapped to solve the radial distortion problem caused by lens, which
is achieved by using the chessboard photos test [31] to calculate the internal and external
parameters and the lens distortion coefficients.

3.2. Projection Estimation

To relate the views among multiple cameras, we shall map the pixel space of each
camera to a common ground space. Our approach is to estimate a homography matrix
Hi for each camera Ci that transforms each camera pixel to a ground coordination. Let
the errors Ei caused by the transformation follow a normal distribution model and the
coverage region of Ci be Ri. We show how to determine (i) Hi, (ii) Ei and (iii) Ri ∩ Rj for
each pair of Ci and Cj.

To find Hi, we design a lightweight human-assisted process. We place only a few
markers on the ground and send a designated person to walk in the field arbitrarily. The
person passes these markers from time to time. Whenever passing a marker, they will
stop for a while and record the measured value before moving forward. This stopping
behavior serves as an indication to cameras that they are right on a marker. In addition,
another wearable device is attached to trace them. In some sense, the cameras localize
the person when they stop at a marker, and the wearable sensor tracks their trajectory
between two markers while walking. By calibrating their location to a marker, the drifting
problem of IMU tracing is significantly relieved. This procedure can be repeated arbitrarily
for all camera coverage regions, and during the procedure, the person’s ground trajectory
is mapped with camera views to learn the mapping between pixels and ground trajectories.
Lots of such mappings can be found only within a few minutes.

In fact, the above steps serve as a labeling process to map Ci’s pixel space to the
ground space. Through object detection, the center of a human object is regarded as their
location in Ci’s pixel space. Their trajectory in Ci is then partitioned into segments (called
v_segments) according to those stopping points (markers). On the IMU side, their trajectory
is also partitioned into segments (called i_segments) at places where Ci reports stopping
events. An i_segment is modeled by the recursion: Lk = Lk−1 + ~dt ∗ stride_len, where L0 is

Sensors 2021, 21, 5518 5 of 16

the location of the starting marker, Lk is their location at the k-th stride, ~dk is the normalized
vector of the k-th stride (obtained from magnetometer), and stride_len is a predefined value.
The recursion stops when encountering the next marker. We then match the endpoints of
all i_segments to ground markers by the maximal likelihood of inter-marker distances and
absolute i_segment distances. This derives the ground markers of all i_segments’ endpoints.
With known endpoints of each i_segment, we calibrate it by rescaling. Therefore, we obtain
many (v_segment, i_segment) pairs for each camera Ci with their pixel locations labeled by
the i_segment.

Given a large number of (v_segment, i_segment) pairs for Ci, we can derive its homog-
raphy matrix Hi for the projection. By [32], the objective is to meetu′

v′

1

 =

h0 h1 h2
h3 h4 h5
h6 h7 h8

u
v
1

 = Hi

u
v
1

,

where (u, v) is a pixel and (u′, v′) a ground point. It requires at least four pairs to solve Hi.
As an i_segment is more likely to contain errors due to sensor data drifting, we suggest
retrieving more knowns to minimize the drifting problem. We then apply the least-square
method to find Hi.

Assuming the projection error Ei of Hi following a normal distribution, Ei v N(µi, σ2
i),

we collect all (u′, v′) calculated by Hi and its corresponding label (u′′, v′′) recorded by IMU.
The distances between all (u′, v′) and (u′′, v′′) are mapped to a normal distribution to find
µi and σi of Ei.

By mapping all pixels of Ci to the ground, we can obtain the coverage Ri of Ci. The
next task is to find the intersection Ri ∩ Rj for each pair of Ci and Cj. The shape of Ri is
close to a polygon. Therefore, the overlapping area Ri ∩ Rj is also close to a polygon. The
related backgrounds can be found in [33,34].

Figure 3 shows an example. Figure 3a,b are views taken by C1 and C2 at the same
time. There are six tiny markers on the ground (we do not require cameras to recognize
these markers). Through human detection, trajectories of people are obtained. Meanwhile,
wearable sensors also derive their trajectories. Figure 3c shows the rescaled IMU trajectories.
Finally, by H1 and H2, the overlapping region R1 ∩ R2 is obtained in Figure 3d.

(a) (b) (c) (d)

Figure 3. (a) Trace found by C1. (b) Trace found by C2. (c) IMU trajectory partitioned by markers.
(d) Overlapping region R1 ∩ R2.

3.3. Local Object Detection and Tracking

Each camera Ci needs to detect and track human objects locally. Since this task has
been extensively researched, we will only discuss how we use existing tools to solve this
problem. First, for each FCi

t , it is sent to YOLOv3 [2], a real-time deep learning model for
object detection, to retrieve a set of bounding boxes representing detected human objects.
We have also tried skeleton models by OpenPose [3], but since the detection time is longer,
we adopt YOLO in the rest of the discussion.

Second, we need to determine if a human object detected in FCi
t has also appeared in

FCi
t−1. This is achieved by Simple Online and Realtime Tracking (SORT) [13], a tracking algo-

rithm based on the Kalman filter. The outputs are a detected ID set OCi
t = {IDCi

x , IDCi
y , ...}

corresponding to all bounding boxes and a miss ID set MCi
t = {IDCi

a , IDCi
b , ...}. We call

Sensors 2021, 21, 5518 6 of 16

IDCi
x ∈ OCi

t the local ID assigned to object x at time t by camera Ci. If IDCi
x appears in both

OCi
t and OCi

t−1, object x is regarded as the same person. On the other hand, false negative

(x ∈ OCi
t−i, but x is not detected as an object at t) and ID switching (x receives different

IDs at t− 1 and t) may happen. If an object in OCi
t−i disappears in OCi

t , the corresponding

predicted bounding boxes from Kalman filter are included in MCi
t . In fact, ID switching

is not uncommon when YOLO continuously fails to detect an object or network packets
are lost continuously, making SORT regard it as a new person after it reappears. It also
happens when a detected bounding box drifts far away from its previous location in a new
frame. We will discuss how to reduce such confusion later.

3.4. Global Object Tracking

The next objective is to merge all OCi
t s detected by all cameras under a global domain.

Assume that at time t− 1 a Global Tracking table GTt−1 as shown in Figure 4 is obtained.
The contents of GTt−1 include: (i) the local ID (LID) assigned to object x, (ii) the source
camera Ci that captures x, (iii) the global ID (GID) assigned to x, and (iv) the trajectory
TGID

t−1 of x. Note that a GID may be associated to multiple LIDs if the object is captured by
more than one camera.

 Events:
 Camera 1 has one new ID6

C1 and
two missed ID3

C1 and ID5
C1

 Camera 2 has one new ID6
C2

Tracking model output at time t:
o Ot

C1={ID1
C1, ID2

C1, ID4
C1, ID6

C1}
o Ot

C2={ID2
C2, ID3

C2, ID4
C2, ID5

C2, ID6
C2}

o Mt
C1={ID3

C1,ID5
C1} // missed ID

o Mt
C2={}

Transform(H2, Ft
C2)Transform(H1, Ft

C1)

ID1
C1

ID3
C1

ID3
C2

ID6
C1

ID2
C1

ID2
C2

ID5
C2

ID4
C1

ID4
C2

ID6
C2

Ti
m

e
sl

o
t:

 t

Camera 1 Camera 2

Global ID: Camera Local ID:

Step 1: For each object IDx
Ci Ot

Ci or IDx
Ci Mt

Ci,
and each Ci, find its location on the ground space.

For each local ID, get Hi(IDx
Ci)

Step 2: Build a Tentative Global Tracking
(TGT) table based on GTt-1 and Ot

Ci.

Det.
Conft

0.95

Miss

0.92

0.94

0.94

Miss

0.97

0.90

0.96

GTt-1

Tt-1
GID

...

...

...

...

...

...

LID

ID3
C1

ID3
C2

ID4
C1

ID4
C2

ID5
C1

ID1
C1

ID5
C2

ID2
C1

Ci

C1

C2

C1

C2

C1

C1

C2

C1

ID2
C2 C2

GID

GID1

GID3

GID4

GID10

GID5

GID2

TGT

GID

GID1

GID3

GID4

(GID10)

GID5

GID2

LID

ID2
C2

ID3
C2

ID4
C1

ID4
C2

ID5
C2

ID1
C1

Ci

C2

C2

C1

C2

C2

C1

Merging GIDs that are very closed.

the highest confidenceCamera 1 Camera 2

Step 3: Assign existing or new GIDs to LIDs.

Lo
ca

l I
D

(C
am

er
a

1
)

Lo
ca

l I
D

(C
am

er
a

2
)

GID1 GID2 GID3 GID4 GID5

ID1
C1

ID2
C1

ID4
C1

ID6
C1

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

0.2

GID1 GID2 GID3 GID4 GID5

ID2
C2

ID3
C2

ID4
C2

ID5
C2

ID6
C2

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

..

...

(ID1
C1

,GID1), (ID2
C1

,GID2),
(ID4

C1
,GID4), (ID6

C1
,GID5)

(ID2
C2

,GID2), (ID3
C2

,GID3),
(ID4

C2
,GID4), (ID5

C2
,GID5)

Results:

0

0.3

0

6.5

0

0

0.5

0

Unacceptable Distance.

Results:

Step 4: Recover false negative detections of cameras and construct GTt

 GID3 in R1 R2, but no corresponding LID exists in C1 detection
 Check the detection confidence of IDx

Ci, find the missed ID from Mt
C1.

 Here, the missed ID is ID3
C1

 Recover the bounding box with H1
-1(GID3) and ID3

C1's predict box size

Pairing results:
Global Tracking (GTt) table

CiLID GID Tt
GID

GTt

C1
GID4 ...

ID4
C1

GID2 ...

GID3 ...

GID1 ...

GID5 ...

C2ID6
C2 GID6 ...

C2ID2
C2

C1ID2
C1

C2ID5
C2

C1ID6
C1

C1ID1
C1

C2ID3
C2

C2ID4
C2

C1ID3
C1

Figure 4. An example of creating GTt from GTt−1.

We need to construct GTt at t from GTt−1. There are four tasks:

1. For each object IDCi
x ∈ OCi

t or IDCi
x ∈ MCi

t , and each Ci, find x’s location on the
ground space.

2. Build a Tentative Global Tracking table (TGT).
3. Assign existing or new GIDs to LIDs.
4. Recover false negative detections of cameras and construct GTt.

The first task can be achieved by Hi of Ci. Here, we regard the central pixel of an
object’s bounding box as its location. The corresponding result is denoted as Hi(IDCi

x).
The second task is to build TGT based on GTt−1 and the new tracking results OCi

t .
TGT has the same three entries as GTt−1 (i.e., LID, Ci, and GID). We copy GTt−1 into TGT
with three modifications: (i) For each LID in MCi

t , we exclude it in TGT since the object is
not detected at t. (ii) Depending on the detection confidence at t, for each GID, only the
entry with the highest confidence is kept. (iii) If two GIDs at t− 1 become very close to
each other at t, they will be merged into one GID (we keep the earlier comer here). For

Sensors 2021, 21, 5518 7 of 16

example, in Figure 4, IDC1
3 and IDC1

5 disappear at t, so they are removed. Furthermore,
GID4(IDC1

4) and GID10(IDC2
4) become too close, the latecomer GID10 is merged with the

earlier comer GID4.
The third task is to assign GIDs to LIDs. First, distance matrices between all GIDs

and all LIDs of all cameras are built. Given a GIDi and a local ID
Cj
x detected by Cj, we

define d(GIDi, ID
Cj
x) as the Euclidean distance between the location of GIDi and Hj(ID

Cj
x)

(when GIDi and ID
Cj
x fall in the same row in TGT, the distance is 0). Then we run the

Hungarian Matching algorithm [35,36] to pair GIDs and LIDs in the distance matrix. Since
the matched pairs might encounter a false negative match, we execute a threshold test by
checking each matched object IDCi

x (with the highest detection confidence) in TGT and

the corresponding paired object ID
Cj
y . Let d̃ = d(Hi(IDCi

x), Hj(ID
Cj
y)). The confidence

that IDCi
x and ID

Cj
y belong to the same global object is written as Ei(d̃) · Ej(d̃). Intuitively,

Ei(resp., Ej) is the confidence that an object at an error distance of d̃ is acceptable. An
example is shown in Figure 4. Note that a pair with distance 0 is always matched (so they
can be optimized from the Hungarian algorithm). For a LID that is not matched with a
GID in the above process, or the remainder, a new GID is assigned to it (GID1 and IDC2

6 is
such cases). The final results are a number of (LID, GID) pairs.

In the fourth task, we first recover false negative detections for each Ci. As we have
the intersection region Ri ∩ Rj for each pair of Ci and Cj, if there is a discrepancy such

that an IDCi
x appears in Ri ∩ Rj but no corresponding ID

Cj
x exists in Cj’s detection, a miss

detection may happen for Cj. We select the best matched missing LID in M
Cj
t , and test

its predicted location from SORT against Ci’s detection Hi(IDCi
x). If the test is passed, we

can recover the missing bounding box by applying H−1
j on Hi(IDCi

x) and the predicted

box size from M
Cj
t , and add it to Cj’s local detection list O

Cj
t . The new bounding box of Cj

should belong to the same GID of Ci’s. Finally, we can compile all (LID, GID) pairs to
construct the GTt at t.

3.5. Feature Extraction

In order to pair video objects with devices, we have to extract some common features

to compare their similarity. Let f GIDi
t and f

Dj
t be the features extracted from the video

trajectory of GIDi and device Dj, respectively, within a sliding window [t−Mt, t]. We will
derive two features, activity type and moving direction. For the activity type of GIDi, there
are four types, 0 for standing, 1 for walking, 2 for turning-left, and 3 for turning-right. To
train a Support Vector Machine (SVM), we feed mean, standard deviation, upper and lower
quarter, and median absolute deviation of a number of key sequences as inputs, where a
time slot is a basic unit of a sliding window:

1. M distance: distance between each sampling point in a time slot.
2. M angle: angle between each sampling point in a time slot.
3. M axis: axis between each sampling point in a time slot.

The classification result is denoted as f GIDi
t [act]. For the activity type of Dj, it is

derived by the following key sequences:

1. Three-axis accelerometer reading.
2. Three-axis magnetometer reading.

In addition, by SVM, the classification result is denoted by f
Dj
t [act].

The moving direction is a 2D normalized vector in the world space. The moving
direction of GIDi is denoted by f GIDi

t [dir] and is calculated by the starting and ending

sampling points in each time slot. The moving direction of Dj is denoted by f
Dj
t , which

is converted directly from the magnetometer. The value is stabilized by linear regression.

Sensors 2021, 21, 5518 8 of 16

Figure 5 illustrates the above procedure for video data and sensor data. GIDi’s trajectory is
taken from TGIDi

t of GTt, while the input from device Dj is directly taken from its sensors.

ft
GIDi[dir]

ft
GIDi[act]

accelerometer

magnetometer

ft
Dj[dir]

ft
Dj[act]

DjTt
GIDi

 distance

 angle

 axis

Video
Motion
SVM

Sensor
Motion
SVM

Figure 5. Feature extraction procedure for GIDi and Dj.

3.6. Device and Global Object Pairing

By comparing the similarity between f
Dj
t and f GIDi

t , we try to determine if GIDi and
Dj are a pair. We will calculate two matrices: (i) short-term distance matrix δt and (ii)
long-term weight matrix ωt. These matrices include all GIDs and devices. By considering
short- and long-term relations, we try to obtain more stable pairing results.

The matrix δt is formed by the distances between all (f
Dj
t , f GIDi

t) pairs. Recall vectors

f GIDi
t [act], f GIDi

t [dir], f
Dj
t [act] and f

Dj
t [dir]. We define short-term distance as

δ(GIDi, Dj) =

(
dnorm(f GIDi

t [act], f
Dj
t [act])2

+ dnorm(f GIDi
t [dir], f

Dj
t [dir])2

) 1
2

, (1)

where dnorm is the distance between two vectors by normalizing to the range [0,1]. We
then apply Hungarian matching on matrix δt to find the set of pairs denoted by H(δt).
Note that this only reveals the result within the sliding window [t− M t, t]. The long-
term weight matrix ωt is formed by considering a sequence of short-term results, namely
H(δt−M), H(δt−M+1), ..., H(δt). For each (GIDi, Dj) pair, we define long-term distance as

ωt(GIDi, Dj) = 1 + (1− n)− 2(1− n)

e−5cnt(GIDi ,Dj)/m
, (2)

where cnt(GIDi, Dj) is the number of times that (GIDi, Dj) appears in H(δt−M), H(δt−M+1),
..., H(δt). Equation (2) is to simulate an inverse sigmoid function, where n is the conver-
gence limit, m is the value of cnt(GIDi, Dj) to meet n, and 5 is a fine-tuned value. Figure 6
shows ωt(GIDi, Dj) under different n and m as opposed to a typical sigmoid function.

W
ei

gh
t

W

0

0.5

1

0 1 2 3 4 5 6 7 8
Total # of Historical Pairing xD,IDG

sigmoid (n=0, m=5) (n=0, m=7) (n=0.5, m=5)

Figure 6. Equation (2) under different parameters.

Sensors 2021, 21, 5518 9 of 16

Based on δt and ωt, we propose two pairing models in Figure 7. The one-layer
model uses only one Hungarian matching, which takes accumulated H(δt ∗ωt) as inputs,
where ∗means pairwise multiplication. However, we find it to be weak in handling the
ID exchange problem during tracking. Therefore, we propose the two-layer model by
applying Hungarian matching twice, the first time on δt and the second time on ωt. We
will validate this claim by experiments.

One-layer Model:

Two-layer Model:

{ft
Dj[act], ...}, {ft

Dj[dir], ...}

{ft
GIDi[act], ...}, {ft

GIDi[dir], ...}

{ft
Dj[act], ...}, {ft

Dj[dir], ...}

{ft
GIDi[act], ...}, {ft

GIDi[dir], ...}

δt*ωt

Hungarian
matching

H(δt*ωt) Output

δt
Hungarian
matching

H(δt)

bufferbufferbufferbuffer

bufferbufferbufferbuffer
Long-term
distance ωt

Hungarian
matching

H(ωt) Output

Short-term
distance

Long-term
distance

Short-term
distance

Figure 7. The proposed one-layer and two-layer pairing models.

4. Performance Evaluation and Discussion
4.1. Experimental Setting

We built a prototype, which consists of two Nokia 8.1 smartphones to simulate IP
cameras. We set their height to six meters, view angle to 50 degrees down, and resolution to
600 × 800 pixels. These phones connect to an IEEE 802.11ac access point and stream videos
at 20 FPS to our fusion server. Wearable devices are simulated by Android smartphones,
which also connect to our fusion server and transmit sensor data at a rate of 50 Hz. The
wireless router is ASUS RT-AC86U with a Cortex A53 1.8 GHz dual-core processor and
256 MB RAM. Its claimed rate is 1734 Mbps under 802.11ac and 450 Mbps under 802.11n.
Our fusion server has an Intel i7-9750H CPU with six cores, 32 GB RAM, and a RTX 2080
MAX-Q GPU. To speed up the detection speed of YOLOv3-608 (which resizes images to
608 × 608), we added an external RTX 2080 eGPU. Table 1 shows the respective processing
time. Processing one frame takes 0.081 s, which approximates to 12 FPS in real-time. This
value is calculated from a 5-min clip with processing around 6000 frames. Table 2 shows
the activity recognition results of our SVM model, where V-SVM is video motion SVM,
and S-SVM is sensor motion SVM. It is trained by a 12-min video by taking 80% data for
training and 20% for testing. The accuracies are 97.5% and 99.6% for classifying the four
motions from video and sensor data, respectively. The precision and recall are around
95% to 98% for four types of motions. The results show that SVM models are reliable for
obtaining motion features.

Table 1. Processing time of major components.

YOLOv3
(2 Cameras) SORT GID

Tracking
Device
Pairing Overall

Average Time
Consumption (s) 0.058 0.003 0.014 0.002 0.081

Sensors 2021, 21, 5518 10 of 16

Table 2. Evaluation of SVM activity recognition models.

Train# Test# Accuracy

V-SVM 11,020 2,756 0.975
S-SVM 143,164 35,792 0.996

Stop Straight Turn Left Turn Right

Precision Recall Precision Recall Precision Recall Precision Recall

V-SVM 0.997 0.997 0.948 0.981 0.964 0.981 0.991 0.968
S-SVM 0.989 0.999 0.994 0.989 0.999 0.996 0.999 0.996

Figure 8 shows our experimental scenario. We invited four testers to walk under the
cameras. Three of them wear a smartphone on their chests, as shown in Figure 8b. The last
one is a guest without any device. In Figure 8a, an identified person will be tagged as a
green bounding box with its corresponding profile. The yellow bounding box indicates the
result of recovered missed detection, which will be discussed in Section 4.3. We designed
three mobility patterns, as shown in Figure 9. Pattern 1 is a random walk to observe
tracking ability when people are walking freely inside the area. We generated two trials.
Case 1a and 1b are two different random trajectories. Pattern 2 is following with multiple
interleaving, which may cause an ID switch due to SORT [13], because SORT does not
consider the target’s visual features on frames. We also generated two trials (2a and 2b) for
pattern 2 to observe the ID switch issue. Our system can solve this issue by recovering the
lost bounding box. Pattern 3 is trajectory mimicking to simulate that people have similar
moving patterns. Since the moving patterns are similar, we generated one trial (case 3) for
pattern 3. In each case, video clips and sensor data were collected for 5 min.

(a) (b)

Figure 8. (a) Experiment scene. (b) Smartphone setup on chest.

Camera 1: Camera 2:

Pattern 1: random Pattern 2: following Pattern 3: mimicking

(Case 1a and 1b) (Case 2a and 2b) (Case 3)

Figure 9. Mobility patterns for experiments.

Our evaluations are based on four metrics: (i) PITA (Person Identification and Tracking
Accuracy), (ii) IDP (Identification Precision), (iii) IDR (Identification Recall) and (iv) IDF1
(Identification F-score 1).

Sensors 2021, 21, 5518 11 of 16

PITA = 1− ∑N
t (ObjMiss + IncPair)t

∑N
t (truth#)t

(3)

IDP =
TP

TP + FP
(4)

IDR =
TP

TP + FN
(5)

IDF1 = 2
IDP ∗ IDR
IDP + IDR

(6)

In the above, ObjMiss means missing human object detection (including false positive
and negative), and IncPair means incorrect pairing of devices and human objects. TP is
the number of true positive pairs, FP is the number of false positive pairs, and FN is the
number of false negative pairs.

4.2. Pairing Accuracy

First, we compare single-camera versus multi-camera cases with the two-layer method.
Figure 10a shows PITA, IDP, IDR and IDF1 under different mobility patterns. PITA is
the accuracy of a whole video clip and sensor data. The value of IDP, IDR and IDF1 is
calculated for each person. When more than two people appear in the scene, several pairing
results are obtained. We point out the maximum and minimum values in Figure 10 to
examine the robustness of our model. Using multiple cameras gives higher accuracy in all
cases because it provides more view angles on the environment, thus improving vision
recognition capability. On average, accuracy is increased by 10%. The difference between
the maximum and minimum value of IDP, IDR, and IDF1 under two cameras is lower than
one camera, which means using multiple cameras is more robust.

Next, we compare the two proposed pairing methods. Here, 1L and 2L mean 1-layer
and 2-layer methods, respectively. TSync means using time synchronization; otherwise,
Dynamic Time Warping (DTW [37]) will be applied. For Equation (2), n is set to 0.9 for
DTW1L and TSync1L, and n is set to 0 for TSync2L. The number m of historical records is set
to 10, and the fusion frequency is 2 Hz. Figure 10b shows the results using different pairing
methods, where there are always two cameras. We can see that TSync2L performs the
best in most cases. For mobility pattern 2, false negative detection occurs due to obstacles.
Therefore, TSync1L and DTW1L have much lower accuracy than TSync2L. On average,
TSync2L leads by 10% in PITA and IDF1. Considering the difference between the maximum
and minimum value, TSync2L is the most robust, and TSync1L outperforms DTW1L.

When DTW is applied, short-term data misalignment may be recoverable. However, it
is hard to recover longer misalignment. Therefore, clock synchronization is more important
when there are more devices and cameras.

When investigating object tracking, it is common to use an F-score of 1 for comparison.
Table 3 shows the detail IDF1 of each person in each case. When the system can not
determine the GID of an object, we set it as “unknown”. This would make IDF1 decrease
significantly. From Table 3, we can see that IDF1 is greater than 90% under pattern 1.
In pattern 2, there are more detection failures, ID switches/exchanges, and occlusions
for the computer vision task. Even so, our system can still track people with IDF1 of
80%. Unfortunately, pattern 3 is a challenge to our system because people have similar
movements. Our current movement features are unable to distinguish such cases. A
possible solution is to explore more detailed features, such as skeleton data, which can be a
direction of future work.

Sensors 2021, 21, 5518 12 of 16

(a) Changing number of cameras.

0

0.2

0.4

0.6

0.8

1

Case 1a Case 1b Case 2a Case 2b Case 3

PITA

0

0.2

0.4

0.6

0.8

1

Case 1a Case 1b Case 2a Case 2b Case 3

IDP

0

0.2

0.4

0.6

0.8

1

Case 1a Case 1b Case 2a Case 2b Case 3

IDR

0

0.2

0.4

0.6

0.8

1

Case 1a Case 1b Case 2a Case 2b Case 3

IDF1

0

0.2

0.4

0.6

0.8

1

Case 1a Case 1b Case 2a Case 2b Case 3

PITA

0

0.2

0.4

0.6

0.8

1

Case 1a Case 1b Case 2a Case 2b Case 3

IDP

0

0.2

0.4

0.6

0.8

1

Case 1a Case 1b Case 2a Case 2b Case 3

IDR

0

0.2

0.4

0.6

0.8

1

Case 1a Case 1b Case 2a Case 2b Case 3

IDF1

TSync2layer TSync1layer DTW1layer

(b) Comparison of pairing methods.

2 Cameras 1 Camera

Figure 10. Pairing accuracy.

Table 3. Comparison of Per-person IDF1.

Case 1a Case 1b Case 2a Case 2b Case 3

User 1 0.937 0.972 0.932 0.88 0.992
User 2 0.915 0.910 0.857 0.855 0.867
User 3 0.940 0.975 0.837 0.853 0.557

Unknown 0.927 0.882 0.725 0.71 0.508

4.3. False Negative Recovery Capability

False negative detection is inevitable in image object detection. As shown earlier, this
may be recovered by our system in camera intersection regions. In order to observe the
recovery capability, we collected 1886 pieces of data in the overlapping area R1 ∩ R2 when
a person moves in. Ideally, both cameras C1 and C2 should be able to detect and track them.
We treat the tracking results of C1 as ground truth. When solving the device–object pairing
problem, we assume that C1 cannot detect the person, and then we use the information

Sensors 2021, 21, 5518 13 of 16

from C2 to recover the missed detection of C1. The recovered detection is regarded as a
new bounding box of C1, and then we compare these new bounding boxes against those
detected by the same C1 through YOLO. Figure 11 shows a scenario. A person in black
clothes is in the overlapping area R1 ∩ R2. Although both C1 and C2 may detect the person,
we purposefully remove C1’s detection. During the data fusion procedure, we use the
information from C2 to recover the lost bounding box on C1. Then the predicted results for
C1 are compared against the ground truth (i.e., the one detected by YOLO). The outcomes
are measured by Intersection over Union (IoU), IoU = (Area o f Overlap)/(Area o f Union),
of these two bounding boxes. An IoU value closer to 1 indicates a better recovery effect.

C
am

er
a

1
C

am
er

a
2

scene 2

camera view Recovery of
false negative detection

(the yellow one)

camera view YOLO detection

mis-detection

scene 1 recovered scene 2

Figure 11. False negative recovery scenario.

Figure 12a shows the histogram of IoU of these 1886 tests. We see that the top three IoU
ranges fall in the (0.6, 0.9] interval, and 50% of results are in the (0.6, 1] interval. Figure 12b
shows the histogram of the central pixel distance of two bounding boxes. We see that over
75% of the distances fall in the (0, 15] interval. Even though the view angles of C1 and
C2 are different, most of our predicted bounding boxes by C2 can achieve an IoU above
0.7 and a pixel distance of less than 20. On average, the mean IoU is 0.64, and the mean
distance is 12 pixels. For surveillance applications, such driftings are acceptable, and thus
the solving device–object pairing problem helps us to identify and track people or things
from different angles and visualize their sensor data easily.

(a) Histogram of IoU of recovered
bounding box and ground truth

(b) Histogram of central pixel distance of
recovered bounding box and ground truth

[0
, 0

.1
]

(0
.1
, 0

.2
]

(0
.2
, 0

.3
]

(0
.3
, 0

.4
]

(0
.4
, 0

.5
]

(0
.5
, 0

.6
]

(0
.6
, 0

.7
]

(0
.7
, 0

.8
]

(0
.8
, 0

.9
]

(0
.9
, 1

]

[0
, 5

]
(5
, 1

0]
(1
0,
 1
5]

(1
5,
 2
0]

(2
0,
 2
5]

(2
5,
 3
0]

(3
0,
 3
5]

(3
5,
 4
0]

(4
0,
 4
5]

(4
5,
 5
0]

(5
0,
 5
5]

(5
5,
 6
0]

(6
0,
 6
5]

(6
5,
 7
0]

(7
0,
 7
5]

(7
5,
 8
0]

233

648

442

270

149
83

28 13 10 2 0 1 5 0 1 1
0

100

200

300

400

500

600

700

27 15
39

118

191

304

393 403

338

58

0
50
100
150
200
250
300
350
400
450

To
ta
l a
m
ou

nt
s

To
ta
l a
m
ou

nt
s

25%25%25% 25%25%25%25%25%

Figure 12. Evaluation results for false negative recovery.

Sensors 2021, 21, 5518 14 of 16

5. Conclusions

The device–object pairing problem arises as an essential issue in the IoT world when
we concurrently track a group of things with both cameras and sensors. Correctly pairing
visual objects with their sensor data may enable lots of new applications. For example, in
high-value livestock farming, the visual objects can be defined as animals. In an automatic
warehouse, we can treat the robots as visual objects. Based on our system, we can interpret
the status of visual objects with sensor information. This work proposes a device–object
pairing system consisting of multiple cameras and wearable devices. The overlapping area
between cameras can be used for detecting identical objects. When a missed detection
occurs, we can use the information from another camera to recover the missing bounding
box. We design a lightweight human-assisted process to estimate a homography matrix for
each camera that transforms each camera pixel to a ground coordination. The procedure
can be finished within a few minutes. To find the relationship between wearable devices
and visual objects, we extract motion features from them and then design one-layer and
two-layer algorithms to predict possible pairing. A prototype has been built to test the
feasibility of our system under several actual scenarios. It also demonstrates the ability
to recover the missing bounding box. Future work may be directed to considering larger
scales, which involve a more efficient deployment procedure and an IoT platform for device
management. In order to improve device–object pairing results, more features, such as
sub-meter indoor localization or skeleton recognition, can be taken into consideration.

Author Contributions: Conceptualization, K.-L.T., K.-R.W. and Y.-C.T.; methodology, K.-L.T.; soft-
ware, K.-L.T.; validation, K.-L.T., K.-R.W. and Y.-C.T.; formal analysis, K.-L.T.; investigation, K.-L.T.,
K.-R.W. and Y.-C.T.; resources, K.-R.W., Y.-C.T.; data curation, K.-L.T., K.-R.W.; writing—original draft
preparation, K.-L.T., K.-R.W. and Y.-C.T.; writing—review and editing, K.-L.T., K.-R.W. and Y.-C.T.;
visualization, K.-L.T., K.-R.W.; supervision, Y.-C.T.; project administration, K.-R.W., Y.-C.T.; funding
acquisition, Y.-C.T. All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by ITRI, Pervasive Artificial Intelligence Research (PAIR)
Labs, and Ministry of Science and Technology (MoST) under Grant 110-2221-E-A49-033-MY3 and 110-
2634-F-009-019. This work is also financially supported by “Center for Open Intelligent Connectivity”
of “Higher Education Sprout Project” of NYCU and MOE, Taiwan.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

YOLO You Only Look Once
RMPE Regional Multi-person Pose Estimation
FPS Frames Per Second
MOT Multiple Object Tracking
RSSI Received Signal Strength Indicator
IMU Inertial Measurement Unit
JSON JavaScript Object Notation
SORT Simple Online and Realtime Tracking
GT Global Tracking table
LID Local ID
GID Global ID
TGT Tentative Global Tracking table
SVM Support Vector Machine
V-SVM video motion SVM

Sensors 2021, 21, 5518 15 of 16

S-SVM sensor motion SVM
PITA Person Identification and Tracking Accuracy
IDP Identification Precision
IDR Identification Recall
IDF1 Identification F-score 1
TSync Time Synchronization
DTW Dynamic Time Warping
IoU Intersection over Union

References
1. Lin, T.Y.; Goyal, P.; Girshick, R.; He, K.; Dollár, P. Focal Loss for Dense Object Detection. IEEE Trans. Pattern Anal. Mach. Intell.

2020, 42, 318–327. [CrossRef] [PubMed]
2. Redmon, J.; Farhadi, A. YOLOv3: An Incremental Improvement. arXiv 2018, arXiv:1804.02767.
3. Cao, Z.; Hidalgo, G.; Simon, T.; Wei, S.E.; Sheikh, Y. OpenPose: Realtime Multi-Person 2D Pose Estimation using Part Affinity

Fields. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 43, 172–186. [CrossRef]
4. Fang, H.; Xie, S.; Tai, Y.; Lu, C. RMPE: Regional Multi-person Pose Estimation. In Proceedings of the IEEE International

Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 2353–2362.
5. Ceccato, V. Eyes and Apps on the Streets: From Surveillance to Sousveillance Using Smartphones. Crim. Justice Rev. 2019, 44,

25–41. [CrossRef]
6. Kostikis, N.; Hristu-Varsakelis, D.; Arnaoutoglou, M.; Kotsavasiloglou, C.; Baloyiannis, S. Towards remote evaluation of

movement disorders via smartphones. In Proceedings of the International Conference of the IEEE Engineering in Medicine and
Biology Society, Boston, MA, USA, 30 August–3 September 2011; pp. 5240–5243.

7. Bramberger, M.; Doblander, A.; Maier, A.; Rinner, B.; Schwabach, H. Distributed Embedded Smart Cameras for Surveillance
Applications. IEEE Comput. 2006, 39, 68–75. [CrossRef]

8. Vasuhi, S.; Vaidehi, V. Target Tracking using Interactive Multiple Model for Wireless Sensor Network. Inf. Fusion 2016, 27, 41–53.
[CrossRef]

9. Dai, J.; Zhang, P.; Wang, D.; Lu, H.; Wang, H. Video Person Re-Identification by Temporal Residual Learning. IEEE Trans. Image
Process. 2019, 28, 1366–1377. [CrossRef]

10. Rathod, V.; Katragadda, R.; Ghanekar, S.; Raj, S.; Kollipara, P.; Rani, I.A.; Vadivel, A. Smart Surveillance and Real-Time Human
Action Recognition Using OpenPose. In ICDSMLA 2019; Springer: Singapore, 2019; pp. 504–509.

11. Lienhart, R.; Maydt, J. An Extended Set of Haar-like Features for Rapid Object Detection. Proc. Int. Conf. Image Process. 2002, 1,
900–903.

12. Berclaz, J.; Fleuret, F.; Turetken, E.; Fua, P. Multiple Object Tracking Using K-Shortest Paths Optimization. IEEE Trans. Pattern
Anal. Mach. Intell. 2011, 33, 1806–1819 [CrossRef] [PubMed]

13. Bewley, A.; Ge, Z.; Ott, L.; Ramos, F.; Upcroft, B. Simple Online and Realtime Tracking. In Proceedings of the IEEE International
Conference on Image Processing (ICIP), Phoenix, AZ, USA, 25–28 September 2016; pp. 3464–3468.

14. YuEmail, F.; Li, W.; Li, Q.; Liu, Y.; Yan, X.S.J. POI: Multiple Object Tracking with High Performance Detection and Appearance
Feature. In European Conference on Computer Vision; Springer: Cham, Switzerland, 2016; pp. 36–42.

15. Eshel, R.; Moses, Y. Homography based Multiple Camera Detection and Tracking of People in a Dense Crowd. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Anchorage, AK, USA, 23–28 June 2008.

16. Spanhel, J.; Bartl, V.; Juranek, R.; Herout, A. Vehicle Re-Identifiation and Multi-Camera Tracking in Challenging City-Scale
Environment. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops,
Long Beach, CA, USA, 16–20 June 2019.

17. Neff, C.; Mendieta, M.; Mohan, S.; Baharani, M.; Rogers, S.; Tabkhi, H. REVAMP2T: Real-Time Edge Video Analytics for
Multicamera Privacy-Aware Pedestrian Tracking. IEEE Internet Things J. 2020, 7, 2591–2602. [CrossRef]

18. Kokkonis, G.; Psannis, K.E.; Roumeliotis, M.; Schonfeld, D. Real-time Wireless Multisensory Smart Surveillance with 3D-HEVC
Streams for Internet-of-Things (IoT). J. Supercomput. Vol. 2017, 73, 1044–1062 [CrossRef]

19. Zhang, T.; Chowdhery, A.; Bahl, P.; Jamieson, K.; Banerjee, S. The Design and Implementation of a Wireless Video Surveillance
System. In Proceedings of the ACM International Conference on Mobile Computing and Networking (MobiCom), Paris, France,
7–11 September 2015; pp. 426–438.

20. Tsai, R.Y.C.; Ke, H.T.Y.; Lin, K.C.J.; Tseng, Y.C. Enabling Identity-Aware Tracking via Fusion of Visual and Inertial Features. In
Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019.

21. Kao, H.W.; Ke, T.Y.; Lin, K.C.J.; Tseng, Y.C. Who Takes What: Using RGB-D Camera and Inertial Sensor for Unmanned Monitor.
In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 20–24 May
2019.

22. Ruiz, C.; Pan, S.; Bannis, A.; Chang, M.P.; Noh, H.Y.; Zhang, P. IDIoT: Towards Ubiquitous Identification of IoT Devices through
Visual and Inertial Orientation Matching During Human Activity. In Proceedings of the IEEE/ACM International Conference on
Internet-of-Things Design and Implementation (IoTDI), Sydney, NSW, Australia, 21–24 April 2020; pp. 40–52.

http://doi.org/10.1109/TPAMI.2018.2858826
http://www.ncbi.nlm.nih.gov/pubmed/30040631
http://dx.doi.org/10.1109/TPAMI.2019.2929257
http://dx.doi.org/10.1177/0734016818818696
http://dx.doi.org/10.1109/MC.2006.55
http://dx.doi.org/10.1016/j.inffus.2015.05.004
http://dx.doi.org/10.1109/TIP.2018.2878505
http://dx.doi.org/10.1109/TPAMI.2011.21
http://www.ncbi.nlm.nih.gov/pubmed/21282851
http://dx.doi.org/10.1109/JIOT.2019.2954804
http://dx.doi.org/10.1007/s11227-016-1769-9

Sensors 2021, 21, 5518 16 of 16

23. Cabrera-Quiros, L.; Tax, D.M.J.; Hung, H. Gestures In-The-Wild: Detecting Conversational Hand Gestures in Crowded Scenes
Using a Multimodal Fusion of Bags of Video Trajectories and Body Worn Acceleration. IEEE Trans. Multimed. 2020, 22, 138–147.
[CrossRef]

24. Nguyen, L.T.; Kim, Y.S.; Tague, P.; Zhang, J. IdentityLink: User-Device Linking through Visual and RF-Signal Cues. In Proceedings
of the ACM International Joint Conference on Pervasive and Ubiquitous Computing, Seattle, WA, USA, 13–17 September 2014;
pp. 529–539.

25. Van, L.D.; Zhang, L.Y.; Chang, C.H.; Tong, K.L.; Wu, K.R.; Tseng, Y.C. Things in the air: Tagging wearable IoT information on
drone videos. Discov. Internet Things 2021, 1, 6. [CrossRef]

26. Tseng, Y.Y.; Hsu, P.M.; Chen, J.J.; Tseng, Y.C. Computer Vision-Assisted Instant Alerts in 5G. In Proceedings of the 2020 29th
International Conference on Computer Communications and Networks (ICCCN), Honolulu, HI, USA, 3–6 August 2020; pp. 1–9.

27. Zhang, L.Y.; Lin, H.C.; Wu, K.R.; Lin, Y.B.; Tseng, Y.C. FusionTalk: An IoT-Based Reconfigurable Object Identification System.
IEEE Internet Things J. 2021, 8, 7333–7345. [CrossRef]

28. MQTT Version 5.0. Available online: http://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html (accessed on 3 August 2021).
29. Standard ECMA-404 The JSON Data Interchange Syntax. Available online: https://www.ecma-international.org/publications-

and-standards/standards/ecma-404/ (accessed on 3 August 2021).
30. Romero, A. Keyframes, InterFrame and Video Compression. Available online: https://blog.video.ibm.com/streaming-video-

tips/keyframes-interframe-video-compression/ (accessed on 3 August 2021).
31. Camera Calibration with OpenCV. Available online: https://docs.opencv.org/2.4/doc/tutorials/calib3d/camera_calibration/

camera_calibration.html (accessed on 3 August 2021).
32. Basic Concepts of the Homography Explained with Code. Available online: https://docs.opencv.org/master/d9/dab/tutorial_

homography.html (accessed on 3 August 2021).
33. The Shapely User Manual. Available online: https://shapely.readthedocs.io/en/latest/manual.html (accessed on 3 August 2021).
34. Clementini, E.; Felice, P.D.; van Ooster, P. A Small Set of Formal Topological Relationships Suitable for End-User Interaction.

In International Symposium on Spatial Databases; Springer: Berlin/Heidelberg, Germany, 1993; pp. 277–295.
35. Moore, K.; Landman, N.; Khim, J. Hungarian Maximum Matching Algorithm. Available online: https://brilliant.org/wiki/

hungarian-matching/ (accessed on 3 August 2021).
36. Kuhn, H.W. The Hungarian Method for the Assignment Problem. Nav. Res. Logist. Q. 1955, 10, 83–97. [CrossRef]
37. Berndt, D.J.; Clifford, J. Using Dynamic Time Warping to Find Patterns in Time Series. In Proceedings of the KDD Workshop,

Seattle, WA, USA, 31 July–1 August 1994; pp. 359–370.

http://dx.doi.org/10.1109/TMM.2019.2922122
http://dx.doi.org/10.1007/s43926-021-00005-8
http://dx.doi.org/10.1109/JIOT.2020.3039518
http://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html
https://www.ecma-international.org/publications-and-standards/standards/ecma-404/
https://www.ecma-international.org/publications-and-standards/standards/ecma-404/
https://blog.video.ibm.com/streaming-video-tips/keyframes-interframe-video-compression/
https://blog.video.ibm.com/streaming-video-tips/keyframes-interframe-video-compression/
https://docs.opencv.org/2.4/doc/tutorials/calib3d/camera_calibration/camera_calibration.html
https://docs.opencv.org/2.4/doc/tutorials/calib3d/camera_calibration/camera_calibration.html
https://docs.opencv.org/master/d9/dab/tutorial_homography.html
https://docs.opencv.org/master/d9/dab/tutorial_homography.html
https://shapely.readthedocs.io/en/latest/manual.html
https://brilliant.org/wiki/hungarian-matching/
https://brilliant.org/wiki/hungarian-matching/
http://dx.doi.org/10.1002/nav.3800020109

	Introduction
	Related Work
	Fusion-Based Device–Object Pairing
	IoT Network
	Projection Estimation
	Local Object Detection and Tracking
	Global Object Tracking
	Feature Extraction
	Device and Global Object Pairing

	Performance Evaluation and Discussion
	Experimental Setting
	Pairing Accuracy
	False Negative Recovery Capability

	Conclusions
	References

