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Abstract: Aiming to improve the positioning accuracy of an unmanned aerial vehicle (UAV) swarm
under different scenarios, a two-case navigation scheme is proposed and simulated. First, when the
Global Navigation Satellite System (GNSS) is available, the inertial navigation system (INS)/GNSS-
integrated system based on the Kalman Filter (KF) plays a key role for each UAV in accurate
navigation. Considering that Kalman filter’s process noise covariance matrix Q and observation noise
covariance matrix R affect the navigation accuracy, this paper proposes a dynamic adaptive Kalman
filter (DAKF) which introduces ensemble empirical mode decomposition (EEMD) to determine R and
adjust Q adaptively, avoiding the degradation and divergence caused by an unknown or inaccurate
noise model. Second, a network navigation algorithm (NNA) is employed when GNSS outages
happen and the INS/GNSS-integrated system is not available. Distance information among all UAVs
in the swarm is adopted to compensate the INS position errors. Finally, simulations are conducted
to validate the effectiveness of the proposed method, results showing that DAKF improves the
positioning accuracy of a single UAV by 30–50%, and NNA increases the positioning accuracy of a
swarm by 93%.

Keywords: adaptive Kalman filter; ensemble empirical mode decomposition; process noise; observa-
tion noise; networked navigation

1. Introduction

In recent years, the unmanned aerial vehicle (UAV) swarm has been given more and
more attention due to the tremendous application prospects. Compared with a single UAV,
the UAV swarm is more efficient, reliable, flexible and intensive [1,2]. As a prerequisite
for a UAV to complete various tasks, the navigation and positioning technology has been
extensively studied by scholars. At present, the most popular navigation system usually
consists of an inertial navigation system (INS) and a Global Navigation Satellite System
(GNSS) [3]. This system is very effective for improving navigation accuracy; however, its
disadvantage of a fragile robustness due to the easy loss or disturbance of the GNSS signal
limits its applications. When the GNSS signal is available, the Kalman filter (KF) is the
most popular INS/GNSS data fusion algorithm. This paper aims to improve the fusion
accuracy of the traditional KF and solve the problem of the UAV swarm navigation in the
case of GNSS outage.

The Kalman filter uses the next observation to update the estimates of the current state
variables, along with their uncertainties. KF corrects the noisy sensor data to a more realistic
sensor output (with less noise) [4]. However, the performance of KF is affected by the
stochastic model describing the process noise and observation noise and the dynamic model
describing the dynamics of the system over time [5]. A variety of adaptive Kalman filters
(AKF) has been proposed by scholars to improve the fusion precision of traditional Kalman
filters when the stochastic model is inaccurate [6]. The AKF based on the attenuation factor
reduces the influence of historical data on the current results by adjusting the weight of
the one-step prediction covariance matrix. In fact, the problem of the inaccurate noise
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model has not been solved [7]. In most adaptive Kalman filtering algorithms, one of Q
and R is usually fixed to adjust the other adaptively. For example, Li et al. proposed an
adaptive Kalman filter based on the ensemble empirical mode (EMD) for X-ray pulsar
navigation on the premise that the model has an accurate process noise covariance matrix
Q [8]. The adaptive Kalman filter algorithm based on an innovation sequence and pseudo-
measurement vector method proposed by Zhang [9] and the improving adaptive Kalman
estimation algorithm based on a covariance-matching technology mentioned in [10] are
implemented on the assumption that R is completely known. The multi-model adaptive
Kalman filter can estimate the unknown probability of measurement loss, but its premise is
that both Q and R are clear and the calculation of the algorithm requires multiple Kalman
filters [11]. However, these three premises are difficult to achieve in practical applications.

Unfortunately, in case of GNSS outage, the INS/GNSS-integrated system does not
work. The UAV position estimation based solely on the INS will drift significantly over
time [12]. At present, the artificial neural network (ANN) is the mainstream solution to deal
with this situation. The introduction of the ANN was essentially to establish a nonlinear
relationship between different inputs and outputs, and then estimate and correct inertial
navigation errors when the GNSS is unavailable [13]. For example, the author uses the
position information output by the INS and the output of the interactive multi-model
extended Kalman filter (IMM-EKF) to train the extreme learning machine when the GNSS
is available. This training model can compensate for divergent position errors during
GNSS outage [14]. Wei et al. trained a wavelet neural network based on a random forest
regression to provide the observation information for the AKF during a GNSS outage [15].
Chen et al. introduced a wavelet neural network (WNN) to establish the time-varying
characteristic model of INS error [16]. In this system, historical error data were used
to predict the current error when the GNSS signal was blocked. Abdolkarimi et al. [17]
introduced a neural network based on an extreme learning machine to compensate for
INS errors during a GNSS outage, and improve the signal-to-noise ratio of the sensor
measurements through wavelet transform. An ensemble learning method based on the
multilayer perceptron (MLP) is proposed to provide a continuous position estimation for
ships when GNSS signal is unavailable [18]. However, as we all know, the prediction result
of the neural network depends heavily on its own structure and training data. In addition,
a lot of training time is also necessary to maintain a satisfactory accuracy.

The purpose of this paper is to provide a navigation solution that meets multiple
situations (with or without GNSS). The main contents are as follows:

First, aiming at the situation that R and Q will affect each other when the adaptive
Kalman filter works [10], the dynamic adaptive Kalman filter (DAKF) based on ensemble
empirical mode decomposition (EEMD) is designed. This method applies EEMD to the
noise extraction of multi-channel GNSS signals and estimates the noise variance to dynam-
ically adjust the observation noise covariance matrix R. Then, through the comparison of
the actual and theoretical innovation sequences, Q is adaptively modified [10]. Through
the above work, the influence of the uncertain stochastic model on the performance of KF
will be eliminated. A simulation will show that the DAKF has an effective improvement
compared with the traditional KF.

Second, a network navigation algorithm (NNA) based on the distances among all
UAVs is used. If a GNSS outage occur, the UAV swarm will automatically adjust from
integrated navigation to network navigation. The NNA applies the translation–rotation
approach between the measurement network with measured distances between nodes
as edges and the inertial position network with inertial distances calculated from an INS
output as edges to estimate the inertial positioning errors of each node in the swarm [19].
The simulation will verify that NNA can significantly improve the UAV swarm positioning
accuracy.

The main contributions of this paper are as follows:
Compared with the adaptive Kalman filter algorithm mentioned in [7–11], the algo-

rithm proposed in this paper can simultaneously estimate Q and R. This estimate changes
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dynamically with time and has a strong robustness to changing noise. The proposed
algorithm also guarantees the positive semi-definiteness of the estimated state covariance
matrix by using its Joseph’s form. In addition, compared with the EMD-based adaptive
filtering method mentioned in [8], the proposed algorithm has the following advantages:
(1) EMD suffers from the problem of mode mixing, which causes insufficient decomposition
of the original signal. The EEMD algorithm introduced in this paper is not bothered by this
problem [20]. This paper may be the first approach to introduce EEMD into the parameter
solving of the Kalman filter in the field of integrated navigation. (2) All historical data
were used for noise extraction in [8], which will lead to that R cannot effectively follow
the changes of environmental noise. The proposed algorithm adds a sliding window for
noise extraction so that R can better respond to the changes of real noise. (3) The noise is
calculated by the fixed number of the intrinsic mode function (IMF) components in [8],
which is unrealistic. The proposed algorithm uses the power spectral density (PSD) feature
of the IMF to select different components to reconstruct the noise signal in different envi-
ronments, which is adaptive [21]. Compared with the multi-model adaptive Kalman filter
in [11], the algorithm proposed in this paper only needs one Kalman filter, which will save
resources and time for calculation.

Compared with the neural network-based algorithm mentioned in [14–18], this paper
introduces the NNA to compensate the divergent position error of the UAV swarm during
a GNSS outage. The proposed algorithm does not require a large number of network
parameters and training resources, and the compensation result is not affected by historical
data. In addition, this paper designs a simulation to prove the superiority of the proposed
algorithm compared with the neural network-based algorithm.

The rest of the paper is organized as follows. Section 2 introduces the EEMD and
the adaptive Kalman filter. Then, a dynamic adaptive Kalman filter algorithm is derived.
Section 3 describes the principles of the networked navigation algorithm. Section 4 pro-
vides the test results and analysis to show the superiority of the proposed methods. The
conclusion is given in Section 5.

2. Dynamic Adaptive Kalman Filter

When the observation noise covariance matrix matches the real noise, the adjustment
of the process noise covariance matrix can help the KF perform better. However, in
practical applications, it is extremely difficult to obtain the real noise which will vary with
the measurement environment and sensor characteristics in the measurement process [22].
This situation not only damages the performance of the Kalman filter itself, but also leads
to an erroneous adjustment of Q, which makes the performance of the AKF inferior to the
ordinary KF.

In order to solve this problem, a new adaptive algorithm that can simultaneously
adjust Q and R in real time is introduced. When the GNSS signal changes under the
environment influence or intentional jamming, the observation noise possesses the char-
acteristics of non-linearity and non-uniformity. General signal processing methods, such
as the Fourier transform, have difficulty dealing with this problem. Therefore, this paper
introduces EEMD which is self-adaptive into the AKF to estimate the observation noise.

2.1. Ensemble Empirical Mode Decomposition

Huang invented a signal processing algorithm called EMD that can decompose a
nonlinear signal into a series of near-orthogonal intrinsic mode functions (IMFs) [23]. EMD
is an adaptive time–frequency data processing algorithm, which is widely used to extract
signals of interest from non-linear and non-stationary processes containing noise [24,25].
However, it is well known that EMD suffers from a mode mixing problem, which is defined
as signals of different frequencies contained in a single IMF, that is, the decomposition
of the original signal is not sufficient [26]. To solve this problem, EEMD based on noise
assistance is proposed [20].

The principle of EEMD is very complete.
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Adding white noise of limited amplitude to the original data will help the work of
EMD. Signals of different scales can be automatically projected onto appropriate IMF
components [20]. This phenomenon depends on the statistical characteristics of the white
noise itself [27].

Since the added white noise in each experiment is random, after averaging the results
of enough experiments, the influence of the added white noise on the original signal will
be eliminated [20].

By combining the original signal with white noise of limited amplitude, we can obtain
a clearer IMF component [26]. The pseudo-code implementation of the EEMD is listed in
Algorithm 1.

Algorithm 1 EEMD

Input:
o(t): The original signal;

begin
(1) o′(t) = o(t)+n(t)//Add Gaussian noise series to the original signal o(t); n(t) is the

Gaussian noise series with amplitude of σn;
(2) IMFs′(t) = EMD(o′(t))//Decompose noise-added signal o′(t) into IMFs′(t) using EMD;
(3) Repeat (1) and (2) M times with different Gaussian noise series which have the same

amplitude;
(4) Get the means of corresponding IMFs′(t) of the decompositions as the final IMFs(t);

end

As a result, the original signal is decomposed into the following form:

o(t) =
F

∑
f=1

IMFf (t) + r(t) (1)

where o(t) is the original signal, IMFf (t) is the f th IMF signal and r(t) is the residual
signal.

2.2. Acquisition of Observation Noise Covariance Matrix R

The general steps of the acquisition of R are as follows:
The EEMD algorithm decomposes the GNSS signal within a fixed window size w into

a series of IMF components (the introduction of the window makes the calculation of R
pay more attention to the current noise situation instead of obtaining R from the data of
the entire historical period, which wastes a lot of resources and is inaccurate). Then, the
noise components are distinguished by comparing the power spectral density (PSD) of
each component [21] and the original noise is reconstructed by the summation of the noise
components. At last, the observed noise covariance matrix R is estimated by the standard
deviation of the reconstructed noise.

Since EEMD requires a suitable window size w for the noise extraction, the setting
of R is determined by the empirical value in the first w seconds, but the inaccuracy of R
within a short period of time will not have a significant impact on the final result.

The calculation process of the observation noise covariance matrix R using EEMD is
listed in Algorithm 2.

The inputs of this function are the GNSS signal ZGNSS and the window size w for
filtering, and the output is R at time k which changes with the actual noise.
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Algorithm 2 fEEMD(): observation noise covariance matrix by EEMD

Input:
ZGNSS: a numeric sequence of GNSS signal;
w: a window size used for computing R;

Output:
Rk: observation noise covariance matrix at time k;

begin
(1) IMFs := EEMD(ZGNSS[k− w : k])//Decompose input signal using EEMD;
(2) IMFniose := Select(IMFs)// Use power spectral density (PSD) to select IMF [21];
(3) Zniose := Sum(IMFniose)// Reconstruct the noise signal by summing IMFniose;
(4) Rk := CalculateVAR(Zniose)// Calculate the variance of Zniose;
(5) Return Rk// return the estimated value of R at time k;

end

2.3. INS Error Model

In this section, we will describe the INS error model in the east–north–up navigation
reference frame. The error equation is as follows:

(1) Attitude error equation:

.
ϕ

n
= δωie

n + δωen
n + (ωie

n + ωen
n)× ϕn − δωib

n (2)

(2) Velocity error equation:

δ
.
vn

= ϕn × f n − (2δωie
n + δωen

n)× vn − (2ωie
n + ωen

n)× δvn + δ f n (3)

(3) Position error equation:

δ
.
L = − δvN

RM+h

δ
.
λ = − δvE

RN+h sec L + vE
RN+h sec L tan LδL

δ
.
h = δvU

(4)

Navigation information errors include: the attitude error shown in the navigation
frame ϕn= (ϕE ϕN ϕU) the velocity error δvn= (δvE δvN δvU) and the position error
δP = (δL δλ δh). f n is the output of the accelerometer. RM and RN are the radii of the
earth in the latitude and longitude directions, respectively. ωie

n and ωen
n are the rotational

angular velocities of the earth and navigation frame, respectively. δωib
n and δ f n are the

errors of the gyro and accelerometer, respectively. δωib
n consists of the gyro bias εn and

white noise ωg
n. δ f n is composed of the accelerometer bias ∇n and white noise ωa

n.

2.4. The Filtering Algorithm of Dynamic Adaptive Kalman Filter

Consider the following multivariable linear discrete system [28]:

Xk = Φk/k−1Xk−1 + Wk−1
Zk = HkXk + Vk

(5)

where Xk is the state vector (Xk = [δP δvn ϕn εn ∇n]), Φk/k−1 is the transition matrix formed
by the error equation described in Section 2.3, Zk is the observation vector formed by the
position difference of the GNSS receiver and the INS and Hk is the observation matrix.
Wk−1 and Vk are the Gaussian white noise sequences satisfying the following conditions:

E[Wk] = 0, E[WkWT
j ] = Qk j = k

E[Vk] = 0, E[VkVT
j ] = Rk j = k

E[WkVT
j ] = 0

(6)
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where Qk is the process noise covariance matrix and Rk is the observation noise covariance
matrix.

The prediction equations are:

X̂k/k−1 = Φk/k−1X̂k−1
P̂k/k−1 = Φk/k−1P̂k−1ΦT

k/k−1 + Qk
(7)

where X̂k/k−1 is the predicted state vector; X̂k−1 is the estimated state vector; P̂k/k−1 is the
predicted state covariance matrix; P̂k−1 is the estimated state covariance matrix.

The update equations are:

Kk = P̂k/k−1HT
k (Hk P̂k/k−1HT

k + Rk)
−1

X̂k = X̂k/k−1 + Kk(Zk − HkX̂k/k−1)

P̂k = (I − Kk Hk)P̂k/k−1(I − Kk Hk)
T + KkRkKT

k

(8)

where Kk is the Kalman gain and Hk is the observation matrix. It is worth mentioning that
in order to ensure the positive semi-definiteness of P̂k, we used its Joseph’s form [28].

In order to settle the uncertainty of the process noise, Ding et al. proposed an im-
proving AKF based on the covariance matching method under the assumption that the
observation noise is completely known and rewritten (7) as follows [10].

X̂k/k−1 = Φk/k−1X̂k−1
P̂k/k−1 = Φk/k−1P̂k−1ΦT

k/k−1 +
√

skQk−1
(9)

where sk is the scaling factor expressed as follows:

sk =

trace
{

1
m

m−1
∑

e=0
dk−edT

k−e − Rk

}
trace

{
Hk(Φk/k−1Pk−1ΦT

k/k−1 + Qk−1)HT
k

} (10)

The innovation sequence dk is defined as:

dk = Zk − HkX̂k/k−1 (11)

When Rk is unknown or inaccurate, the calculation of the scaling factor will be affected.
The adjustment of Q will become worse. When Rk is accurately calculated by the proposed
method, the solution of the scaling factor will be accurate. Therefore, Q will be adjusted
more appropriately.

After substituting the Rk calculated by Algorithm 2 into (10) used to solve the scaling
factor, the complete process of DAKF is shown in Figure 1.
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3. Network Navigation Algorithm

When the UAV swarm cannot receive the GNSS signal, the three-dimensional network
navigation technology based on the distance information among all UAVs is introduced to
reduce the error of the INS [19].

The specific process of the algorithm is as follows:
By linearizing the difference between the inertial distances calculated from the INS out-

put and the measured distance between nodes, the following Equation can be obtained [29]:

lij = dm
ij − dI

ij

≈ −
xI

i−xI
j

dI
ij

∆xI
i −

yI
i−yI

j

dI
ij

∆yI
i −

zI
i−zI

j

dI
ij

∆zI
i

+
xI

i−xI
j

dI
ij

∆xI
j +

yI
i−yI

j

dI
ij

∆yI
j +

zI
i−zI

j

dI
ij

∆zI
j + ∆ij

(12)

where dm
ij is the measured distance between nodes i and j, dI

ij is the inertial distance between

nodes i and j, lij is the difference between these two distances,
{

xI
i , yI

i , zI
i
}

is the INS output
position of node i and

{
∆xI

i , ∆yI
i , ∆zI

i
}

is the position error of node i; it is assumed that the
error of distance difference lij obeys a normal distribution. This assumption is based on the
fact that the noise of the INS and the error of the measured distance between nodes obey a
normal distribution. ∆ij is the error of distance difference lij, ∆ij ∼ N

(
0, σr

2) and σr
2 is

the variance of the normal distribution [29].
The matrix form of (12) is [30]:

Ld=TS + ∆
E(Ld) = 0
∑ Ld = σ2

0 Pco
−1

(13)

where Ld is the p-dimensional measurement vector, T is the p × 3a dimensional coefficient
matrix (a is the number of nodes), S is the 3a-dimensional position error vector, ∆ is the
p-dimensional measurement error vector, σ2

0 is the unit weight variance and Pco is the p × p
dimensional measurement error covariance matrix of Ld.
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According to the principle of least squares, ∆ and S are replaced with their respective
estimated values Vn and Ŝ. The model of the network navigation algorithm is established
as follows [29]: {

Vn=TŜ− Ld
Vn

TPcoVn = min
(14)

The above formula can be rewritten as follows:

Ŝ =
(

TTPcoT
)−1

TTPcoLd (15)

where Ŝ is the estimated position error vector.
However, the above formula can only prove that the shapes of the measurement

network with measured distances between nodes as edges and the inertial position network
with inertial distances calculated from the INS output as edges are the same.

To make the absolute positions of the two networks consistent in three-dimensional
space, it is necessary to rotate and translate the two networks through the principle of the
free network theory with rank deficiency mentioned in [29].

According to this principle, the above rotation and translation process is equivalent to
adding the following new solution conditions [29]:

GTPX Ŝ = 0 (16)

where PX is a 3a × 3a dimensional weight matrix determined by the accuracy level of each
node’s inertial navigation system. The expression of PX is as follows:

PX =



px1 0 0 · · · 0 0 0
0 py1 0 · · · 0 0 0
0 0 pz1 · · · 0 0 0
...

...
...

...
...

...
...

0 0 0 · · · pxn 0 0
0 0 0 · · · 0 pyn 0
0 0 0 · · · 0 0 pzn


(17)

where GT is a matrix composed of six linearly independent eigenvectors corresponding to
the zero eigenvalue of TTPcoT. GT satisfies the following conditions:

TG = 0
TTPcoTG = 0
rank

(
GT) = 6

(18)

The first item in (18) can ensure that the added solution conditions (16) and the error
Equation (15) are independent of each other. It can be seen from the second item in (18)
that G is composed of the zero eigenvectors of TTPcoT. The third item in (18) means
that G supplements the error Equation (15) with six constraints caused by rotation and
translation [29].

The final estimated error of the node’s INS output can be expressed as:

Ŝ =
(

TTPcoT + PXGGTPX

)−1
TTPcoLd (19)

According to the position S output by the INS and the error Ŝ estimated by the network
navigation algorithm, the corrected value S̃ of the node position can be obtained:

S̃ = S− Ŝ (20)
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The theory of the network navigation algorithm has been well established, and the
specific details can be found in [30].

4. Simulation Evaluation
4.1. Simulation Configuration

The simulation uses four UAVs carrying the GNSS and INS, and employs the data
link method to obtain the distances among all UAVs [31].

At the beginning, four UAVs formed a square swarm with sides of 60 km. Subse-
quently, the swarm moved north and then east at a speed of 200 m/s. The true trajectory of
the UAV swarm is shown in Figure 2.

Sensors 2021, 21, x FOR PEER REVIEW 10 of 17 
 

 

 
Figure 2. True trajectory of the UAVs. 

The velocity of the four UAVs in the east–north–up navigation reference frame is 
shown in Figure 3. (the change at about 220 s was caused by the movement of the UAV). 

 
Figure 3. Velocity of UAV. 

The initial attitude error was ' ' '(0.5  0.5  1.5 ) , the initial velocity error was 
(0.5m / s 0.5m / s 0.5m / s)  and initial position error was (20m 20m 20m) .The bias 
and standard deviation of the white noise of the accelerometer were 800 gμ and 

100 g sμ ⋅ . The bias and standard deviation of white noise of the gyro were 3 / h  and

1 / h . The standard deviation of the measurement error vector was 20 m. The process 
noise covariance matrix Q was set as: 

Ea
st

w
ar

d 
V

/(m
/s)

N
or

th
w

ar
d 

V
/(m

/s)
U

pw
ar

d 
V

/(m
/s)

Figure 2. True trajectory of the UAVs.

The velocity of the four UAVs in the east–north–up navigation reference frame is
shown in Figure 3. (the change at about 220 s was caused by the movement of the UAV).
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The initial attitude error was (0.5′ 0.5′ 1.5′), the initial velocity error was (0.5 m/s 0.5 m/s
0.5 m/s) and initial position error was (20 m 20 m 20 m). The bias and standard deviation
of the white noise of the accelerometer were 800 µg and 100 µg ·

√
s. The bias and standard

deviation of white noise of the gyro were 3◦/h and 1◦/
√

h. The standard deviation of the
measurement error vector was 20 m. The process noise covariance matrix Q was set as:

Q = diag[03×3, (100 µg ·
√

s)2·I3×3, (1◦/
√

h)
2
·I3×3, 06×6] (21)

4.2. Evaluation of Dynamic Adaptive Kalman Filter

In order to highlight the superiority of the proposed algorithm, two simulations were
conducted.

In the first simulation, the noise of the GNSS signal was designed as a step from 10 m
to 30 m with the purpose of verifying the adaptability of the proposed algorithm. The
parameters of EEMD were set as follows: M = 20 and σn = 0.2.

It can be seen from Figure 4 that the proposed method could follow the changes of
noise in three direction channels well. It is worth mentioning that in order to verify the
effect of the proposed algorithm on noise reconstruction, this paper compares the standard
deviation of the reconstructed noise and the real noise in the same window. Although the
standard deviation of the real noise was set to three constant values, the real noise was
actually a random value fluctuating around this constant value, due to the randomness
of the noise itself [32]. Therefore, the green line is actually the standard deviation of the
real noise calculated by the window at different positions. In addition, any digital signal
processing method requires a window size for the accurate extraction of noise; therefore,
errors in the first four seconds are allowed (w = 4 s).

The average difference between the two curves in Figure 4 is (X : 1.450 m Y : 0.574 m
Z : 0.568 m)
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The second simulation compared the classic Kalman filter with the proposed algorithm
to prove the effectiveness of the DAKF. This simulation used the trajectory of UAV1 in
Figure 2, and this method was also verified on the other three trajectories.

Experimental parameters are shown in Table 1. In the first four seconds, the obser-
vation noise matrix R of DAKF was consistent with the KF, due to the introduction of the
window in the proposed algorithm; in the following time, R of DAKF was dynamically
obtained by EEMD and R of the KF was still a constant empirical value. In order to verify
the universality of the proposed algorithm, setting the real noise of the three channels
of GNSS included three stages: the real noise less than the model setting, the real noise
greater than the model setting, and the real noise equal to the model setting. To ensure
the effectiveness of the simulation, in Table 1, the real noise of the DAKF and KF were
consistent. In other words, the data in the second row belong to the second and third
columns together in Table 1.

Table 1. Experimental parameters.

DAKF KF

Rmodel/m Dynamic (30,30,30)

Real noise/m (2,2,2)→(100,100,100)→(30,30,30)

Figure 5 shows the change of the scaling factor. The fluctuation of the scaling factor at
the initial moment is a normal phenomenon caused by the initial parameter setting which
has been proven [10]. At 200 s and 400 s, it was used to prove the normal operation of the
adaptive part that the scaling factor following the change of the GNSS noise [33]. Except
for the above three transitional periods, the scaling factor was well maintained around one.

Sensors 2021, 21, x FOR PEER REVIEW 12 of 17 
 

 

obtained by EEMD and R of the KF was still a constant empirical value. In order to verify 
the universality of the proposed algorithm, setting the real noise of the three channels of 
GNSS included three stages: the real noise less than the model setting, the real noise 
greater than the model setting, and the real noise equal to the model setting. To ensure 
the effectiveness of the simulation, in Table 1, the real noise of the DAKF and KF were 
consistent. In other words, the data in the second row belong to the second and third col-
umns together in Table 1. 

Table 1. Experimental parameters. 

 DAKF KF 
/ mmodelR  Dynamic (30,30,30) 

mReal noise /  (2,2,2)→(100,100,100)→(30,30,30) 

Figure 5 shows the change of the scaling factor. The fluctuation of the scaling factor 
at the initial moment is a normal phenomenon caused by the initial parameter setting 
which has been proven [10]. At 200 s and 400 s, it was used to prove the normal operation 
of the adaptive part that the scaling factor following the change of the GNSS noise [33]. 
Except for the above three transitional periods, the scaling factor was well maintained 
around one. 

 
Figure 5. The change of scaling factor. 

Figure 6 shows the simulation results of the KF and DAKF with dynamic observation 
noise. When the model noise did not match the real noise, the DAKF performed signifi-
cantly better than the KF. When equal, the effects of the DAKF and KF were similar. A 
further explanation of Figure 6 is given by Table 2. Table 2 shows the average position 
error of the three channels, which proves the effective improvement of the DAKF. 

Figure 5. The change of scaling factor.

Figure 6 shows the simulation results of the KF and DAKF with dynamic observation
noise. When the model noise did not match the real noise, the DAKF performed signif-
icantly better than the KF. When equal, the effects of the DAKF and KF were similar. A
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further explanation of Figure 6 is given by Table 2. Table 2 shows the average position error
of the three channels, which proves the effective improvement of the DAKF.
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Figure 6. Position error of the two algorithms.

Table 2. Average position error.

DAKF KF Improvement

X/m 24.1702 52.4235 54%
Y/m 48.8251 74.2594 34%
Z/m 49.2883 74.1551 34%

4.3. Evaluation of Networked Navigation Algorithm

In order to fully verify the performance of the NNA, the UAV movement during the
GNSS interruption should include two modes: straight and turning. The total time of the
UAV swarm flying was designed to be 520 s while there was a GNSS outage of 150 s start
at the 100th second.

Since the swarm had no displacement in the vertical direction, Figure 7 shows the
swarm trajectory in the horizontal direction in order to better show the effect of the NNA.
The purple line is the navigation results of the INS. The yellow line is the trajectory after
the position compensation of the NNA. The gray line is the output of the UAV’s INS/GNSS
integrated system, which was basically consistent with the true trajectory, when the GNSS
was available. The black line is the true trajectory shown in Figure 2. It can be easily
obtained from Figure 7 that the NNA could obviously improve the navigation accuracy of
the overall UAV swarm, no matter whether in the straight or turning mode.
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Table 3 describes the improvement in positioning accuracy of the UAV swarm after
using the NNA. ∆p represents the position error of four UAV’s inertial navigation system
and ∆ p̃ represents the position error after the compensation of the NNA. In this simulation,
the above position error was calculated from the last moment of the GNSS signal being
unavailable. The expression is as follows:
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√
(∆ xI

i)
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+
(
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i)
2
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i = 1, 2, 3, 4 (22)

where ∆x̃I
i , ∆ỹI

i and ∆z̃I
i are the position errors in three directions after the NNA compensa-

tion of the ith aircraft.
To define the improvement of positioning accuracy as the ratio of ∆p and ∆ p̃:

Pimp =
∆p
∆ p̃

(23)

Table 3 shows that the NNA could increase the positioning accuracy of the UAV
swarm by 1.93 times. In addition, the purpose of the NNA was to improve the positioning
accuracy of the entire swarm. The deterioration of the positioning accuracy of a single
node (UAV3) due to the change of the swarm’s shape which was caused by the divergence
of the INS navigation errors with time was allowed [19,34].

Table 3. Improvement in positioning accuracy of NNA.

∆p̃/km ∆p/km Pimp

UAV 1 157.142 460.443 2.93
UAV 2 102.436 224.773 2.20
UAV 3 127.555 96.923 0.76
UAV 4 177.985 307.256 1.73

Average 141.280 272.349 1.93
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In order to verify the superiority of the proposed algorithm compared with the neural
network-based algorithm, the NNA and MLP-based Bagging method mentioned in [18]
were compared on UAV1 (the simulation result was similar on the other three UAVs). The
parameter settings and experimental results of the NNA were consistent with the above
simulation. The topology and transfer function of the MLP were 12 (input layer) × 6
(hidden layer) × 1 (output layer) and logsig-linear, respectively. The network number of
Bagging was set to 50. The training data of the neural network were UAV information
during the first 100 s when the GNSS signal was available. The output of the MLP was the
increment of the UAV’s position during the GNSS outage.

Figure 8 shows the comparison result between the NNA and MLP-based Bagging
method. The pink line is the prediction result of the MLP-based Bagging method.

The positioning error of the MLP-based Bagging was 6385.014 km, which was approx-
imately 41 times larger than the positioning error of the NNA. One of the disadvantages of
the neural network-based algorithm is that it relies heavily on training data. If the training
sample and the test sample were significantly different, the above situation would be an
inevitable phenomenon [18]. In contrast, the NNA was only related to the distance between
nodes at the current moment, so it would not be affected by historical data. It can be seen
from the simulation results that the NNA was more robust than the neural network-based
methods.
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5. Conclusions

This paper proposed a new navigation scheme for the UAV swarm. The proposed
algorithm included the following two cases: (1) By adaptively acquiring the observation
noise covariance matrix using EEMD and adjusting the process noise covariance matrix,
a dynamic adaptive Kalman filter which is superior to the traditional Kalman filter was
designed when the GNSS signal was available. The simulation shows that the DAKF
could effectively improve the accuracy of the Kalman filter. (2) In the phase of GNSS
signal outage, the positioning error of the UAV swarm was reduced through the use of
the networked navigation algorithm. The simulation demonstrated that the NNA could
improve the positioning accuracy of the swarm by 93% during the GNSS interruption of
150 s and better than the neural network-based algorithm.
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Future work mainly includes the following research directions. First, the colored
noise and non-Gaussian noise were not considered in this simulation. It would determine
whether the proposed algorithm has a sufficient generality in all environments. Second,
the window size of the DAKF was an empirical value obtained from a large number of
experiments. How to decrease its impact on the algorithm will be considered in the next
step. Finally, the proposed algorithm has not been verified on an actual UAV swarm, which
will be carried out in future work.
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