
sensors

Article

Deep Convolutional Clustering-Based Time Series
Anomaly Detection

Gavneet Singh Chadha 1,* , Intekhab Islam 1, Andreas Schwung 1 and Steven X. Ding 2

����������
�������

Citation: Chadha, G.S.; Islam, I.;

Schwung, A.; Ding, S.X. Deep

Convolutional Clustering-Based Time

Series Anomaly Detection. Sensors

2021, 21, 5488. https://doi.org/

10.3390/s21165488

Academic Editor: Kim Phuc Tran

Received: 23 June 2021

Accepted: 10 August 2021

Published: 15 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Automation Technology, South Westphalia University of Applied Sciences,
59494 Soest, Germany; islam.intekhab@fh-swf.de (I.I.); schwung.andreas@fh-swf.de (A.S.)

2 Department of Automatic Control and Complex Systems, University of Duisburg-Essen,
47057 Duisburg, Germany; steven.ding@uni-due.de

* Correspondence: chadha.gavneetsingh@fh-swf.de

Abstract: This paper presents a novel approach for anomaly detection in industrial processes. The
system solely relies on unlabeled data and employs a 1D-convolutional neural network-based deep
autoencoder architecture. As a core novelty, we split the autoencoder latent space in discriminative
and reconstructive latent features and introduce an auxiliary loss based on k-means clustering for
the discriminatory latent variables. We employ a Top-K clustering objective for separating the latent
space, selecting the most discriminative features from the latent space. We use the approach to the
benchmark Tennessee Eastman data set to prove its applicability. We provide different ablation
studies and analyze the method concerning various downstream tasks, including anomaly detection,
binary and multi-class classification. The obtained results show the potential of the approach to
improve downstream tasks compared to standard autoencoder architectures.

Keywords: unsupervised learning; deep convolutional autoencoder; top-K K-means clustering;
anomaly detection

1. Introduction

Sophisticated and interconnected modern manufacturing systems require transparent
and insightful analytics. Consequently, intelligent condition monitoring of such processes
is necessary to analyze changes in the process parameters and determine anomalies that
hurt the reliability of the overall system. This unreliability can also lead to substantial
financial consequences. However, modern production systems constitute complex inter-
connected behaviour, which renders the derivation of models through the first principle
very difficult [1]. Hence, data-driven methods are an appealing alternative, particularly
as a huge amount of data ranging from field level devices like sensors and actuators to
manufacturing execution systems and enterprise resource planning systems are available
through the Industrial Internet of Things [2].

However, a significant part of data-driven methods, namely supervised machine learn-
ing relies on the availability of labelled data from all of the possible operating conditions
of the system. This availability of labelled data for industrial processes is infeasible due
to various reasons. First, the faulty or abnormal operation often results in shutdowns or
instantaneous repair actions, such that sufficient data instances are lacking. Second, data
set labelling has to be done manually, which is usually not accomplished in industrial
practice. Third, data sets for inconceivable fault cases are impossible to gather. In such
cases, unsupervised or semi-supervised learning based data-driven techniques is the only
alternative as they can suitably characterize the fault-free state of the system, which can
subsequently be used to assess abnormal or faulty conditions.

Unsupervised or semi-supervised methods have been aggressively used in the area of
novelty or anomaly detection. As surveyed in [3], the methods for anomaly detection can be

Sensors 2021, 21, 5488. https://doi.org/10.3390/s21165488 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-9374-9074
https://doi.org/10.3390/s21165488
https://doi.org/10.3390/s21165488
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21165488
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21165488?type=check_update&version=2


Sensors 2021, 21, 5488 2 of 20

categorized into Probabilistic Models, Distance-based Models, Reconstruction Models, One-
Class Classification Models and Information-theoretic Models. The methods for anomaly
detection can be further categorized into shallow and deep learning methods as surveyed
in [4]. Recently, deep neural networks (DNNs) have shown a great capability to extract
meaningful patterns from raw data with multiple levels of abstraction, providing state of
the art results in various application fields like image recognition, object detection, speech
recognition and natural language processing [5]. For unsupervised learning, approaches
based on the Autoencoder (AE) framework [6] and Generative Adversarial Networks
(GANs) [7] have proven helpful for anomaly detection. GANs are trained by employing a
minimax game where a discriminator is trained to distinguish between real and fake data
generated by a generator network. However, the training objective resulting in a saddle
point convergence renders GANs notoriously hard to train. The AE framework encodes
the multivariate sensor signal into a latent variable space by means of a DNN from which
a decoder network reconstructs the input. AE architectures can be distinguished based
on the form of input data corruption, and latent variable sampling they possess, namely
Denoising AE [8], Variational AE (VAE) [9] and Adversarial AE [10]. In all approaches,
the latent variable space constitutes an abstract representation of the input signals, which
can infer between normal and abnormal conditions. However, as the training objective of
the AE is the reconstruction loss between input and output, the discriminative power of
latent variables to distinguish between operation modes is not enforced, which can result
in poor performance in anomaly detection.

This paper tackles this problem and proposes a novel approach for anomaly detection
in industrial processes based on a clustering-loss augmented convolutional autoencoder
(CAE). We use a 1-dimensional CAE as the backbone architecture for the multivariate
time-series task. In contrast to existing approaches, we split the latent space of the CAE into
two sets, namely discriminative and reconstructive latent variables, and add an auxiliary
loss for the discriminative latent variables. The loss is defined in terms of the well known
K-means [11,12] clustering loss, where the auxiliary loss from the K-means algorithm
during training is sampled only for the Top-K latent variables based on the greatest cluster
centre distance achieved in clustering space. The reconstruction and the auxiliary loss are
propagated through the discriminative latent variables, allowing for more discriminative
hidden representation. We provide thorough experiments with unsupervised and semi-
supervised approaches on the Tennessee Eastman [13] benchmark data set for anomaly
detection. The results underline the applicability of the approach resulting in state-of-the-
art performance.

The contributions of the paper can be summarized as follows:

• We present a novel unsupervised learning approach based on 1-dimensional convolu-
tional neural networks and deep autoencoder structure where we define an auxiliary
loss to increase the expressiveness of the latent representation.

• The proposed Top-K Deep Convolutional Clustering algorithm (Top-K DCCA) is novel
in that the encoder parameters are divided into clustering and reconstruction subsets
with the help of the Top-K operator. After this division, the encoder parameters from
the clustering part are updated with an auxiliary clustering loss.

• We experiment with pure unsupervised and semi-supervised learning evaluation of
the proposed method and report remarkable improvement on the Tennessee Eastman
benchmark data set for anomaly detection. The results show the superior performance
of the approach compared to the state-of-the-art.

The paper is organized as follows. In Section 2, the related work is presented.
In Section 3 we state the considered problem, followed by the theoretical background on
Clustering and Convolutional AE in Section 4. Section 5 presents the proposed approach for
Convolutional Clustering-based unsupervised anomaly detection. In Section 6 we provide
results and comparisons on the well-known Tennessee Eastman benchmark dataset. Section 7
concludes the paper.
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2. Related Work

We discuss related work on data-based condition monitoring and anomaly detection
in multivariate time series data and unsupervised and self-supervised learning approaches.
Anomaly detection has been researched in various application fields and datasets. Some
examples of datasets include the ISCX dataset [14] dataset for network intrusion detection,
credit card fraud detection from the Mellon Bank Fraud Detection Feasibility Study [15]
and health deterioration detection from the Oxford Cancer Hospital dataset [16]. The Ten-
nessee Eastman dataset is chosen because the focus of this study is data-based condition
monitoring for industrial processes.

Data-Based Condition Monitoring and Anomaly Detection: Condition monitoring and
anomaly detection have a long history in various application domains. Anomaly detection
for a production process can be seen as a sub-category in the condition monitoring field.
In general, we can distinguish the existing works for condition monitoring in shallow
learning and deep learning approaches. The various shallow learning approaches have
been surveyed in [17–19]. Some examples of shallow methods for anomaly detection
with unsupervised learning include Kernel Density Estimation [20], Principal Component
Analysis [21], k nearest neighbours [22] and One-Class Support Vector Machines [23].
However, most of the mentioned shallow approaches are static, such that they cannot be
efficiently used for time-series anomaly detection tasks. Additionally, extraction of relevant
features from multivariate raw data is still a challenge with shallow methods. Deep domain
knowledge of the process is required for choosing suitable techniques for feature extraction
in the shallow approaches.

Different approaches from the deep learning field appear as high performing and
efficient algorithms for condition monitoring and time series analysis. The deep learning
architectures use multiple layers of non-linear transformations to extract high-level features
from raw data, which provide relevant information for the respective task. The various
deep learning approaches for condition monitoring have been surveyed in [24–27]. Most
deep learning approaches consider supervised learning problems where faulty operation
modes or process anomalies are labelled. However, the assumption of labelled data sets
in industrial applications is too restrictive in various applications, including condition
monitoring, remaining useful lifetime estimation and tool wear detection, to name a
few. Hence, recent approaches also consider unsupervised deep learning approaches for
anomaly detection and condition monitoring. Notably, deep AE and GANs have shown to
be of particular use for such applications.

Deep Semi-supervised and Unsupervised learning: Deep learning models for anomaly
detection have been used in various domains such as Intrusion Detection, Fraud detection,
Malware detection, Medical detection [28]. We will highlight some specific examples
from GANs and AE here. Anomaly detection for imaging markers relevant for disease
progression with unsupervised learning based GANs has been reported in [29]. A semi-
supervised learning based GAN has been presented for anomaly detection in multiple
image datasets in [30]. Recently, there have been studies that use GAN for unsupervised
fault diagnosis in rolling bearing [31] and semi-supervised fault diagnosis in planetary
gearbox in [32]. Although recent improvements have been made in the GAN architecture,
GANs are still known to have unstable training progress [33].

Deep AE, on the other hand, started the deep learning era in [34] and have been widely
tested in various domains of anomaly detection such as brain scans [35], outlier detection
in videos [36] and multiple public datasets from the UCI machine learning repository [37].
Recently, an automatic thermography defects detection using a spatial and temporal seg-
mentation model has been proposed in [38]. A sparse mixture of Gaussian decomposition
algorithm for inductive thermography has been proposed in [39]. Although deep AE for
anomaly detection can be used in a supervised setting [40], we will focus on the methods
for unsupervised and semi-supervised settings in production processes. An unsupervised
learning based, memory augmented AE architecture has been proposed in [41] to better
identify anomalies from normal data. A deep support vector data description method
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inspired by kernel-based one-class classification method for anomaly detection has been
proposed in [42]. Stacked Sparse AE in a semi-supervised setting has been proposed in [43]
for fault diagnosis in rotating machinery such as gearboxes. A similar semi-supervised
learning approach for induction motor fault detection has been proposed in [44]. Unsuper-
vised learning-based wind turbine monitoring with deep AE has been proposed in [45,46].
Unsupervised learning based spatiotemporal feature extraction methodology using Re-
stricted Boltzmann Machines for fault detection has been proposed in [47]. Unsupervised
Process monitoring with the variant AE has been presented in [48]. A comparison of deep
AE, deep Denoising AE and VAE for semi-supervised anomaly detection approach in the
TE process has been proposed in [49]. However, all of the previous methods are static
approaches, which do not consider the dynamic nature of time-series data.

For time-series based anomaly detection, a Long Short Term Memory (LSTM) based
encoder-decoder architecture has been proposed in [50]. Convolutional AE (CAE) was
first presented in [51] for a higher level of feature extraction in images. CAE has, after that,
been used for anomaly detection in images [52] and videos [53]. The Attention augmented
Convolutional LSTM model has been proposed in [54] for anomaly detection in multivariate
time series data. However, none of these approaches enhances the discriminative ability of
the latent representation of the CAE model.

Deep Clustering: Some approaches in the literature join the use of feature extraction
and clustering together to have better discriminative features. [55] proposed a joint clus-
tering and reconstruction approach for image and text data. The main idea is to connect
a clustering module at the bottleneck layer of an AE and optimize the parameters of the
AE and the cluster centres jointly. A similar approach with CAE and clustering has been
proposed in [56] for image data. Deep clustering has been also used for learning the
weights of a convolutional network by using the cluster assignments as supervision [57].
Apart from K-means, an approach with KL-divergence minimization has been proposed
in [58].

Our approach differentiates from the previous methods in two ways. First, we propose
a Top-Kclustering approach where the latent space is divided into clustering friendly and
reconstruction friendly spaces. Therefore, the latent features for reconstruction only get a
gradient from the reconstruction error. However, the clustering features receive the update
gradient from reconstruction and the clustering errors. Secondly, we apply the proposed
approach on a multivariate time-series dataset from an industrial benchmark for anomaly
detection. Therefore, the application field is very different from the usual image datasets.

3. Problem Statement

The main challenge for anomaly detection is to distinguish anomalous behaviour
from data set noise. We conjecture that an incipient anomaly cannot be detected by one
instance of the data set; instead, a specific time window of the input data set is required.
Therefore, we concentrate on the analysis of multivariate time series data, i.e., we consider
a sequence {x1, x2, . . . , xT} where xi ∈ Rm as input for the anomaly detection task, with m
denoting the number of variables and T the length of the time-series signal. Further, we
consider a hybrid, reconstruction-clustering based unsupervised learning methodology for
anomaly detection, i.e., we assume that the evaluated data set is unlabeled. No indication
is available whether the sequence exhibits normal or abnormal behaviour. Note, however,
that for semi-supervised evaluation of the proposed approach, we use the learned AE for
anomaly detection; labelled data is partly required and assumed to be known.

Then we can state the considered problem as follows: The purpose of the approach is to
train the CAE structure fθ(x), in such a way that the learned latent representation z, is able
to best discriminate between normal zno and anomalous behavior zano, i.e., |zno − zano| →
max. Particularly, we aim to find an optimal separation between normal and anomalous
data using unlabelled data only.

We present the solution that combines a deep CAE architecture with a latent represen-
tation clustering algorithm to find better discriminative latent representations.
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4. Theoretical Background
4.1. K-Means Clustering

Clustering is one of the most profound and fundamental tasks in the field of unsu-
pervised learning. However, various sets of factors make clustering notoriously complex.
Some of these factors include [59]

• amount of noise in the data which can occur during data acquisition,
• use of data pre-processing techniques such as any form of dimensionality reduction,
• the clustering criterion and optimization algorithm is chosen and
• the initialization of the cluster centres.

These factors can affect the outcome of the clustering algorithm and can produce
trivial solutions.

We keep the focus of our study to the K-means [11] algorithm. K-means, like most
other data clustering algorithms, partitions the data into a pre-specified number of clusters.
Clustering algorithms achieve this by minimizing a well-defined cost function involving
the data and the assignment of the centres for each data instance. K-means belongs to the
hard type, where each data point belongs to only one partition.

Formally, the task of clustering is to group N data samples into K clusters given a set
of data samples {xi}i=1,....,N where xi ∈ RM. The K-Means clustering algorithm achieves
this goal by the optimization of the following cost function:

minimize
M∈RM×K, {si} ∈RK

N

∑
i=1
||xi −Msi||22 (1)

s.t. sj,i ∈ {0, 1}, 1T si = 1 ∀i, j

where si is the assignment vector of the ith data instance which consists of only one non-
zero element, sj,i stands for the jth element of si, and the kth column of M stands for the
centroid of the kth cluster.

The efficiency of the K-Means algorithm is the most when the data samples are evenly
scattered around their centroids in their feature space. The data sets which possess this
characteristic are called K-Means friendly data sets. However, this phenomenon rarely
holds up in real-world data sets, because most of the real-world data sets are very high
dimensional. Adding to that, most of the real-world data sets contain unwanted noise in
the data. All these factors hinder the possibility of a data set being K-Means friendly [55].

To avoid these issues, usually, some form of dimensionality reduction or non-linear
representation technique is used on the data set before applying K-Means. The K-Means al-
gorithm applied to this non-linear representation usually yields better results [60]. The sev-
eral available dimensionality reductions or non-linear representation techniques use Deep
Neural Networks to learn better features from the data set. These methods are widely used
for data pre-processing before applying K-Means, or other clustering algorithms [61].

4.2. 1-D CNN Autoencoder

The proposed encoder-decoder network architecture for the Top-K DCCA is shown in
Figure 1, in which the encoder consists of 3 convolution layers, and the decoder comprises
3 deconvolution layers. Addtionally, there is a clustering module on the bottleneck represen-
tation of the encoder. The autoencoder applies a stack of 1-dimensional convolutional layers
at both encoder and deconvolution layers at the decoder. The encoder transforms the multi-
variate time series data set to a latent representation thereby extracting relevant features of
the data set. The decoder subsequently reconstructs the original data set from the general
low dimensional latent representation. Since the decoder reconstructs the input based on
the encoded representation of the bottleneck layer, i.e., Conv 3 layer, the activation maps
from the Conv 3 layer can be considered as an encoded representation for a batch of the
input dataset. Therefore, it is clear that the encoded representation has a verifiable relation-
ship to the input features since the decoder recreates the input features from the activation
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maps in the encoded representation. The input size of each of the layers follows the naming
convention as (Batch− Size× Number− o f − Input− Channels× Sequence− Length).

Figure 1. Proposed architecture of the clustering augmented deep autoencoder for anomaly detection.

On top of the latent representation, we employ a clustering module to make the
latent representation more discriminative, allowing us better to capture the differences
between normal and anomalous behaviour. As shown, we only employ the clustering on a
subset of latent representations chosen based on different criteria to be discussed below.
The rationale behind that architectural choice is to find a trade-off between consistent latent
representations resulting in good reconstruction accuracy while making a subset of latent
representation more discriminative, which suits downstream processing. In the following,
we discuss the architectural modules in detail.

The combination of autoencoder structures with CNNs is a standard approach for
deep unsupervised learning in various image and video processing tasks [53]. Here, at the
encoder and decoder, convolutional and deconvolutional layers are employed to extract
essential information within the latent representation. We use a similar approach to the
time series analysis as proposed in [62], where the sensor channel and time dimensions
make up the input to the network. As mentioned in the study, applying the standard
2-dimensional kernel is not appropriate as a meaningful relation between sensor channels
is missing, resulting in poor performance. The 1D convolution operation is performed over
a part of the complete input space, which is referred to as the receptive field. We denote the
receptive field of size nr ×m, which strides over the input T ×m sequences, accounting
for each of the variables. The pth convolution 1D kernel in the first layer can be denoted
with a 2-dimensional tensor K(p) = [k(p)

i,j ] ∈ Rnr×m. The indices i, j denote the dimension
along the time and variable axis, respectively. The outputs or feature maps extracted from
the convolution operation with 1 convolution kernel is a 1-dimensional tensor H = [hi].
Usually, multiple convolution kernels are used in each convolution layer leading to multiple
feature maps, which subsequently make the feature maps a 2-dimensional tensor H = [hi,p].
Each convolution kernel is responsible for extracting different features from the input data.
Formally, the convolution 1D operation can be summarized as follows:

hi,p = (x ∗ k)i =
nr

∑
g=1

m

∑
f=1

xi+g−1, f · kp
g, f

∀i ∈ {1, . . . , T − nr + 1}
∀p ∈ {1, . . . , dq+1}, (2)
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where hi,p denotes the output of the (i)th receptive field and the pth convolution kernel,
xi+g−1, f are the elements in the receptive field of the input variable, kg, f is the convolution
kernel and dq+1 denotes the number of convolution kernels in the given layer.

The deconvolution, sometimes called the transposed convolution operation, performs
the inverse operation as the convolution operation, such that it up-samples the individual
feature maps into the original input. The weights of the convolution and deconvolution
filters can be tied, but we keep them untied in this study.

As we cope with time series of variable length where the time dimension is significant,
we employ a sliding window approach for the time dimension. As such, we define a
window of size of mw × n with T >> mw > m, which is analyzed within one processing
step of the deep autoencoder. Then the time series is strided in the time dimension by
a stride of sw to define a new window to be processed in the next step. This approach
has some advantages compared to processing directly on the complete input sequence.
Notably, an individual data point {xi} is processed more than once in different settings,
increasing the robustness of the resulting convolution kernels.

5. Convolution Clustering Based Unsupervised Learning for Anomaly Detection

In this section, we propose the training strategy for the unsupervised learning ap-
proach for the Top-K DCCA approach.

5.1. Top-K DCCA

We augment the previously defined CAE architecture by a novel Top-Kclustering
objective defined on a subset of the latent space as illustrated in Figure 1. Particularly, we
split the latent space into two subsets of latent variables Zc ⊆ Rnc and Zr ∈ Rnrec which we
term clustering and reconstruction friendly latent variables in the following. The rationale
behind the split of the latent space is to better weigh-off between reconstruction accuracy
and discriminative clustering accuracy. Hence, we force consistent representation of the
input data by the reconstruction space and the discriminative power of the clustering
features to improve performance on downstream tasks.

As such, the clustering related latent variables are passed through an arbitrary cluster-
ing algorithm. We employ the well-known K-means algorithm for clustering in this work
due to its simplicity. However, we emphasize that various other clustering approaches can
be combined with our framework. The k-means algorithm is subsequently used on the
latent representation Z , leading to the optimization of the following cost function:

min
Mj∈Rnc×k ,si∈{0,1}K

N

∑
i=1
||zi

j −Mjsi|| (3)

s.t. 1Tsi = 1 ∀i, (4)

∀zj ∈ Z , (5)

where the column vector mk,j of M denotes the kth cluster center in the nc-dimensional
space and si is the cluster assignment of the ith data points latent representation.

A crucial part of the system setup is the split of the latent space. A straightforward
approach would be to separate cluster and reconstruction friendly latent variables be-
fore training. However, this appears to be restrictive when used together with the CAE,
particularly during training. Hence, instead of defining the split at the start of training,
we augment the K-means clustering by a Top-K sampling method that uses the top-nc
latent variables in terms of their discriminative performance. The splitting criterion is the
euclidean distance between the 2 cluster centers present in each of the latent variables.
The Top-K operation of latent variables ranking returns indices of the K latent variables
where the distance between the cluster centers is maximum. The discriminative perfor-
mance is measured based on the euclidean distance between the cluster centres in the latent
space. According to the authors, the maximum distance between the cluster signifies that
the latent variable has more discriminative performance since it can efficiently identify
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the 2 different operating conditions. Specifically, if we assume an anomaly detection task
with two clusters with centres mno,j and mano,j indicating normal and anomalous operation,
respectively, we employ the following euclidean distance measure

max
j∈Zc

d(mno,j, mano,j) = max
j∈Zc
||mno,j −mano,j||2, (6)

to identify the Top-nc latent variables forming the set Zc.
It is important to note that the clustering loss is employed independently on the latent

variables in the set Zc. However, during training, we fed back the loss of the top-nc latent
variables only. Therefore, during training, the latent variables switch among the clustering
subset and reconstruction subset, based on the euclidean distance of their respective cluster
centers. This ensures that a subset of latent space is discriminative by forcing the model to
learn a hidden representation in which certain cluster centers are as far away as possible
based on the criterion from Equation (6). During the testing phase, the trained division
latent space into the 2 subsets is kept constant.

The split percentage of the latent variables defined by nc, nr is a hyperparameter that
has to be determined a priori. It has to trade-off between reconstruction and discrimination
capability of the latent variable space. In practice, we found a 50/50 split between working
well in all the experiments.

5.2. End-to-End Training of the Clustering Augmented AE

This section introduces the end-to-end training for the clustering augmented deep
autoencoder. Particularly, we discuss the interaction between the loss propagation of the
clustering and the reconstruction module of the autoencoder. The parameters of the CNN
of both encoder fθ and decoder gψ are trained by the reconstruction loss between input
and reconstructed output, i.e.,

LAE(θ, ψ) =
NB

∑
i=1
||xi − gψ( fθ(xi))||22, (7)

where NB is the minibatch size. Additionally, we feed back the clustering loss through the
clustering friendly latent variables

Lj,CL(θ) =
NB

∑
i=1
||zi

j −Mjsi||22 =
NB

∑
i=1
|| f j,θ(xi)−Mjsi||22, (8)

zj ∈ Zc, (9)

which subsequently affect the encoder parameters only.
The total loss for training the CAE is

L = α

zj

∑
j=1

Lj,CL(θ) + (1 − α)LAE(θ, ψ) (10)

where the value of α ranges between 0.6 to 1, and it acts as a weighing factor between the
two loss functions. This range of optimal value of α was empirically found based on the
average F1 score that was achieved on all the fault cases. The experimental results on the
different values of α are illustrated in Figure 2.



Sensors 2021, 21, 5488 9 of 20

Figure 2. Average F1 score of the model on all the fault cases based on different values of α.

It is considered an additional hyperparameter of the network and has to be tuned
while training it. Since α ≤ 1 keeps the overall loss distribution towards the reconstruction
and clustering losses balanced.

It is theoretically possible to chose a a different independent parameter β, with the
condition that α + β = 1. However, to keep the number of hyperparameters in check, this
setting of just one hyperparameter α has been chosen.

The gradient of the above equation with respect to the network parameters can be
computed from the equation below:

∇ χ L = (1 − α)
∂LAE

∂χ
+ α

zj

∑
j=1

∂Lj,CL

∂θ
(11)

∇ χ L = (1 − α)
NB

∑
i=1

2(xi − gψ( fθ(xi))[gψ( fθ(xi))]′ + α
NB

∑
i=1

zj

∑
j=1

2( f j,θ(xi)−Mjsi) f j,θ(xi)′ (12)

where χ = (θ, ψ) is the collection of encoder and decoder parameters and the partial
gradients are calculated by back-propagation [63]. Subsequently, the network parameters
are updated with gradient descent as

χ ← χ − β∇χL (13)

where β is the learning rate.
During the initial stages of training, termed as pre-training, the value of α is set to 0.

This ensures that the network learns from only the reconstruction loss. Since no clustering
loss is imposed on the network, the network tries to reconstruct the input solely based on
the non-clustering loss. For the clustering augmented training stage, a fixed value of α is set.
The network is trained on both loss functions. This method ensures that the reconstruction
of the input is taken into account and helps to avoid trivial solutions. In addition, we define
a Cluster Update Interval C, which denotes the interval in which the cluster centres of the
latent feature representation are updated to have robust hidden representation.
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The algorithm of the Top-K DCCA is represented in Algorithm 1, where a model is
trained for N epochs.

Algorithm 1 Top-K Deep Convolutional Clustering Algorithm.

1: procedure INITIALIZATION(Perform N epochs over the data)
2: P = Number of pre-training epochs
3: C = Cluster update interval
4: for epoch = 1 to P + 1 do
5: Reconstruct the data, extract latent representation fθ(xi)
6: Compute gradients ∇ χ Li with α = 0 by Equation (11)
7: Update network parameters χ by Equation (13)
8: if epoch = P + 1 then
9: Perform K-Means optimising the Equation (3)

10: Return centers mno,j and mano,j and center assignments Mjsi
11: Rank latent representation layer channels by Equation (6)
12: Return Top K ranked channels
13: for epoch = P + 1 to N do
14: Reconstruct the data, extract latent representation fθ(xi)
15: Compute gradients ∇ χ Li with α = 0 by Equation (11)
16: Update top K ranked channel parameters by Equation (13)
17: Zero the gradients
18: Compute gradients ∇ χ Li with α = 0 by Equation (11)
19: Update rest of the channel parameters by Equation (13)
20: if epoch % C = 0 then
21: Perform K-Means by optimising the Equation (3)
22: Return centers mno,j and mano,j and center assignments Mjsi
23: Rank latent representation layer channels by Equation (6)
24: Return Top K ranked channels

6. Experimental Results
6.1. Tennesse Eastman Benchmark

The TE process was originally created by Downs and Vogel as a process control chal-
lenge problem in [13]. The generated dataset from the TE Process consists of 22 continuous
process measurements, 19 component analysis measurements, and 12 manipulated vari-
ables. The dataset consists of 21 pre-programmed faults, among which 16 are known fault
cases, and 5 fault cases are unknown. Both the training and testing datasets include a
total of 52 observed variables. The training dataset consists of 22 different simulation runs,
and simulation 0 is fault-free. In our case, this simulation is considered as our normal
data sample. Simulations 1 to 21 were generated for 21 fault cases, and in our case, all of
these 21 simulations are considered anomalous data samples. Similarly, the testing data
set contains 22 different simulations, the first one being the normal case, and the rest are
simulations for different fault cases. Table 1 represents the Tennessee Eastman Process fault
cases. Since the TE process dataset contains collected time-series sensor data, the data is
prepared as time series sequences as discussed in [1] before the training.
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Table 1. Tennessee Eastman Process Fault Cases.

Fault Cases Description Type

1 A/C ratio, B composition constant (Stream 4) Step
2 B composition, A/C ratio constant (Stream 4) Step
3 D feed temperature (Stream 2) Step
4 Reactor cooling water supply temperature Step
5 Condenser cooling water supply temperature Step
6 A feed loss (Stream 1) Step
7 C header pressure loss (Stream 4) Step
8 A, B, C feed composition (Stream 4) Random
9 D feed temperature (Stream 2) Random

10 C feed temperature (Stream 4) Random
11 Reactor cooling water supply temperature Random
12 Condenser cooling water supply temperature Random
13 Reaction Kinetics Slow drift
14 Reactor cooling water valve Sticking
15 Condenser cooling water valve Sticking
16 Unknown -
17 Unknown -
18 Unknown -
19 Unknown -
20 Unknown -
21 A, B, C feed valve (Stream 4) Constant position

6.2. Training Setup

The length of each sequence is decided prior to the training, and both the data with
and without faults are arranged into time-series sequences. This kind of arrangement has
proved to help the model in increasing the performance since a time-series gives more
context about the situation than a single measurement. We select a sequence length of 30
for our experiments as this length gives a good overall performance.

To define the anomaly detection setting, we follow previous works [1] by dividing the
fault classes into subgroups based on how challenging the faults are to detect. Accordingly,
we divide the 21 faults into three subgroups: easy, medium, and hard-to-detect faults.
The three fault subgroups considered are as shown in Table 2. The data from the literature
have been adapted accordingly for comparison.

For evaluation of the anomaly detection task, we concentrate on measures related to
the numbers of correctly and incorrectly classified data points. Specifically, we use the
standard notions of true positives (TP) and true negatives (TN) to denote the number
of examples predicted correctly as a positive and negative class, respectively and false
positives (FP) and false negatives (FN) as the number of examples predicted incorrectly
as a positive and negative class, respectively. Based on the values, we use the F1 score
as the performance measure. The F1 score is chosen as the evaluation metric because if
the number of examples in one of the classes is higher than the other, then even random
guessing can result in high prediction accuracy. Therefore, we use the F1 score, which is
a geometric mean of precision P and recall R, is considered in the case of the TE process
given as

F1 = 2
P · R

P + R
, (14)

where

P =
TP

TP + FP
, (15)

R =
TP

TP + FN
. (16)
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Table 2. Fault Groups in TE Process [1].

Subgroup Normal Case Fault Cases

Easy 0 1, 2, 4, 5, 6, 7, 12, 14, 18

Medium 0 8, 10, 11, 13, 16, 17, 19, 20

Hard 0 3, 9, 15, 21

We apply the proposed learning methodology to the TE benchmark data set and
provide a thorough ablation study. The comparison study is enlisted as follows.

• We start by comparing the fault detection capabilities for completely unsupervised
learning techniques in which the proposed methodology is compared to the standard
k-means augmented CNN approach.

• We then evaluate the fault detection capabilities with semi-supervised learning tech-
niques, in which the proposed methodology is pre-trained with unlabelled data and fi-
nally, a fully connected layer is fine-tuned with labelled data. This technique is compared
with and without K-means clustering, with and without Top-K K-means clustering.

In this section, we defined the training setup for the anomaly detection task on the TE
process. Based on this setup, experimental results and ablation studies were performed to
evaluate the prediction performance of the proposed methodology.

6.3. Unsupervised Learning Results

This section presents the results obtained by applying the proposed approach Top-K
DCCA in a purely unsupervised learning setting. This means that no labels from the
fault information have been used for training the models. The results obtained from the
proposed approach are compared with the baseline architecture, hereafter referred to as
the Vanilla architecture, and a standard DCCA approach. The Vanilla architecture is a
3 convolution layer architecture, whereas the Top-K DCCA model is tested with a 2 and
3 layer convolution layer architecture. The architecture description for the Vanilla, DCCA
and the Top-K DCCA architecture is as follows:

• Three convolution layers with the LeakyReLU [64] activation function
• A kernel size of 3 in all convolution layers
• The number of convolution channels doubling with each layer, starting with 64 channels.
• The number of clustering channels is set to 128 in the bottleneck layer.
• A batch-size of 20 with α = 0.6 and β = 0.001 is used.
• All the models are trained for 100 epochs with the stochastic gradient descent (SGD)

optimizer with an L2 penalty of 0.02.

Anomaly detection in the Vanilla architecture is obtained by performing K-means
clustering once after the training process, whereas in the other two architectures, K-means
clustering is part of the training process.

To evaluate the prediction performance of the proposed architecture, a 2 and 3 layer
Top-K DCCA architecture is compared to the Vanilla model for the anomaly detection
task in the TE process. The prediction performance in terms of F1 score for the best
performing architectures is shown in Figure 3. It is clear from Figure 3 that the proposed
architecture performs drastically better than the baseline model on all the fault categories
in the 2 layer and the 3 layer configuration. The 3 layer configuration performs slightly
better than the 2 layer one in all the cases. Therefore, for the subsequent analysis, we keep
the 3 layer configuration.
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Figure 3. F1 score obtained by the Vanilla and the Top-K DCCA approach with different layers for
anomaly detection task in an unsupervised learning setup

training process that there are two distinct regions, i.e., normal and anomalous regions.393

The Fig. 4 show two clusters because the Tennessee Eastman process dataset consists394

of either normal operation or faulty operation. That is why we limit the number of395

clusters to just two. The boundaries of the two distinct regions can be clearly seen, which396

demonstrates that the clustering operation has helped create these decision boundaries.397

The t-SNE visualizations show the distinct separation for most of the test samples. Some398

of the data samples from the two operating conditions are close to each other, signifying399

the hard to detect anomaly samples.400

The unsupervised training results and the corresponding t-SNE plots prove the401

applicability of the proposed methodology to effectively identify anomalies in a dynamic402

and high-dimensional time-series process. A 3 layer unsupervised learning based Top-K403

DCCA approach performs the best under the considered experimental settings.404

6.4. Semi-supervised Learning Results405

In this section, we present the results from the semi-supervised training setup406

where the encoder of the Top-K DCCA architecture is pre-trained with unlabelled data407

as per Algorithm 1, with two fully connected layers with 300 and 2 hidden units being408

trained in a supervised manner with labelled data. The overall proposed architecture for409

semi-supervised learning is shown in Fig. 5. The convolutional encoder is pre-trained410

using unlabelled data and the fully connected layers are fine-tuned using labelled data.411

During the fine-tuning stage, the weights and biases of the convolutional encoder are412

frozen.413

The average F1 score obtained by the Vanilla, DCCA and Top-K DCCA approach on414

the different fault categories is shown in Fig. 6. It is clear from Fig. 6 that the proposed415

Top-K DCCA approach outperforms the other two models in the Easy and Hard fault416

categories drastically. The standard DCCA only marginally performs better in the417

medium category; however, the proposed methodology works better than the Vanilla418

model in all three fault categories. To better estimate the anomaly detection performance419

of the model, confusion matrices for a sample of fault cases from the Easy, Medium and420

Hard fault groups have been illustrated in Fig. 7. The confusion matrix from all the fault421

cases has not been added for the brevity of results. The confusion matrix for fault 1 and422

fault 2 shows that the model can distinguish the normal and faulty cases in most cases.423

However, the model has difficulty distinguishing some medium and hard fault cases424

from the normal case. This can be observed from the low performance on fault cases 3,9,425

and 10. It must be noted here that semi-supervised learning results are comparatively426

better than the unsupervised learning results since labelled data is used to train the final427

hidden layers.428

Figure 3. F1 score obtained by the Vanilla and the Top-K DCCA approach with different layers for
anomaly detection task in an unsupervised learning setup.

To better visualize the discriminative capability in the latent representation, the
t-SNE [65] plots of some of the clustering friendly activation maps are shown in Figure 4.
In all of these t-SNE visualizations of the activation maps, the model has learned through
the training process that there are two distinct regions, i.e., normal and anomalous regions.
The Figure 4 show two clusters because the Tennessee Eastman process dataset consists of
either normal operation or faulty operation. That is why we limit the number of clusters
to just two. The boundaries of the two distinct regions can be clearly seen, which demon-
strates that the clustering operation has helped create these decision boundaries. The t-SNE
visualizations show the distinct separation for most of the test samples. Some of the data
samples from the two operating conditions are close to each other, signifying the hard to
detect anomaly samples.

(a) Activation Map 7 (b) Activation Map 17

(c) Activation Map 32 (d) Activation Map 167

Figure 4. t-SNE Visualization of a sample of the activation maps with Top-K DCCA Approach on
Tennessee Eastman Data.
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The unsupervised training results and the corresponding t-SNE plots prove the appli-
cability of the proposed methodology to effectively identify anomalies in a dynamic and
high-dimensional time-series process. A 3 layer unsupervised learning based Top-K DCCA
approach performs the best under the considered experimental settings.

6.4. Semi-Supervised Learning Results

In this section, we present the results from the semi-supervised training setup where
the encoder of the Top-K DCCA architecture is pre-trained with unlabelled data as per
Algorithm 1, with two fully connected layers with 300 and 2 hidden units being trained
in a supervised manner with labelled data. The overall proposed architecture for semi-
supervised learning is shown in Figure 5. The convolutional encoder is pre-trained using
unlabelled data and the fully connected layers are fine-tuned using labelled data. Dur-
ing the fine-tuning stage, the weights and biases of the convolutional encoder are frozen.

Figure 5. Proposed architecture for semi-supervised deep autoencoder for anomaly detection.

The average F1 score obtained by the Vanilla, DCCA and Top-K DCCA approach on
the different fault categories is shown in Figure 6. It is clear from Figure 6 that the proposed
Top-K DCCA approach outperforms the other two models in the Easy and Hard fault
categories drastically. The standard DCCA only marginally performs better in the medium
category; however, the proposed methodology works better than the Vanilla model in
all three fault categories. To better estimate the anomaly detection performance of the
model, confusion matrices for a sample of fault cases from the Easy, Medium and Hard
fault groups have been illustrated in Figure 7. The confusion matrix from all the fault
cases has not been added for the brevity of results. The confusion matrix for fault 1 and
fault 2 shows that the model can distinguish the normal and faulty cases in most cases.
However, the model has difficulty distinguishing some medium and hard fault cases from
the normal case. This can be observed from the low performance on fault cases 3, 9, and 10.
It must be noted here that semi-supervised learning results are comparatively better than
the unsupervised learning results since labelled data is used to train the final hidden layers.
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Figure 6. F1 score obtained by the Vanilla, DCCA and the Top-K DCCA approach for the anomaly
detection task in a semi-supervised learning setup
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detection task in a semi-supervised learning setup.

(a) Confusion Matrix for Fault 1 (b) Confusion Matrix for Fault 2

(c) Confusion Matrix for Fault 8 (d) Confusion Matrix for Fault 10
Figure 7. Cont.
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(e) Confusion Matrix for Fault 3 (f) Confusion Matrix for Fault 9
Figure 7. Confusion matrix for a sample of fault cases from the Easy, Medium and Hard fault groups.
The positive class represents normal case and the negative class represents the respective fault case.

6.5. Classification Variants Results

In this section, we present the results for the different classification variants that are
possible with the proposed Top-K DCCA approach based on the semi-supervised learning
approach. The classification variants include feeding only the clustering channels Zc
as input, reconstruction channels Zr as input or both the sets together to the two fully
connected layers. The architecture for the classification remains the same as in Figure 5.
These different classification variants are done to observe how much each of the latent
variables sets help in the final anomaly detection task. The average F1 scores obtained
by the three classification variants on the different fault categories is shown in Figure 8.
It is clear from Figure 8 that the clustering set of latent variables Zc as input performs
consistently better than the reconstruction set Zr as an input across all the different fault
categories. This result emphasizes the importance of the Top-K clustering channels in the
anomaly detection task. It must be noted, however, that using both the sets as input to the
fully connected layers also drastically helps in improving the performance in the case of
Medium and Hard fault cases.
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Figure 8. F1 score obtained by the different classification variants for the anomaly detection task
in a semi-supervised learning setup
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6.6. Comparison with Literature

In this section, we provide a comparison of the anomaly detection performance of
the proposed Top-K DCCA model with other existing approaches. We emphasize the
performance of the hard to detect fault cases since having a good performing model on
these cases is a challenging task. Since most of the previous works use a percentage based
evaluation metric, the F1 score is multiplied by 100 to keep the comparison uniform. For the
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comparison, we selected the previous studies [21,66,67] and chose the best performing
models Independent Component Analysis, Dynamic Principal Component Analysis with
decorrelated residuals and canonical variate analysis, respectively. Furthermore, to com-
pare the model’s with other deep learning models, the Deep Autoencoder (DAE) and
Denoising DAE have been selected from the previous work in [49]. The Table 3 gives the
comparison between the best performing unsupervised learning-based anomaly detection
approaches with their achieved F1 scores or fault detection rates as used in literature.
The data from the literature have been adapted accordingly for comparison. The proposed
Top-K DCCA model outperforms the existing literature methods in three out of the four
fault cases and has a drastically better overall performance. In comparison to the other neu-
ral network approaches using fully connected layers, the proposed Top-K DCCA approach
outperforms these methods on all hard to detect fault cases. The exceptional performance
gain underlines the anomaly detection capability of the proposed model, especially in the
case of incipient anomaly cases.

Table 3. Comparison of the achieved F1 scores for the hard to detect fault cases with existing approaches.

Fault Case Top-K DCCA [21] [66] [67] DAE [49] Denoising DAE [49]

(3) 53.82 4.5 2.1 1.4 16.66 16.67
(9) 52.31 4.75 2 0.7 16.87 16.97

(15) 43.98 7.75 38.5 9.7 17.08 17.08
(21) 50.05 56.38 53.9 65.8 44.37 45

Overall 50.04 18.34 24.12 19.4 23.74 23.93

7. Conclusions

We presented a novel approach for unsupervised training of time series data sets with
a particular focus on anomaly detection. The approach combines a deep 1D-CNN-based
autoencoder with a clustering loss on a subset of the latent variable space, which increases
the discriminative power within the latent variable space without sacrificing too much
reconstruction performance on the data set. We make the approach end-to-end trainable by
backpropagating both the clustering and the reconstruction objective through the network.
We test the approach on the Tennessee Eastman benchmark data set with very encouraging
results. In the unsupervised learning setting, a 3 layer proposed model drastically outper-
forms other deep Autoencoder networks and also shallow learning techniques proposed
in the literature. The ablation studies in the semi-supervised learning setting show the
superior performance of the model using the input from the clustering feature subset as
compared to the reconstruction feature subset. This shows the discriminative power of the
learnt features in the latent space.

In the future, authors would apply the proposed approach to other time-series datasets
like Electric devices, Ford A and Ford B [68] to corroborate and confirm our findings.
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DNN Deep Neural Networks
CNN Convolutional Neural Networks
AE Autoencoder
CAE Convolutional Autoencoder
VAE Variational Autoencoder
GAN Generative Adversarial Networks
TE Tennessee Eastman
DCCA Deep Convolutional Clustering Algorithm
LSTM Long Short Term Memory
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