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Abstract: In this paper, the possibility of using nonlinear ultrasonic guided waves for early-life
material degradation in metal plates is investigated through both computational modeling and study.
The analysis of the second harmonics of Lamb waves in a free boundary aluminum plate, and the
internal resonance conditions between the Lamb wave primary modes and the second harmonics are
investigated. Subsequently, Murnaghan’s hyperelastic model is implemented in a finite element (FE)
analysis to study the response of aluminum plates subjected to a 60 kHz Hanning-windowed tone
burst. Different stages of material degradation are reflected as the changes in the third order elastic
constants (TOECs) of the Murnaghan’s model. The reconstructed degradations match the actual ones
well across various degrees of degradation. The effects of several relevant factors on the accuracy of
reconstructions are also discussed.

Keywords: nonlinear ultrasonic guided waves; early-life material degradation; Lamb waves; third
order elastic constants; Murnaghan’s model

1. Introduction

Nonlinear ultrasonic guided waves combine the advantages of nonlinear ultrasound
and ultrasonic guided waves and have attracted growing interest for nondestructive
evaluation (NDE) in recent decades [1]. The great sensitivity of nonlinear ultrasonic guided
waves in detecting early-life material degradation owing to fatigue, creep, thermal aging,
embrittlement, stress corrosion cracking, etc., makes them advantageous over the linear
ultrasonic guided waves when detecting early material degradation or small-sized damage,
i.e., smaller than the wave length of the ultrasound, and is of interest [2].

Since the 1960s, Goldberg [3] and Rollins [4] have theoretically analyzed the propaga-
tion of elastic waves in a uniform and continuous solid media. Later, Deng first investigated
the cumulative second harmonics of horizontal shear (SH) waves and Lamb waves, and
further studied the generation process and symmetric relation of cumulative second har-
monics with appropriate boundary and initial conditions of excitation [5,6]. Following
these findings, de Lima and Hamilton evaluated the power transferred from the primary
waves to the modes in the expansion of the secondary waves, and explained harmonic gen-
eration in homogeneous, isotropic, stress-free elastic waveguides with arbitrary constant
cross-sectional area [7]. Subsequently, Srivastava and Lanza di Scalea [8], Miiller et al. [9],
Chillara and Lissenden [10], and Liu et al. [1,11] investigated higher-order harmonic gener-
ation in weakly nonlinear elastic plates and developed the theories of nonlinear ultrasonic
guided waves.

In the area of the coupling mechanism of the microstructure, Cantrell and Yost et al.
proposed the dependence of a model of acoustic harmonic generation in polycrystalline
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solids on the coherency strains, which proved the potential useful means of nonlinear ultra-
sonic guided waves in optimizing the treatment time for NDE [12]. Deng and Pei proved
that the effect of second-harmonic generation by Lamb wave propagation is sensitive to
the accumulation of fatigue cracks in solid plates [13]. Moreover, Kim et al. [14], Cash and
Cai [15], Xiang et al. [16], Li et al. [17] and Lissenden et al. [18] conducted extensive studies
on nonlinear guided waves in experimental research.

In order to reconstruct the position, size and degree of defects, linear ultrasonic
guided waves are often combined with tomography, e.g., ray tomography [19], diffraction
tomography [20] and full wave inversion [21]. However, a literature review indicates a
paucity in the combination of nonlinear ultrasonic guided waves and tomography through
a numerical establishment of a hyperelastic model [1,2,11,18].

Murnaghan’s model holds the ability to describe acoustic-elasticity and dynamic
nonlinear elasticity in hyperelastic materials [22]. The theory of elasticity shows that
with linear kinematic equations, the physical nonlinearity is formally associated with
the nonlinear relationship between the stress tensor and strain tensors [23]. Therefore,
Murnaghan’s model acts as a weakly nonlinear model, as opposed to the linear (Hookean)
model [24,25], to define the various degrees of degradation. On the other hand, it was
demonstrated that the third-order elastic constants (TOECs) in Murnaghan’s model are
sensitive to fatigue damage [26]. In the early stage of degradation, the TOECs of the
material will increase with the degree of fatigue [27]. Therefore, regions with different
degrees of material early-life degradation in a structure can be represented by varying the
TOECs of the intact material in Murngahan’s model.

In this work, the use of nonlinear guided wave tomography for detection and eval-
uation of early-life material degradation in metal plates is studied. This manuscript
presents the following novel contributions: (1) Nonlinear ultrasonic guided waves in a
Murnaghan material are combined with tomography. (2) A generalized nonlinear acoustic
modeling framework has been established via the implementation of hyperelastic con-
stitutive relations into Abaqus VUMAT subroutine. (3) Numerical results validated that
nonlinear guided wave tomography is capable of characterizing the severity of early-life
material degradation. (4) A guided wave signal processing platform has been developed
for tomographic imaging with abundant acoustic features, including nonlinear harmonics,
attenuation and signal difference coefficient (SDC), etc.

The remainder of the paper is organized as follows: Section 2 starts with an overview
of the second harmonics of Lamb waves in a free boundary plate, then analyzes the internal
resonance conditions between the Lamb wave primary modes and the secondary modes.
The implementation of Murnaghan’s model as an Abaqus user material subroutine VUMAT
is established in Section 3, which provides a connection between linear elasticity and weak
nonlinearity. Section 4 covers the nonlinear model construction of plates in Abaqus for
the FE simulations. Section 5 devises the trigonometric operations for the centripetal
receiving, and the nonlinear guided wave (NGW) method for tomography to reconstruct
the degradation in the plate. The reconstruction results are discussed and the effects on
the reconstruction accuracy from multiple relevant factors are discussed. Finally, Section 6
provides concluding remarks and suggests future works.

2. Theoretical Preliminaries

A comprehensive review of the physical principles of nonlinear ultrasonic guided
waves is provided by Lissenden [2]. In this section, a brief overview of the proper-
ties of cumulative Rayleigh-Lamb (RL) secondary modes is presented for building a
full framework [1,2,7].

In order to formulate the field equations of nonlinear guided waves, the Lagrangian
description is used, as shown in Figure 1. An elastic potential function, W, of Murnaghan'’s
model can be expanded as [22,28]:

W= %[tr(E)]z + ptr (EZ) + %[tr(E)]?’ + votr(E)tr (EZ) + %tr (E3) + O(E‘*) )
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where tr(.) denotes the trace of the bracketed tensor, A and y are Lamé constants, v;(i = 1 to 3) are
Murnaghan’s TOECs, which are directly related to Landau-Lifshitz’s TOECs [22,25], and
E = [H+ H" + H"H] /2 are the invariants of the Lagrangian strain tensor which, related
to the displacement vector H = Vu. The second Piola—Kirchhoff stress tensor, Tpk», can be

obtained from W:
Tpxy = W = Atr(E)I + 24E + % [tr(E)]*T + votr (E2)I o
+2vtr(E)E + 4vstr (E?) + O(E®)
where I is the identity tensor. The equation of motion is usually given by the first

Piola-Kirchhoff stress tensor, Tpxj, which is related to Tpk, through the deformation
gradient F = I + H [29]. In addition, Tpk; can be decoupled into a linear component, TILJKl,

and a nonlinear component, TIIE%, as:

®)

L NL
Tpx1= Tpr1+Tpiy

Thiq = Mr(H)I+ u(H+H") 4)
Thg = SH'H' + (u+ %¢) (H* + H'H+ HH") + vytr(H)H" + %tr(H> + H'H)I
5
+(A +w)tr(H)H + (%tr [H'H] + 41/3(tr(H))2)I +O(H®) ®
X3
RL particle
displacement
: «—>
peccccccccccccccccccccnna
X3= +hl d "
t 7 ¥ 2

X3=-h Tr /
X2

Figure 1. A free boundary plate in a reference coordinate system X;-X5-X3.

The nonlinear wave field can be decomposed into a primary component, #(!), and a
secondary component, u?. Auld’s reciprocity relation can be used to prove the solving
process of the primary wave field [30]. According to the normal mode expansion, the

generated secondary component can be expressed as [7]:

1 —i2w
u®) (X, Xa,8) = SY 0y An(Xp)um(Xs)e™ 2! ©)

where w 1s the angular frequency an m(X1) represents the modal amplitude, which can
h is the angular freq y and A, (X1) rep h dal amplitude, which

be obtained by the reciprocity theorem as:
ft oot | gt (675 — %), for ki £ 2k

Ap =
4Py Xleikal, for k; = 2k
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where f,iurf and f2°! are the nonlinear driving forces which transfer the power flux from
the primary mode to the secondary mode through the surface and volume, respectively.
Py is the complex power flux in the wave propagation direction, which is related to the
modal velocity, v;,, and stress, Ty;:

L( e gL,
= = (v o) | ®)
= L i (VT axy ©)
T T,
Pun=—af (”" = 2’”2") nx,dXs (10)

where ,[1;7[51(1,1) corresponds to the nonlinear stress.

As indicated by Equation (7), in order to make the amplitude of a cumulative second
harmonic to increase linearly with the propagation distance, the following conditions
should be considered: (1) synchronism (phase matching), kj; = 2k; (2) nonzero power

flux between the primary and secondary modes, i.e., fnwf + f”‘” # 0[1,31,32]. Moreover,
it has been proven that the nonzero power flux only occurs on symmetric RL second
harmonic modes, and only the phase matching of symmetric RL second modes is under
consideration [5,7,11,12].

Therefore, according to the material properties and the plate’s thickness, this work will
bring out phase matching points from the dispersion curves plotted and choose the mode
pair of specific frequency among the points to actuate the ideal nonlinear guided wave.

3. Implementation of Hyperelastic Material Model

In order to implement Murnaghan’s model, the elastic potential function, W, needs to
be expressed as a function of invariants to eliminate the volume change [33]. The invariants,
Green deformation tensors and stretch tensors can be decomposed into their dilatational
and distortional parts, leading Equation (1) to be expressed as [34]:

U(T, T, ) = a1 *Ti + a2 ]* P T2 + a3]**To + a4 J* i T + a5 T1° + a6 (]2 - 1) +ay (11)

where C = ["2/3FTF = F'Fis the left Cauchy-Green deformation tensor with the first
and second distortional invariants I; and I, ie., I; = trC, I, = %{(trf)z — (trfzﬂ

] = Tpx1F' / o is the total volume ratio for the spatial description of equilibrium requiring
the Cauchy stress tensor, and a;(i = 1 to 7) are material constants, which can be expressed
as a linear combination of Lamé constants and Murnaghan’s TOECs [34].

Recall the relation of Cauchy true stress with elastic potential function and left
Cauchy—Green deformation tensor [35], which as shown in the Appendix A leads to:

o= 2(]1/3 + 2612]1/371 -+ ll4]72 + 3a5ﬁ12 + a3]1/371 + 614]712)§
. (12)
—2(113]1/3 + a4111)B~B + (2061

where B = FF' is the left Cauchy-Green deformation tensor.

Implementation of Murnaghan’s model in Abaqus as a VUMAT requires a frame-
independent definition of stress. This can be achieved by writing the distortional compo-
nent of left Cauchy—Green deformation tensor in terms of distortional component of right
stretch tensor, U, as shown in the Appendix A:
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o = R[(F9% +402] °Ty + 2a4] T + 6as]Ty2 + 23] /3Ty + 204]T;2 ) U .
13
— (2113 V3 4+ 204 ﬁl)ﬁ4 + (2a¢ ])1} RT

where the factor in the bracket can be recognized as the frame-independent, objective
counterpart of the Cauchy stress tensor and R is the rotation tensor from polar decomposi-
tion of the deformation gradient. This numerical implementation of Murnaghan’s model
is applicable to isotropic hyperelastic materials. More details of the implementation are
provided in the Appendix A.

4. Nonlinear Model Construction in Plates
4.1. Primary Mode Selection of Lamb Waves

It has been discussed that symmetric Lamb waves in plates generate cumulative
second harmonics under some special cases in Section 2. In fact, each internal resonance
point is valid in a region that is dependent on the frequency bandwidth associated with
the toneburst excitation and phase velocity bandwidth associated with the finite sensor
size [2,31,36]. In this work, the nonlinear models were used to simulate by using aluminum
plates with d = 2/, and the material parameters representative of aluminum are listed in
Table S1 [22,37]. The phase velocity dispersion curves of the RL waves of the aluminum
plate are plotted in Figure 2. The fd product for the primary modes, and 2fd for the second
harmonics have been provided. The primary modes are plotted with solid lines and
identified by upper case letters (e.g., A0, A1, SO, S1), and the secondary modes are plotted
with dash lines and identified by lower case letters (e.g., s0, s1, s2, s3), where A and S(s)
represent the antisymmetric mode and the symmetric mode, respectively.

0 1 2 8 4 5 6 7 8 ) 10
fd / 2fd (MHz-mm)

Figure 2. Internal resonance points of RL primary and secondary modes. The primary modes
are shown as solid lines and plotted as fd. The secondary modes are shown as dash lines and
plotted as 2 fd.

A number of internal resonance points satisfying both synchronism and nonzero
power flux are marked in Figure 2, which are represented as primary—secondary mode
pairs. Although the S1-s2 mode pair is commonly used in a plate as a nonlinear Lamb
wave measurement [1,2], it is difficult to preferentially actuate the S1 mode at the point
due to the proximity of other modes (especially A1 mode) and the wide variety of modes.
However, the S0-s0 mode pair has the ability to avoid multi-mode interference. On the
other hand, the S0 primary mode has a strong excitation and minimal dispersion at the low
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frequency region, and the s0 secondary mode has a strong receptivity [32]. Therefore, the SO
mode Lamb wave at the internal resonance point of fd = 0.6 MHz-mm was chosen as the
primary mode. The phase velocity ¢, dispersion curves of the primary modes in Figure 2
are converted into the group velocity cg dispersion curves and are plotted in Figure 3. At
fd = 0.6 MHz-mm, only A0 and SO modes exist as the primary modes in the aluminum
plate, whose c, differ greatly. This is conducive to actuation of pure SO mode, identifying
and extracting the S0 mode among the time domain signals.

fd =0.6MHz-mm
0 H
0 1 2 3 4 5 6 7 8 9 10

fd (MHz-mm)
Figure 3. Group velocity dispersion curves of RL primary modes.

However, the in-plane displacement is dominant at fd = 0.6 MHz-mm, and the power
flux of the S0-s0 mode pair is relatively weak. It needs to involve the in-plane displacement
component of the wave actuation and reception, rather than the out-of-plane displacement
component at the surface of the plate. For signal collection, a beam sensor has a certain
angle, and each sensor in the array is set for centripetal actuation and in-plane reception.

4.2. Design of Finite Element Simulations

Reconstruction algorithm for probabilistic inspection of damage (RAPID) is an al-
gorithm based on correlation analysis. By comparing the reference signals with the de-
fect detection signals, the signal differences can allow defect identification [38]. In this
work, RAPID based on ray tomography was used for reconstruction. Two aluminum
plate models with and without degradation were established, whose parameters were
set the same except for the degraded regions, following the findings that degradation
can be accounted for by using higher TOECs in the Murnaghan model [26,27]. The alu-
minum plate model has a size of 1200 mm x 1200 mm x 10 mm, which was spatially dis-
cretized into a structured mesh using 1 mm cubic C3D8R elements. Thus, the total num-
ber of elements was 1200 x 1200 x 10 = 1.44 x 107 and the total number of nodes was
1201 x 1201 x 11 = 15866411. The actual plate was the central 1000 mm x 1000 mm x 10 mm
segment, while the remaining boundary layer was set for absorbing the Lamb waves to
avoid reflection. Coordinate (0, 0) is the center of the plate which was set as the origin.
The circular sensor array was installed on the nodes around the degradations, and the
separation distance D between the sensors, that deployed along a circular aperture of
radius, r, has to satisfy an ideal condition [39]:

2 A
D= \/Zrz —2r2 COS(S;[]) < 7;7 (14)
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where SN is the number of sensors, and A, is the wavelength of the ¢, of the primary
mode. At the internal resonance point of fd = 0.6 MHz-mm, the primary mode of S0 has
cp = 5366 km/s and A, = 89.43 mm.

The resolutions are hardly improved again as D shrinks when Equation (14) has been
satisfied. In order to save the computational cost, the parameters of the sensor array are
set as: r = 400 mm, SN = 64. As shown in Figure 4, three circular degradations with
diameters dy1 = dn2 = dy3 = 60 mm, and depths hn = hny = hys = 5 mm are defined
on some nodes on the aluminum plate, whose coordinates of the center are (—200, —200),
(100, —100) and (0, 200), respectively. The TOECs (v1, 12, and v3) of the degraded regions
are modelled as 3, 5%, and 10x of that of the intact material to indicate different degrees
of degradation [26,27].

Sensor array o’ e No. 3
r =400mm o * ®e dnz =60 mm
SN =64 . *e  Jn3=5mm
. . *, TOECs: 10x
A
L ]
L ]
[ ]
[ ]
No. 1 o e No.?2
dni= 60 mm dn2= 60 mm
hni=5 mm hn2=5 mm
TOECs: 3x TOECSs: 5x

Figure 4. Aluminum plate model with early-life material degradations of different degrees. The
other model is defined without these three degradations.

A 20-cycle Hanning-modulated tone burst excitation with a central frequency of
60 kHz was sent to the sensors, the displacement output produced by which was taken
as the vibration signal of the piezoelectric sensors. For every sensor, it receives both
the signal actuated by itself and the signal actuated by the opposite sensor, as shown in
Figure 5. The time for the sensor to receive the positive peak of its own wave packet is
t; = 0.2135 x 1073 s. For a propagation distance of 800 mm, the time of the positive peak
of the first wave packet actuated by the opposite sensor is t; + f, = 0.365 x 1073 s. The
cg of the first wave packet is calculated to be 5.281 km /s, which corresponds to the point
of SO mode at fd = 0.6 MHz-mm in Figure 3. It is indicated that the first wave packet is
attributed to the SO Lamb wave primary mode in Figure 5c. Similarly, the c¢ of the second
wave packet is calculated to be 2.963 km /s, corresponding to the primary mode of AQ.
The frequency spectra for the received signals after fast Fourier transform (FFT) are also
shown in Figure 5. After a propagation distance of 800 mm, the accumulated second
harmonics are clearly observed in the signals received by the opposite sensor. Moreover,
RL wave motion is noticed at the third and higher-order harmonic frequencies when the
second harmonics are generated. Compared with the primary modes, the power flux of
nonlinear harmonics is weak. However, the second harmonics dominate the nonlinear
harmonics, and it is expected that reconstructions with second harmonics will have a
higher resolution.
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Figure 5. A sensor receives the signals actuated by itself and the signals actuated by the opposite sensor. (a) Time domain
signals actuated by itself. (b) Frequency spectrum corresponding to (a). (c) Time domain signals actuated by the opposite
sensor. (d) Frequency spectrum corresponding to (c). The central frequency of the excitation signals is 60 kHz.

5. Tomography
5.1. Signal Processing of In-Plane Displacements

In a sensor array, every two sensors can be formed as an actuation-reception pair, and
all actuation-reception pairs form a network over the detected area. In the X;—X; plane,
the sensor located in the positive direction of X; was labelled as sensor 1, and increased
the label number by 1 in the counterclockwise direction, as shown in Figure 6.

The displacement signals S; and S, at each sensor are collected from Abaqus in
X1 and X, directions, respectively. Therefore, it is necessary to calculate the angle 6
between the vector of each actuation-reception pair and X; direction, as shown in Figure 6.
Equation (15) is then used for the operation which combines S; and S, into the actuation—
reception direction signal, S.

S =451 X |cosf| £ Sy x [sin )| (15)

where the positive and negative signs relate to the direction of the vector for each
actuation-reception pair. For example, when the vector of an actuation-reception pair
(i—j pair) is towards the Quadrant IV of the reference coordinate system, as shown in
Figure 6, the result is:

S =51 X |cosf| — Sy x |sin 6]

=5 X ‘cos{n — 7717(’297“) — ,3} ‘ (16)
-5 X ’sin[r(— w —/5} ’
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where = 27(i — 1) /64 and &« = 271(j — 1) /64. Note there are some special cases, such as
when the vector is parallel to the X; or X;: one term in Equation (15) vanishes, and when
i = j (« = B), Equation (15) becomes:

S =51 xcosB+ Sy xsinfB (17)
17 4 X2
400
~ 200+ .
E L]
CIEY
g o
.g .I L]
200 ", .
-400 IRARE (LN
49

-400 -200 0 200 400
Position (mm)

Figure 6. Trigonometric operations of the in-plane reception when the vector of an excitation-reception
pair, i, is towards Quadrant IV of the coordinate system. Using the internal angle of the special
triangle formed by the array origin and the two sensors, the X; direction signal, S1, and the X,
direction signal, Sy, are combined into the actuation—-reception direction signal, S.

5.2. Reconstruction Using Nonlinear Harmonic Signals

Due to the inherent dispersion and multi-mode properties of guided waves, a time-
frequency representation of the wave field has been created by using the short time Fourier
transform (STFT), and a Hanning window was added to reduce spectrum leakage [1]. Then,
the time intervals of the SO mode wave packets and the frequency intervals of the second
harmonics were intercepted, and the matrices representing the power flux of the second

harmonics were selected from the STFT. By integrating the matrices, the SDC, Cij, of each
i—j pair were calculated as:
Ci=|1- 2 (18)

where Yj; is the matrix integral of the i—j pair in the model without degradation, and Z;;
is the matrix integral of the i—j pair in the model with degradations. The value of C;; is
proportional to the probability of degradation between the actuation-reception pair.

In this work, all the SDCs were transformed into the probability distribution of
degradations by the elliptic algorithm. In order to determine the location, it was assumed
that a degradation occurrence at a certain point could be estimated based on the SDC of a
different i—j pair as a result of this degradation and its position relative to the i—j pair. In the
presence of degradation, the most significant signal change was in the direct wave path,
and the signal change effect decreased if the degradation is away from this path of the i—j
pair [40]. Therefore, the probability distribution was expressed as a linear accumulation
of all the signal change effects of each i—j pair. Each i—j pair had a spatial distribution. As
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shown in Figure 7, i and j are on the two vertices of the ellipse, and the value of SDC set at
the line connecting i and j decreases from the middle to both sides. In the array network,
the estimation of distribution probability, P(X7, X3 ) at position (X;, X») can be written as:

b— Ajj(Xq, X2)

PO, X = S i) = S B 6| )

where Pj;(X1, X2) represents probability estimation of the degradation distribution from
the i~j pair, and [(b — A;;(X1, X2)) /(b — 1)] is the non-negative linear decreasing spatial
distribution function of the i—j pair, as shown in Figure 7, the outline of which is a set of
ellipses. Among them:

Bij(XerZ)r for Bij(Xll Xz) <b

i (X1, X2) { b, for B;j(X1, X2) > b

where Bij(Xl, X,) represents the ratio of the sum of distance between point (X1, X») to i
and j to the distance between i and j, and b is a scaling parameter that controls the size of
the effective elliptical distribution area. Usually, b is chosen to be around 1.05 [40]. The
resolution of reconstruction can be improved by appropriately adjusting the value of b.

400_ PP LI R 1

—_—

Position (mm)
o

-200 . Focal points .

-400 -200 0 200 400
Position (mm)

Figure 7. The ellipse of the elliptic algorithm, whose vertices of the ellipse are respectively regarded
as the actuating signal sensor and the receiving signal sensor. The intensity on the line connecting
the two vertices is the highest, indicating that the probability of degradation is the greatest. The
probability is divided into 20 levels and decreases from the middle to both sides, and the probability
of the edge and the periphery of the ellipse is zero.

5.3. Effect of Degradation Degrees

In the early stage, fatigue is an important factor in degradation [2]. The early detec-
tion of this degradation contributes to early maintenance, leading to an increase in the
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Position (mm)

400

200

-200

-400

-400

service life. Therefore, we tested the capability of our modeling in detecting different
levels of degradation.

As described in Section 4.2, degradation degrees were represented as multiples of
v1, V2, and v3. The probability distribution of the aluminum plate model by using the
NGW method is shown in Figure 8, and the signal difference is expressed as a heat
map. It can be observed that there are three circular degradations in the reconstruction, the
positions of which approximately conform to the FE model with slight deviation. A possible
reason for the position deviation is that there is a superposition of stress changes among
these three degradations. It is also noticed that the position deviation is smaller for the
degradation with higher degree, which suggests that detecting a smaller and lower degree
of degradation is harder in general. However, relatively accurate prediction indicates that
second harmonic tomography can reconstruct multiple degradations with various degrees
in plates.

0.05 ‘HO.OZ
%) -100 No. 1 %]
S = 0.015 S
2 ~ 3
o £ =y
x g =
L~ @
2 £ 001 S
P = -200 pis
g8 o 3
3 A~ =
=} 0.005 2.

0 0

-200 0 200 400 -300 -200 -100

Position (mm) Position (mm)

(a) (b)

Figure 8. Probability distributions of aluminum plate model with early-life material degradations, using NGW method

expressed with the second harmonics. (a) Reconstruction containing all degradations. The area covered by the circle

corresponds to the positions of the three degradations in the FE model. (b) Zoom in on the square region around
degradation No. 1 shown in (a).

Compared with degradation No. 2 and No. 3, No. 1 describes an early degradation
stage; as shown in Figure 8b, due to the change in stress caused by variation in TOECs, the
difference of power flux exists around the degradations. Particularly, there is a superposi-
tion between No. 2 and No. 3, and consequently the signal difference is over the peak value
of the degradation No. 1, which explains why the resolution of No. 1 is lower. However,
the location of No. 1 can still be detected reasonably well, which reveals that the second
harmonic tomography can be applied to detect much earlier stages of degradation.

The peak values of total SDC of the three degradations were obtained as we can
see from Figure 8a and then plotted with TOECs in Figure 9a. It can be observed that
different degradation degrees in a wide range have a linear relation with the value of
SDC with a relatively high slope. This indicates that the sensitivity of second harmonic
detection degradation is positively correlated with TOECs. In other words, the SDCs can
be used to predict the variation of TOECs. Therefore, the NGW method has the potential
capacity to simultaneously realize the qualitative detection of material degradation and
the quantitative detection of the degradation degree. In addition, the above results show
that a generalized nonlinear acoustic modeling framework has been established via the
implementation of hyperelastic constitutive relations into Abaqus VUMAT subroutine,
in which the solutions from linear elasticity can accurately express the stress change of
Murnaghan’s materials.
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Figure 9. (a) The peak values of total SDC of the three degradations as a function of the TOECs. (b) The primary wave,

second and third harmonic in the frequency spectrum of the signals received by the opposite sensor.

5.4. Effect of Signal Processing Methods

A guided wave signal processing platform had been developed for tomography with
abundant acoustic features, including nonlinear harmonics, attenuation and SDC, etc. [40].
This section will compare the results reconstructed by the attenuation, maximum peak
(MP), covariance and NGW methods, whose peak values of total SDC with TOECS are all
plotted in Figure 9a.

The principal characteristic of the attenuation method is to select the peak prominences
in the time domain signals of each i—j pair and use them to calculate C;;. The probability
distribution by using the attenuation method is shown in Figure 10a, which shows the
accurately located position of the three degradations, but with shape distortions and
imaging artifacts. In addition, the peak values of total SDC of the attenuation method
do not have a linear relationship with TOECs, as shown in Figure 9a, which shows that
it is not capable of characterizing the severity of early-life material degradation. Unlike
the attenuation method, the MP method uses the peak values in the time domain signals
of each i—j pair to calculate Cj;. The probability distribution by using the MP method is
shown in Figure 10b. Contrary to expectations, there are three locations surrounded by
higher SDCs, the positions of which approximately conform to the degradations in the FE
model. As a result, it is easy to mislead the reconstruction, so this method is inappropriate
for detection of material degradation. The covariance method has the most extensive
application in linear ultrasonic guided wave tomography, which directly calculates the
signal covariance between each i—j pair in the two models. The probability distribution by
using the covariance method is shown in Figure 10c. It is clearly indicated that degradations
cannot be detected by the covariance method under different v4, 12, and v3 conditions.

Compared with the three methods mentioned above, the most significant feature of
the NGW method is the ability to extract second harmonics separately. The amplified
version of Figure 5d for the primary mode and two nonlinear harmonic modes is shown
in Figure 9b. The peak value of the primary mode is 12.98 x 10~?, and the power flux
is 45.03 x 10~? by calculating the peak area. The peak value of the secondary mode is
0.28 x 1077, and the power flux is 1.826 x 10~%. The power flux intensity of the secondary
mode is different from that of the primary mode, which is two orders of magnitude lower,
resulting in the coverage of the signal differences detected by the second harmonics.
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Figure 10. Probability distributions of aluminum plate model with early-life material degradations, using (a) attenuation
method, (b) MP method and (c¢) covariance method.

Different from linear guided waves, the existence and characteristics of defects in
materials detected by nonlinear guided waves are related to an acoustic signal whose
frequency differs from that of the actuation signal [41]. The attenuation, MP and covariance
methods are suitable for the detection of macroscopic defects by using the primary modes,
whereas the NGW method is suitable for analyzing the power flux of the second harmonics
separately, and is able to detect early degradations. Hence, second harmonics are sensitive
to the change of the constitutive relation of the microstructure, that is, they are sensitive to
the early-life material degradation.

5.5. Effect of Harmonic Orders

While the second harmonics were generated, RL wave motion also existed at the third
harmonic frequencies, as shown in Figure 9b. It can be observed that the third harmonics
also have obvious cumulative effect of power flux in the frequency spectra of the signals
received by the opposite side sensor. Therefore, a numerical study was carried out to study
the effect of harmonic orders.

The third harmonics were used with the NGW method, and the probability distribu-
tion of aluminum plate models with early-life material degradations is shown in Figure 11.
It can be observed that there are three circular degradations in the reconstruction, which are
basically the same as those in Figure 8. As shown in Figure 9b, the peak value of the cubic
mode is 0.11 x 107, and the power flux is 0.81 x 10?2, which does not reach 1/2 of the
secondary mode. However, compared with the second harmonic, the overall signals differ
little in the probability distribution of the third harmonic. As shown in Figure 11, the peak
values of total SDC of the three degradations have negligible variations and still maintain a
linear relation with TOECs. There is almost no resolution loss by using the third harmonics.
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This indicates that the SDCs are relative values, which can be used for reconstruction to
reduce the interference. Although the weakly third harmonic used is the noise effect gener-
ated when the second harmonic is actuated, it can also be applied to the reconstruction of
material degradation in an ideal state. It can be concluded that the nonlinear harmonics of
different orders are sensitive to the early-life material degradation. Moreover, this confirms
that the NGW method can indeed predict the degree of degradation in the material.
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Figure 11. Probability distributions of aluminum plate model with early-life material degradations, using NGW method
expressed with the third harmonics. (a) Reconstruction containing all degradations. (b) Zoom in on the square region
around degradation No. 1 shown in (a).

5.6. Effect of the Separation Distance between Sensors

When the separation distance between two adjacent sensors is less than half of the
wavelength of the primary mode, the reconstructions have the optimal resolution, as men-
tioned in Section 4.2. Therefore, it is meaningful to analyze the influence of separation dis-
tance of sensors on the resolution. Such issues have been discussed by Simonetti et al. [39]
and Bernard et al. [42].

The situation which does not satisfy Equation (14) is discussed in this section, where
the number is lower than 64. For simplicity, 32 sensors were selected from the 64 sensors in
the array to form a small array, and 16 sensors were selected from the 32 sensors to form an
even smaller array. The second harmonics were used for the reconstructions of two small
arrays, and the probability distributions are shown in Figure 12. According to Equation (14),
the array is composed of 32 sensors, D = 78 mm, which belongs to the range % <D < Ap.
In this case, the three degradations in the plate can still be relatively accurately located in
the reconstructions. Given that dy; = dn2 = dy3 = 60 mm and the smallest feature that
can be reasonably accurately reconstructed through the estimation as \/DA, ~ 83.51 mm
from the width of the Fresnel zone [20,21]. This indicates that the limited resolution has
resulted in a poor reconstruction and a blurry edge of degradation. In the array composed
of 16 sensors, D = 156 mm—it belongs to the range D > A,. Here, the waves propagate
as straight rays and their lobes may be unable to cover the entire detection area in the
array network, and blind spots and constitute gaps are obvious. Consequently, it can be
easily inferred that it is impossible to reconstruct the outlines of degradations, but simple
positioning can still be achieved.



Sensors 2021, 21, 5498

15 of 21

Position (mm)
o

-200

-400

-400

x10”
400
0.01
%) (<2
«Q «Q
0.008 2 2 200 =
2 g =
3 S 3
00065 £ o0 g
a =& a
a & a
0.004 % £ 200 %
[®] o
0.002 & @
2 2
-400
0
-200 0 200 400 -400 -200 0 200 400
Position (mm) Position (mm)

(a) (b)

Figure 12. (a) Probability distributions for arrays composed of (a) 32 sensors and (b) 16 sensors, using the second harmonics

for the NGW method.

Therefore, when the separation distance between sensors is not enough to satisfy

D < %, the resolution is compromised, but the total numerical and computational cost
can be reduced, e.g., in this work, the total WALLCLOCK TIME of 64 sensors is 25.6 h, that
of 32 sensors is reduced to 1/2, and that of 16 sensors is reduced to 1/4; the reconstruction
time of 64 sensors is 610 s, that of 32 sensors is reduced to 1/4, and that of 16 sensors is
reduced to 1/16. In addition, it can also be inferred that when the number of sensors is
not enough to support a full array, a limited number of sensors can be used, which is still
useful for simple positioning of the defects.

5.7. Effect of Defect Types

It has been proved that nonlinear harmonics such as second and third harmonics are
sensitive to the degradation of various degrees. Therefore, it is of interest to study whether
the NGW method also has high sensitivity for detecting linear macroscopic defects. In
order to highlight the effect of reconstruction, an actual aluminum (6061T6) plate was used
for laboratory experiments of a size consistent with the simulations.

Verasonics UTA 160DH system was adopted as a testing instrument, which provides
128 independent transmitter channels and 128 independent receiver channels. This system
contains the Vantage hardware unit, the Vantage software, and the “Host Controller”,
a computer on which Matlab and the software have been installed. The hardware unit
consists of the system backplane (BKP), transmit power controller (TPC), and a UTA
Baseboard or ScanHead Interface (SHI).

Unlike the FE degradation with variation in TOECs, plasticine with absorbing guided
wave effect is treated as the macroscopic defect in the experiments. As shown in Figure 13, a
piece of plasticine with a diameter of 85 mm was placed at the (80, 50) coordinate pair of the
aluminum plate. Taking the center of the aluminum plate as the origin point (0, 0), a circular
array with a radius of 350 mm composed of 64 piezoelectric sensors (product model: PZT5h)
was arranged. Since the experiment is no longer in an ideal environment, the sampling
frequency and sampling points are adjusted by increasing the value. The experimental
establishment of other aspects was the same as the methods used in Section 4.2. Figure 14
shows the time domain signals and the frequency spectra when the plasticine is on the
vector of an i—j pair (the situation in this figure is i = 10, j = 45). In the experiment,
there is an extra voltage and displacement conversion in the piezoelectric sensor, which
is different from simulation. Therefore, the label of the vertical axis is the voltage. It is
obvious that the signal amplitudes of the SO, A0 modes and the subsequent wave reflection
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Figure 13. An aluminum plate with a piece of plasticine and 64 piezoelectric sensors.
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Figure 14. (a) Time domain signals when the plasticine is on the vector of an i—j pair. The signals of the aluminum plate

without plasticine are shown as blue lines, and the ones of the aluminum plate with plasticine are shown as red lines.

(b) Frequency spectrum corresponding to (a). The central frequency of the excitation signal is 60 kHz.

The 60 kHz SO Lamb mode was used as the primary mode, and the second harmonics
were used in the NGW method. For experimental comparison, the NGW, attenuation, MP
and covariance method were used for signal processing, respectively, and the probability
distributions obtained are shown in Figure 15. Since plasticine is a viscoelastic material, the
variation of surface waves caused by plasticine is more than that caused by degradation.
As shown in Figure 15, the peak value of NGW method is 16.87, and that of covariance
method is 9.391, which proves the secondary modes are more easily attenuated than
the primary modes in the process of propagation. It is worth noting that since only one
defect is on the material, there is basically no positioning deviation as the case of multiple
degradations shows in Figure 8a. By detecting the SDCs of the peak prominences and peak
values in the time domain signals, respectively, the obtained probability distributions of
the attenuation and MP methods are plotted in Figure 15b,c. It can be observed that the
position of plasticine is with a deviation. Besides, there are more serious artifacts in these
two figures, which have a relatively large SDC resulting in reduced resolution. Overall, the
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covariance method more accurately reconstructed the position and size of the plasticine,
which shows that the Lamb wave primary modes have exceptional sensitivity for detecting
linear macroscopic defects. The nonlinear harmonic for NGW method is also sensitive to
linear macroscopic defects. Although the resolution is only passable and the artifacts are
large due to the low power flux, the defect location can still be detected.
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Figure 15. Probability distributions of the plasticine on the aluminum 6061-T6 plate in the laboratory reconstructed by
(a) NGW method expressed with the second harmonics, (b) attenuation method, (¢) MP method and (d) covariance method.
The area covered by the circle corresponds to the positions of the plasticine in the experimental establishment.

6. Conclusions

In this work, we studied the nonlinear guided wave tomography which is used for
detection early-life material degradation in metal plates. A generalized nonlinear acoustic
modeling framework has been established which implements hyperelastic constitutive re-
lations into Abaqus VUMAT subroutine. We developed a guided wave tomography signal
processing platform with rich acoustic characteristics and compared the reconstruction
performance of the NGW method with several other methods based on the results of de-
tecting degradations and macroscopic defects. Numerical results validated that nonlinear
guided wave tomography is capable of characterizing the severity of early-life material
degradation. The NGW method has the potential capacity to simultaneously realize the
qualitative detection of material degradation and the quantitative detection of the degra-
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dation degree. Furthermore, it was demonstrated that nonlinear tomography can still
locate the degradation with a limited number of sensors. Finally, it can be deduced that the
nonlinear harmonic is also sensitive to linear macroscopic defects.

However, when there are multiple defects on a material at the same time, the position
of which in the probability distribution converges, leading to deviations. If the signal
processing in the NGW method is enhanced, this problem may be improved. In addition,
higher-order harmonics are extremely susceptible to the nonlinear noise of the systems,
which can cause a decrease in the resolution. The nonlinear guided wave mixing has the
potential quality to overcome this problem. By making full use of the multi-mode and
dispersive characteristics of guided waves, it can effectively distinguish the nonlinear
sources and improve the detection sensitivity. All the above-mentioned will be the next
step in future research.
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Appendix A. Derivation of Objective Cauchy Stress for Murnaghan’s Model

The elastic potential function for Murnaghan’s model of hyperelasticity in terms of
invariants of Left-Cauchy Green deformation tensor is given by [34]:

U(Ty,To,]) = a1J*°Ty + a2 J*3 112 + a3 43Ty + ag Ty 1o + as]%113 + ag <]2 - 1) +a;  (Al)

According to Equation (A1), the first order derivatives of the invariants are given as:
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Rewriting Equation (A5) for ease of reader,

o-:?[{au+l au}BauBB}Jr[au 2{1 au+ZIzauHI (A5)

oL, ‘ol ol aJ 37 'aL al,
20U— 2-0dU—- 20oU-— ou ou 4 _ oU
= "B+ ——B--"""BB+_—I— I — I — —I1,—1 A6
CTyan 1L o D a3 tan, 3] an, (A6)

where B is Left-Cauchy Green deformation tensor, detB = detC = 1, and B = FE.. By
substituting the known parameters into Equation (A6), it can be obtained that:

= 3 (@123 + 200]* Ty + 4Ty + 30512 ) B + 3 (a1 J° + ay 2112 ) B

—% (613]4/3 + 614]271>§'§ + (%ﬂﬂ_l/?’fl + 3023102 + Sa3]V 31, + 2a4] 11 I

B (A7)
+2as]T;% + 2a])1 - <a1]2/311 120543142 4 0y 2Ty To + 3a5 )21, )
— 3% <ﬂ3]4/3jz + ﬂ4]211T2>1
o= 2(% + 202]1/3T1 +asJI, + 3!15]T12 + a3]1/371 + 114]712)3
(A8)

2 (a3]1/3 4 a4ﬁ1)§.§ + (2a6])1

From kinematics, we know the polar decomposition of deformation gradient which
can be used for the distortional component to write,

F=RU (A9)
where U is the distortional component of right stretch tensor. Hence, it can be deduced that:
B=FF = (RU)(U'R") = RU'R" (A10)

BB = RU'RT (A11)
Therefore, Equation (A8) can be rewritten as:
o= (]21% + 461211]1/3 + 2614]12 + 6015]112 + 261371]1/3 + 204]112)RU2RT

o (A12)
- (2a3 JV/3 4 24, ]Il)RU RT + (2a6])IRRT

[oa :R{(% +4a2]1/371 +2a4ﬁ2+6a5]712+2a3]1/371+2u4ﬁ12)flz ( )
Al3
- (2a3 V3 4 2a, ]Tl>ﬁ4 + (2a6 ])1} RT

Here, Cauchy true stress has been converted into its frame-independent, objective
counterpart, referred to as ocorot:

o= Ro'corotRT (A14)

As a result, it can be obtained from Equation (A13):

Ceorot = (]1/3 1 4ay]V/3Ty + 2a4 T, + 6as]T12 + 2a3] /3T, + 2a4 T, )u2
) (A15)
- (2113 JV/3 4+ 244 fll)il‘* + (2ag))I
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