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Abstract: The performance of classical security authentication models can be severely affected by
imperfect channel estimation as well as time-varying communication links. The commonly used
approach of statistical decisions for the physical layer authenticator faces significant challenges in a
dynamically changing, non-stationary environment. To address this problem, this paper introduces
a deep learning-based authentication approach to learn and track the variations of channel charac-
teristics, and thus improving the adaptability and convergence of the physical layer authentication.
Specifically, an intelligent detection framework based on a Convolutional-Long Short-Term Memory
(Convolutional-LSTM) network is designed to deal with channel differences without knowing the
statistical properties of the channel. Both the robustness and the detection performance of the learn-
ing authentication scheme are analyzed, and extensive simulations and experiments show that the
detection accuracy in time-varying environments is significantly improved.

Keywords: physical layer security; wireless networks; classification algorithms; deep learning

1. Introduction

Innovations in communication technologies and artificial intelligence (AI) over the
past two decades have not only brought about tremendous new smart applications, but also
significantly increased serious security risks imposed on wireless devices, owing to the
openness of radio signal propagation [1–3]. An explosive growth in the number of Internet-
of-Thing (IoT) terminals provide abundant opportunities for adversaries to intercept trans-
missions and commit undetected spoofing attacks. In addition, the lack of standardization
in security protocols for IoT and intermittent communications is detrimental to the per-
formance of wireless communication systems. Moreover, the complex dynamic network
environments and the “on–off” transmissions of resource-constrained devices make it more
difficult to authenticate and identify illegal transmissions in wireless networks. There-
fore, a proper authentication control mechanism is essential for wireless communication
networks, especially considering the continuous integration between the wireless infras-
tructure and the development of smart industries supported by IoT.

While digital key-based cryptographic schemes are employed for network security,
they are based on an assumption that spoofing attackers lack the computational and storage
capabilities to successfully attack the network [4]. A fundamental drawback of key-based
cryptographic techniques is that a user will either pass a one-time static authentication or
fail by a binary security check [5]. Because of the rapid growth in the computing power
of smart communication nodes, it is becoming increasingly more likely that a potential
intruder will be able to crack privacy keys from received information [4]. Although
repeated security checks may be achieved with conventional key-based cryptographic
methods by repeatedly logging into the network, this is not a feasible solution since the time
delay and computational overhead put a strain on resource-constrained sensor nodes [6,7].
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Furthermore, classic authentication protocols based on cryptography primitives rely on
proper key management and distribution, which may lead to excessive network traffic
delays. These flaws can be found in any wireless security framework and are not necessarily
limited to IoT communication systems.

Instead of digital key-based cryptography, an information-theoretic approach may be
used, which utilizes the unique characteristics of a wireless medium. These properties are
intrinsic to the uniqueness of the wireless device and the corresponding communication
environment, which are hard to clone and impersonate for an adversary [8–10]. Various
physical layer attributes have been considered, including the impulse response of the
wideband channel [11], the frequency response of the OFDM transmission [12], and the
carrier frequency offset [13]. Although physical layer security has some obvious features,
such as low complexity, low computational overhead and low power consumption, most
solutions are static and only perform one-time authentication in the time domain [14–17].
In such a context, they are unsuitable for continuous certification in a dynamically fading
environment. Although imperfect estimation and dynamic interference conditions provide
unique identification features, they constitute major challenges in authentication. A Gaus-
sian mixture model (GMM)-based learning approach was proposed [18,19] that extracts
multiple features to improve the detection accuracy of the security authenticator. However,
all of these approaches suffer from the same drawback—they only constitute one-time
authentication and rely on the binary static attributes of the wireless medium, and thus
have challenges in discovering and tracking the time-varying attributes of legitimate users.

In order to overcome these challenges, a machine-learning approach using an adaptive
neural network was proposed to model the security authentication problem [20]. How-
ever, this approach, along with many other machine-learning approaches as reviewed in
recent survey papers [21–23]—approaches such as the SVM methods of [24,25] and the
polynomial regression schemes of [26,27]—do not take into account the complex changing
channels in real-world scenarios. When the channel estimation samples related to the
feature distribution are accurate, these machine-learning schemes are more accurate than
traditional methods, but once measurement errors occur in the channel estimation process,
these learning-based classifiers have a greater chance of failing [28–31]. This dramatically
limits the viability of using conventional machine-learning techniques in a time-varying
fading environment, especially when they use static statistical characteristics for classifica-
tion. Furthermore, the limited distribution range of the single channel attribute may not be
sufficient to distinguish devices all the time. Due to changes in the wireless propagation
channels, conventional methods have resulted in physical layer authentication with low
reliability and robustness, especially in resource-constrained IoT applications.

Moreover, the authors of [14] investigated physical layer security techniques based on
the extreme learning machine algorithm to achieve high detection performance for forged
messages. An extreme machine learning-based algorithm is basically a two-layer neural
network, where the first layer of the proposed network is trained on random parameters,
and the second layer relies on the Moore–Penrose generalized inverse [14]. The authors
demonstrated the efficiency and feasibility of the proposed scheme by comparing it with
other traditional methods. However, its efficiency critically depends more on the available
dataset of channel information estimates. Furthermore, in [18], it is assumed that all
channel characteristics obey the same statistical distribution functions, such as the Gaussian
distributions; thus, their success is still limited in the non-stationary wireless applications
considered in this paper.

Fundamentally, the shift to deep learning has opened up new forms of intelligent
endogenous security, due to the learning model’s autonomous nature [32–34]. A promis-
ing method for modeling the authentication process is learning and tracking physical
layer properties using neural networks. One of the advantages of convolutional neural
networks is that they can increase the dimensionality of channel features based on multi-
layer convolutional mapping [35,36] and model the authentication problem as a nonlinear
black box without needing to know the statistical distribution functions of the channel



Sensors 2021, 21, 5379 3 of 18

attributes. More importantly, the physical layer characteristics and time-varying fading
of non-stationary wireless environments may be tracked by the neural network. All these
compelling advantages and features inspire us to consider a new neural network-based
authentication approach as an adaptive process in the face of real-world non-stationary
channels. By discovering dynamic communication scenarios encountered and tracking
changes in a wireless propagation channel, the adaptive authenticator based on deep
learning becomes capable of adapting to a dynamically changing wireless network. For im-
proved authentication performance, therefore, it is necessary to deal with time-varying
features rather than initial static estimates. Table 1 makes a brief summary of security
authentication in a wireless network.

Table 1. Different security authentication paradigms.

Authors Contributions and Concepts

B. Chen et al. [37]
P. Moulin et al. [38]
A. Zaidi et al. [39]

Information hiding strategies in the presence of attackers are
proposed for partial or non-cooperative mode.

N. Wang et al. [14]
A physical layer authentication based on extreme learning
machine algorithm is proposed which does not require key
generation.

X. Qiu et al. [18] An authentication model based on Guassian mixture model using
static characteristic is proposed,

R. Liao et al. [35]
A multi-layer convolutional mapping method without needing to
know the statistical distribution functions of the channel
attributes is proposed

Our paper A deep-learning method for physical layer authentication based
on continuous characteristics is proposed

Most of the literature on physical layer authentication using deep learning has not
considered the challenge of authentication in time-varying environments. In this pa-
per, this challenge is addressed by designing a Convolutional Long Short-Term Memory
(Convolutional-LSTM) network for adapting to continuously changing channel properties
that enable the continuous identification of wireless devices. This approach combines
feature extraction and classification to achieve intelligent adaptation and seamless overall
optimization of the system, thereby reducing the vulnerability of spoofing attacks. Sim-
ulations show that this Convolutional-LSTM network has the ability to learn sequential
channel data in a changing wireless environment.

Overall, the contributions of this paper are as follows:

• First, a novel framework is proposed that enables the network to verify the reliability
of messages and authenticate malicious attackers who seek to degrade the security
performance of the system. The proposed approach uses two-dimensional measure infor-
mation as a security parameter that is used in conjunction with physical layer attributes
as the solution to the problem of security authentication against spoofing attackers.

• Second, a detection model is proposed that is based on a Convolutional-LSTM net-
work, which learns dynamic channel features without knowing the statistical distribu-
tion function, and reduces the complexity of the authentication process, compared
to encryption methods. The resulting physical layer authentication process can be
regarded as an intelligent model, which is easier to train, based on the estimation of
channel attributes and on the authentication of the results that are observed.

• Third, the performance results from simulations show that the proposed Convolutional-
LSTM network model describes an adaptive procedure of security authentication,
thereby providing reliable protection for legitimate communication links. The su-
periority of this authentication process over the conventional learning approaches
is demonstrated.
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The rest of this paper is organized as follows. In Section 2, the system model used in
this paper is presented. In Section 3, the SD-USRP-based dataset for security authentica-
tion in wireless environment is introduced. The proposed Convolutional-LSTM network
approach is presented in Section 4, and both the convergence as well as our authentication
performance analysis are presented in Section 5. Finally, conclusions are presented in
Section 6.

2. Preliminary
2.1. System Model

As shown in Figure 1, we consider the following channel model in a time-varying
communication system, where Alice, Bob and Eve are at geographically different locations.
Eve is a spoofing attacker who tries to impersonate a legitimate transmitter, Alice, by
sending confused messages to Bob. More specifically, malicious attackers not only attempt
to connect to wireless networks, but also try to forge authorized identities in order to obtain
illegal access to the authenticator. In a dynamically changing network, multiple copies of
the transmitted signal appear through different propagation paths, due to the existence of
scattered entities and reflected objects. Therefore, the estimates of the physical attributes
between the main channel and the opponent channel are independent and unrelated. As a
result, it is difficult for Eve to predict and clone the characteristics of the legitimate wireless
channel, such as received signal strength, channel impulse response, and path delay.

Bob

Alice

Eve

Legitimate  

Spoofing 

Eavesdrop

Time [s]

Figure 1. Security authentication system between Alice and Bob based on physical layer characteristics.

It is reasonable to assume that the initial communication transfer between Alice and
Bob is established, using the upper-layer protocol before the spoofer arrives, which allows
the authenticator to estimate Alice’s physical properties. M channel estimations of the
legitimate transmitter can be obtained during the initial transmission stage, which are
written as follows:

HA = [HA,1, HA,2, · · · , HA,M]T (1)

where each HA,M represents the time-varying vector estimated from transmitter Alice, and
M is a time index.

The main task of the authenticator, Bob, is to evaluate whether or not the source of a
newly estimated message is from Alice by looking at the difference between the vectors
HA,1, HA,2, · · · , HA,M and new channel vectors.

The estimated channel vector to be authenticated is denoted by HQ,t. Due to the
dynamic fading nature of wireless communication environment, the channel characteristics
of HQ,t are likely to be dynamic. It is assumed that physical layer authentication starts
at time t = 1, and the newly estimated vector HQ,t is appended to HA, and becomes the
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(M + 1)st channel estimate. Therefore, the physical layer authentication at time t = 1 is
given by the following:

∆HQ,1 = f(HA,1, HA,2, · · · , HA,M, HQ,1) (2)

where f is a function that quantifies the difference between the estimations of wireless
channel HA,1, HA,2, · · · , HA,M and HQ,1. As described in Section 2.2, a two-dimensional
measure is used to quantify this difference [19]. If the difference ∆HQ,t is large, then
the signal to be verified is determined to be from the adversary, Eve. It the following,
it is assumed that the noise in the channels of both Alice and Eve, which are caused by
incomplete channel estimation, measurement error, environmental noise and other factors,
are independent and identically distributed [2].

To improve the security performance, a neural network-based authentication approach
is used to learn the channel characteristics and detect spoofing attacks in a dynamic fading
wireless system. By learning the properties of complex time-varying channels, the reliability
and security of the intelligent authentication can be provided for legitimate communications.

2.2. Data Preparation and Measure Engineering

In this subsection, we introduce a two-dimensional measure vector (2D-MV) that is the
input to the Convolutional-LSTM network. This 2D-MV consists of two components: a Eu-
clidean distance and sample Pearson correlation coefficient [14]. The proposed 2D-MV has
the advantage of being relatively easy to compute, being well suited as a similarity measure
between two vectors, and working well in averaging out the effects of channel estimation
errors [19]. Given the M + 1-dimensional channel estimates {HA,1, HA,2, · · · , HA,M, HQ,1},
the set of Euclidean distances between HA,m and HQ,1 are as follows:

Dm,1 =
∥∥HA,m − HQ,1

∥∥ (3)

and the sample Pearson correlation coefficients at time t = 1 are the following:

Rm,1 =

〈
HA,m − HA,m, HQ,1 − HQ,1

〉∥∥HA,m − HA,m
∥∥∥∥HQ,1 − HQ,1

∥∥ (4)

for m = 1, 2, . . . , M, where HA,m and HQ,1 represent the means of channel vectors HA,m
and HQ,1, respectively. Since these measures are imperfectly estimated and time-varying,
a multi-dimensional measure space is used to characterize the physical layer properties
without knowledge of the distribution functions. More specifically, when a message is
uncertain as to whether it is from the attacker or Alice, the following two-dimensional
measure vector is created:

∆HQ,1 = f(HA,1, · · · , HA,M, HQ,1) =


D1,1, R1,1
D2,1, R2,1

...
DM,1, RM,1

 (5)

After time t = 1, this 2D-MV is updated as follows:

∆HQ,t =


D1,t, R1,t
D2,t, R2,t

...
DM,t, RM,t

 (6)
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The update of HA is done in a way that depends on whether or not the message is
from a legitimate transmitter. If HQ,1 is from a legitimate transmitter, then it is appended
to the HA and the oldest record is discarded:

HA = [HA,2, HA,3, · · · , HA,M, HA,M+1]
T (7)

On the other hand, if the message is not from a legitimate transmitter, then HQ,1 is dis-
carded. In Section 4, we will focus on capturing the local and long-range interdependence
of important physical layer features, and enhancing the ability to learn effectively from the
time-varying environment.

3. Dataset for Security Authentication

To evaluate the performance of the Convolutional-LSTM network-based physical layer
authentication scheme that is proposed, we use a Spoofer Detection-Universal Software
Radio Peripheral (SD-USRP) dataset that includes two different transceiver pairs in a
conference room [20]. The dataset includes legitimate channel estimation and malicious
attack data over a period of four days. The USRP transceiver that is used for physical
layer attributes acquisition has a center frequency of 2.4 GHz; the wireless protocol is IEEE
802.11 a/g; and the measurement bandwidth is 20 MHz. In our experiments, the sampling
frequency of Bob’s receiver is 40 MHz. All channel estimation data in the SD-USRP
dataset come from a 6 m × 4 m conference room. Table 2 lists the parameter settings of
the experiment.

Table 2. The parameter settings.

Parameters Values

Carrier Frequency fc 2.4 GHz
Channel Model Rayleigh Fading Model

Number of Subcarriers 256
Wireless Protocol IEEE 802.11a/g

Signal to Noise Ratio (SNR) 2 dB∼20 dB
Bandwidth 20 MHz

Sampling Interval 2.5 ms
Distance between Alice and Bob 1 m

Figure 2 shows the experimental setup for the physical layer attribute sampling. The
Wi-Fi signal is sent from the sender to the receiving device and is stored in the computer.
The legitimate transmitter, Alice, is placed on one side of the table, and the receiver, Bob, is
on the opposite side. In the experiment, there was interference between the 802.11 access
point near the campus and the client running on the same channel. The attacker, Eve,
assumes various positions around Alice. We consider two scenarios: eavesdropping and
attacking. In the eavesdropping scenario, Eve eavesdrops on all messages sent from Alice
and has no intent to expose herself. In the attacking scenario, Eve may be at any location
within a radius of 50 cm away from Alice, and at the same time, sends a malicious message,
which allows us to work with the worst case, where Eve has a very similar position (and
physical layer attributes) as the legitimate sender Alice. The three locations that are chosen
to place the USRP equipment to ensure that the system can effectively classify different
transmitters and detect spoofing attacks in the entire area is shown in Figure 2a.

As mentioned previously, since many approaches to authentication, including cryp-
tographic methods and physical layer methods, use one-time authentication and rely on
the binary static properties of the wireless medium, the focus here is on non-stationary
channels, and addressing the challenges in discovering and tracking the time-varying
attributes of legitimate users. Therefore, data are collected, and the dynamic properties are
tracked over several days. The dataset consists of 6000× 256 samples, with 4000 coming
from legitimate communication and 2000 from a spoofing attack. In our experiments, we
randomly sample 256 points per frame in the channel estimation process.
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Alice

Bob

Eve

d

USRP

USRP

Figure 2. (a) Floor plan of the meeting room for data collection. (b) Realistic data acquisition scenarios.

4. Convolutional-LSTM Network Based Security Authentication

In this section, the overall architecture of the physical layer authentication scheme that
is based on a Convolutional-LSTM network is presented. The overall system is shown in
Figure 3. The first step is to quantify the difference between the legitimate channel vectors
HA,1, HA,2, · · · , HA,M and a new incoming channel vector HQ,t. Then, a Convolutional-
LSTM network is used to learn and to track the time-varying physical layer attributes. To
classify the new sample HQ,t, and to make a determination on whether or not a spoofing
attack has occurred, an adaptive authentication framework is used that is based on this
two-stage learning system. The advantage of this approach is that it provides continuous
and reliable protection by regularly training the online model, thus ensuring that our
authenticator can adapt to changing non-stationary channels.

In order to adaptively learn deep features with high discriminative power and op-
timize the deep classifier, a Convolutional-LSTM network is used to identify the newly
estimated physical layer attributes, i.e., HQ,t, t = 1, 2, 3, . . ., in a time-varying environment.
The architecture is shown in Figure 4.

Stage 1:  Characterize the difference 

based on  two-dimensional measure 

• Quantify the difference between channel 

vectors

Stage 2: Security authentication with 

Convolutional-LSTM network 

Channel data preprocessing

Identify Spoofers

Wireless network

Figure 3. The architecture of the intelligent authentication process.
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Figure 4. An overview of the intelligent authentication process.

Generally, physical layer attributes have patterns that change as a result of a time-
varying channel. The dynamic characteristics that do not appear in a single channel vector
can be dispersed into multiple data vectors. Existing machine-learning approaches for
physical layer security authentication fail to track such attributes, and do not have the
ability to extract time-varying characteristics that appear in multiple channel vectors. For
improved authentication performance, it is necessary to deal with time-varying features
rather than initial static estimates. Therefore, after extracting the 2D-MV from original chan-
nel signals, the Convolutional-LSTM network is used to simultaneously learn deep features
and detect spoofing attackers. Since the 2D-MV ∆HQt given in (6) only measures differences
and correlations between HA,m and HQ,t over time, the task of the Convolutional-LSTM
network is to find a mapping function from the 2D-MV data to features that are able to
accurately detect a spoofer.

The convolutional neural network proposed in [20] for physical layer authentication
projects estimates of the physical layer attributes into the deep feature space and was
shown to have an excellent learning capability. However, due to the vanishing gradient
problem, this network is unable to detect long-range interdependencies. Therefore, to learn
local characteristics as well as global features, an LSTM layer is inserted into the network.
This layer has three gates (input, forget and output) [40]. The cell states CSt in the LSTM
module are given by the following:

CSt = Forgt �CSt−1 + Int � tanh(U ·Hidt−1 + Wxt + b) (8)

where t represents time, Forgt is a forget gate, CSt−1 is the memory cell state at time t− 1,
Hidt−1 is a hidden state, xt is the input, U, W and b are network parameters, and � is the
element-wise multiplication operation. The hidden states Hidt are given by the following:

Hidt = Outt � tanh(CSt) (9)

A typical structure of the LSTM layer is illustrated in Figure 5. The input gate Int,
forget gate Forgt and output gate Outt are related as follows:

Int = σ(WInxt + UInHidt−1 + bIn) (10)

Forgt = σ(WForgxt + UForgHidt−1 + bForg) (11)

Outt = σ(WOutxt + UOutHidt−1 + bOut) (12)

where σ denotes the sigmoid function; WIn, WForg and WOut are the weights; UIn, UForg
and UOut are the parameters; and bIn, bForg and bOut are the biases. The LSTM layer
first determines what previous information should pass through the forget gate Forgt.
The network then decides what new information should be kept and stored. The proposed
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LSTM layer is considered a memory unit, which has three gates. Long-term dependencies
on physical layer attributes are captured by utilizing the LSTM layer.

Figure 5. Structure of LSTM layer.

In the Convolutional-LSTM network shown in Figure 4, the input data are initially
processed by a convolutional layer with a ReLU activation function [41] to extract features
from the 2D-MV. This is followed by a max-pooling layer, and the output is sent into
the LSTM layer, which models the short-term and long-term physical layer features. The
output of the LSTM is input to a fully connected layer with a ReLU activation function [41],
which is given by the following:

yReLU = max(0, yTen) (13)

where yTen denotes an output tensor. The fully connected layer has two neurons, represent-
ing the legitimate transmitter Alice and the spoofing attacker Eve. Finally, a softmax layer is
used to calculate the probabilities of different target classes. For example, the probabilities
of Alice and Eve are respectively calculated by the following:

PAlice =
eV1

∑2
class′=1 eVclass′

(14)

PEve =
eV2

∑2
class′=1 eVclass′

(15)

where V1 and V2 stand for the output of the fully connected layer. Then, we have the
predicted value, which can be expressed as follows:

labelPre = labelmax(PAlice,PEve
) (16)

The decision of the Convolutional-LSTM network is made by the following:

Alabel = Eq(labelPre, labeltruth) (17)
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where Eq is set to one, if labelPre = labeltruth, otherwise Eq is set to zero. The whole
network is trained and optimized through backpropagation with a loss function given by
the following:

L = −
N

∑
class=1

yclass log
eVclass

∑N
class′=1 eVclass′

(18)

where N is the number of target classes, V is the output vector of the fully connected layer
in the network model, and yclass represents a label vector. There is only one truth label
whose corresponding yclass value is set to one, and all other yclass values are set to zero.

During training, each channel vector (2D-MV) is input to the network, and deep
features are generated by the convolution and LSTM layers. The bias between the truth
label and the prediction is calculated by (18). The Convolutional-LSTM network uses two
kinds of tags corresponding to two types of channel vectors for training. Notably, there
may be multiple spoofing attackers, and multiple classifications may be of interest. Often,
however, it is of interest only to classify channel vectors as legitimate or illegitimate. All
physical layer attributes that do not belong to Alice are considered to come from malicious
attackers. In this case, the Convolutional-LSTM network is trained to perform binary
class authentication. In this case, the dataset is split into a training dataset (80%) and a
test dataset (20%). At the same time, the 20% samples in the training dataset are used
for verification.

During testing, the test dataset is fed into the proposed Convolutional-LSTM network,
and the probability of the channel vectors belonging to different transmitters is estimated.
More specifically, the prediction used in the model can be calculated as (14) and (15). The
overall authentication scheme is summarized in Algorithm 1.

Algorithm 1 Security authentication based on Convolutional-LSTM network.
Given physical layer attribute used H, Alice’s estimates HA,m, m = 1, 2, . . . , M, initialize

the network parameters
1: Iteration:
2: Generate training dataset;
3: Obtain D and R via (3) and (4);
4: Calculate the 2D-MV ∆H via (2) and (5);
5: Input 2D-MV into the network;
6: Calculate the loss L via (18);
7: Update the weight W;
8: Adjust the neural network through (8)–(12);
9: Obtain the trained model;

10: Adaptive authenticator:
11: Receive a new channel vector HQ,t
12: Obtain predicted result using Pr via (14) and (15);
13: if the channel vector HQ,t is from Alice then
14: Accept the message;
15: Update the input dataset via (1) and (6);
16: else
17: Terminate communication;
18: t = t + 1;

5. Experimental Results

In this section, the experimental results are presented that show the effectiveness of the
authentication process using the Convolutional-LSTM network. The section begins with a
description of the setup used to evaluate the network. In the experimental results section,
a comparison between this network and other approaches is given, and its superiority over
a non-deep learning benchmark is demonstrated.
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5.1. Experimental Setup

The Convolutional-LSTM is trained using the 2D-MV, which is extracted from the
channel estimates. One physical layer attribute is considered, namely, the received signal
strength HRSS, in order to verify the viability of the Convolutional-LSTM network. The re-
ceived signal strength can be written as Ploss = 75 + 36.1 log(d/10), where Ploss represents
the path loss, and d denotes the distance between the transceivers. The total number of
network layers is 6, and the initial parameters of the network are random. The hyperpa-
rameters of the network are given in Table 3. After training, the network is evaluated in an
indoor conference room to evaluate its performance.

Table 3. The training hyperparameters.

Settings Values

Initialization Parameters of Model random
Number of Layers 6

Learning Rate 5×10−3 (20)
Training Subsets 4000 × 256

Validation Subsets 800 × 256
Testing Subsets 1200 × 256

Batch Size 128
Number of Epochs 30

Once the Convolutional-LSTM network is trained, it is evaluated on the test set,
and the authentication performance is measured in terms of its detection accuracy and
false alarm rate, which are the following:

Accuracy = Pr(Alice|Alice∪ Eve) (19)

False alarm = Pr(Eve|Alice) (20)

These are the most basic parameters for the physical layer authentication perfor-
mance evaluation.

5.2. Impact of 2D-MV Using Measurement Data

Given the parameter sets in Table 3, the physical layer attribute estimates of different
transmitters can be obtained in the indoor meeting room where their received signal
strength of (1) is shown in Figure 6. In the intelligent process we proposed, the channel
feature space 2D-MV should be determined, namely, for the Euclidean distance D and
Pearson correlation coefficient R, corresponding to the received signal strength. Figure 6
characterizes the estimated channel vector HA,m and the preprocessed signal through
stage 1. The channel vectors are updated for each estimation.

To test the effectiveness of the proposed scheme, Figure 7 plots the sample Pearson
correlation coefficient and Euclidean distance, i.e., D and R, for 200 ms of measurements.
In Figure 7, there is a clear gap between the data corresponding to the presence and absence
of Eve. This is because 2D-MV not only removes noise, but also eliminates some interference
caused by channel estimation errors. Although the combination of these two features
improves the difference between Alice and Bob, the result of security authentication still
suffers from unsatisfactory performance due to the complex non-stationary environment.
The measured vectors under different communication conditions are shown in Figure 8.
This is expected, as the non-adaptive classifiers will always have prediction error, even
when the history HRSS is known perfectly. We can observe from Figures 7 and 8 that the
use of 2D-MV makes our approach have a more obvious improvement in the feature space
distribution. Therefore, we chose 2D-MV as the input of the Convolutional-LSTM network
for malicious attack detection.
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Figure 6. Normalized channel signal estimates of Alice and Eve.
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Figure 7. The feature distribution of different scenarios. (a) Sample Pearson correlation coefficient.
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5.3. Convergence Performance

Figure 9 characterizes the convergence performance of the Convolutional-LSTM
network (see Algorithm 1), using the 2D-MV feature vectors as the inputs to the network.
We consider the use of the received signal strength to authenticate malicious attackers. We
can observe from Figure 9 that, with the increasing iteration index, the loss values of the
detection scheme dramatically decrease. The reason for this trend is that the Convolutional-
LSTM network is an authentication algorithm that can update the system according to the
dynamic characteristics of wireless channels so as to adapt to the changing non-stationary
environment. Furthermore, the combination of the Euclidean distance and sample Pearson
correlation coefficient in the 2D-MV-based feature space can reduce the impact of imperfect
channel estimation on authentication performance.
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Figure 9. Convergence performance of the Convolutional-LSTM network.

5.4. Impact of the Iteration Index and the SNR

Figure 10 compares the performance of the Convolutional-LSTM network when the
SNR changes. To account for complex scenarios, we added a sequence of Gaussian white
noise, which caused the SNR to change from 20 dB to 2 dB. From Figure 10, we can see the
similar trends as in Figure 8. The advantage of the Convolutional-LSTM network is that it
does not require the statistical characteristics of the channel, and intelligent training can
make the model adapt to changes in the environment.
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Figure 10. Performance comparison—SNR changes from 2 dB to 18 dB.
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5.5. Authentication Accuracy Performance

Figure 11 characterizes the detection accuracy vs. the iteration index. As we discussed
before, the proposed security authentication scheme related to the classifier gradually
converges to a steady-state value after 20 iterations. In Figure 11, we describe the detec-
tion performance of the learning-based authentication scheme. It can be observed from
Figure 11 that the detection accuracy of the Convolutional-LSTM network proposed in this
paper is better than that of the authentication process based on the convolutional neural
network. The utilization of 2D-MV for characterizing the difference is extremely helpful to
provide high protection for legitimate users.
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Figure 11. Authentication performance of the Convolutional-LSTM network and the CNN-based
approach of [20].

Figure 12 characterizes the comparison results of our proposed physical layer au-
thentication approach and the method based on a convolutional neural network [20]. It
can be seen from Figure 12 that our adaptive framework performs much better than the
convolutional neural network-based approach. Furthermore, the existing method of us-
ing static channel characteristics also limits its application in dynamic wireless networks.
More importantly, the Convolutional-LSTM network has shown obvious advantages in
the process of learning local and global features, while the traditional machine learning
methods cannot provide such dynamic features during the authentication process (please
see Figure 1).
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Figure 12. Comparison of results of the Convolutional-LSTM network and the CNN-based approach
of [20] in a conference room scenario.
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5.6. Evaluation of the Convolutional-LSTM Network System

Table 4 shows the results of different detection classifiers at each stage. We try to
change the type of classifier to observe the accuracy of the authentication approach. It
can be observed that the classic SVM-based physical layer authentication performs quite
poorly, with a detection accuracy of only 68%. The GMM-based authenticator manages
to significantly improve the accuracy, showing a detection rate of up to 89%. However,
the most significant improvement we experienced is the use of the Convolutional-LSTM
network, which successfully detected malicious attackers with a recognition accuracy of up
to 99%. The advantages of CNN in deep feature learning and the long-term dependence
between non-linear features are the main factors leading to this significant improvement in
the performance of this authentication. More importantly, compared with other classifiers
we used, the Convolutional-LSTM network is an intelligent model, which can learn time-
varying information between different channel vectors. The computational complexity
of the SVM-based authentication approach is relatively small. However, the detection
accuracy of SVM is only 68.35%, which is much lower than 99.15% of Convolutional-LSTM.
More weight parameters in the Convolutional-LSTM network need to be trained. However,
the dimension of the input (2D-MV) in the Convolutional-LSTM-based algorithm is much
smaller than the authentication approach based on CNN.

Table 4. Detection performance using different classifiers.

Classifier Accuracy False Alarm Rate Stage

SVM 68.35% 15.27% 1
GMM 89.12% 8.13% 1
CNN 95.81% 5.72% 2

Convolutional-LSTM 99.15% 0.71% 2

In Table 5, we can observe the comparison of results between our proposed solution
and the existing methods, using the SD-USRP dataset. According to the available evaluation
results of the compared schemes, we selected the best results for each authentication
method in terms of accuracy and false alarm rate. We can observe that our proposed
authentication system performs better both in relation to the accuracy and the false alarm
rate. This is mainly because we have adopted an efficient measure space technique and
proposed a suitable Convolutional-LSTM network. It is worth noting that these parameters
are for reference only because many researchers use different datasets and preprocessing
and sampling techniques. Therefore, it is usually not appropriate to directly compare some
metrics (such as training and testing time), although our solution has made improvements
in all performance indicators and performed better than other methods. Nevertheless,
we point out that using the proposed authentication approach can achieve a remarkable
level of security against spoofing attackers that has high robustness, strong resistance
to surrounding interference and adaptive updates. In summary, we have summarized
the authentication methods used along with their advantages and costs in the taxonomy
Table 6.

Table 5. Detection performance in different schemes.

Reference Approach False Alarm Rate Accuracy

Scheme [19] PCA + GMM 7.92% 94.50%
Scheme [18] KLT + GMM 7.72% 92.80%
Scheme [20] CNN 5.72% 95.81%
Scheme [36] RNN 1.20% 97.40%
Our scheme Convolutional-LSTM 0.71% 99.15%
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Table 6. Taxonomy of detecting malicious attacker use cases.

Algorithm Accuracy Complexity Training Time Benefit Cost

SVM Fair Low Low Require low computational
resources

Lack of large-scale
deployment

GMM Fair Fair Low Adaptive Learning Lack of realistic
authentication tests

RNN High (97.40%) High Fair Accurate Learning Complex learning
implementation

CNN Fair Fair Low Robust learning Sensitive to channel variance

Proposed Method High (99.15%) Fair Fair Improved learning efficiency; real
experiments Training privacy

6. Conclusions

In this paper, we proposed an adaptive physical layer authentication scheme to im-
prove the authentication performance from the perspective of robustness and reliability.
The Convolutional-LSTM network was designed to model the authenticator as an intelli-
gent learning system, which effectively alleviates the imperfectness of the channel attribute
estimation. By proposing a multi-measurement space, i.e., the combination of Euclidean
distance and sample Pearson correlation, the dimension of the feature-space was increased
under the time-varying channel attributes. Both the convergence performance and au-
thentication performance of our Convolutional-LSTM network solution were analyzed
and verified in a realistic indoor conference room. The experimental results show that
the proposed security authentication framework has better detection performance than
some existing methods, such as the non-adaptive approach and the convolutional neural
network-based counterpart.
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