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Abstract: This paper proposes an estimation approach for tool wear and surface roughness using
deep learning and sensor fusion. The one-dimensional convolutional neural network (1D-CNN) is
utilized as the estimation model with X- and Y-coordinate vibration signals and sound signal fusion
using sensor influence analysis. First, machining experiments with computer numerical control
(CNC) parameters are designed using a uniform experimental design (UED) method to guarantee
the variety of collected data. The vibration, sound, and spindle current signals are collected and
labeled according to the machining parameters. To speed up the degree of tool wear, an accelerated
experiment is designed, and the corresponding tool wear and surface roughness are measured.
An influential sensor selection analysis is proposed to preserve the estimation accuracy and to
minimize the number of sensors. After sensor selection analysis, the sensor signals with better
estimation capability are selected and combined using the sensor fusion method. The proposed
estimation system combined with sensor selection analysis performs well in terms of accuracy and
computational effort. Finally, the proposed approach is applied for on-line monitoring of tool wear
with an alarm, which demonstrates the effectiveness of our approach.

Keywords: deep learning; vibration; sound; fusion; tool wear; surface roughness; convolution
neural network

1. Introduction

In the manufacturing industry, tool wear and surface roughness play important roles
during the machining process. Surface roughness and tool wear are performance indices for
customers in finished products that affect the machining cost. Therefore, estimation models
for tool wear and surface roughness should be developed. Recently, various estimation
approaches have been proposed, e.g., artificial neural networks [1–10], regression [9,11–16],
support vector machines [17–20], response surface methodology [21,22], random for-
est [18,23,24], and adaptive network-based fuzzy inference systems [25–27]. In general, the
chosen model and data directly affect estimation accuracy. Most of these studies utilized
vibration signals and focused on machine learning model selection; variation of the ma-
chining conditions was less common. In addition, the effective machining parameters or
features should be analyzed and discussed prior to model construction. A variety of data
corresponding to the machining parameters should be considered in the data collection
process. This results in the effectiveness and performance of the estimation model. In
this study, machining experiments with CNC parameters are designed using a uniform
experimental design method (UED) to guarantee a variety of collected data.

With the development of artificial intelligence technology, deep learning is a branch of
machine learning that can automatically extract features to represent the characteristics of
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the data [28–33]. In this study, we estimate the tool wear and surface roughness using a
one-dimensional (1D) convolutional neural network (1D-CNN) with sensor fusion. The
machining vibration signals and sound signals were utilized for the estimation. First,
correlation analysis according to the Pearson correlation coefficient was used to evaluate
the correlation between CNC parameters and tool wear. Subsequently, experiments were
designed with different CNC parameter combinations using a uniform experimental design
for data collection. During the machining process, vibration signals in three coordinates,
sound signals, and spindle current signals were simultaneously collected. Then, an influen-
tial sensor analysis was presented to select sensors according to the RMSE of the 1D-CNN.
Finally, a 1D-CNN with sensor fusion (X and Y coordinate vibrational signals and sound
signals) technique is proposed.

The remainder of this paper is organized as follows. Section 2 introduces tool wear
and surface roughness definitions, experimental setups, and data collection. Then, the
estimation of tool wear and surface roughness using a 1D-CNN and sensor fusion are
presented in Section 3, and Section 4 presents the experimental results and discussion.
Finally, Section 5 presents the conclusions.

2. Problem Formulation and Experiment Setups

This section introduces the definitions of tool wear and surface roughness, experimen-
tal setups for machining, and data collection processes. To accelerate the tool wear status
and collect effective data (including labeling), the proposed approach is also presented.

2.1. Tool Wear and Surface Roughness

Tool wear is the result of interactions between the physical and chemical domains
and is caused by temperature and friction generated during the machining process [34].
According to ISO-8688 [35], tool wear is classified as uniform flank wear, non-uniform flank
wear, and localized flank wear. Here, the standard for tool life end points adopts localized
flank wear that achieves 0.35 mm to enable early warning. The measurement of tool wear
was performed visually. In addition, the surface roughness is a measure of surface texture.
A surface profile that results from the intersection of a real surface with a specified plane is
quantified by the vertical deviations of a real surface from its ideal form.

2.2. Data Acquisition Devices and Measurement of Wear and Roughness

The experiment was conducted on a three-axis CNC machine tool (CHMER HM4030L),
as shown in Figure 1. Figure 1a shows the CNC machine tool with the GENTEC controller.
The workpiece material carbon steel (S50C) with low hardness (less than 5 HRC) was
selected. The selected cutting tool is tungsten carbide end milling cutters with two blades
and no coating, as shown in Figure 1b. In this study, four types of sensors were used, and
the mounting locations are shown in Figure 2. Figure 2a shows the installed locations
of the three-coordinate accelerometer and two sound sensors, and the current signals of
the spindle are collected by the inverter (shown in Figure 2b). The vibration signals were
collected from a tri-coordinate accelerometer (CTC AC230) that was mounted beside the
spindle. The sound signals were collected from the PCB microphone and the Knowles
MEMS microphone, which were fixed on a magnetic base holder. The current of the spindle
was collected by inverters (KEB Combivert).
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Figure 1. Experiment setup. (a) Three-axis CNC machine tool (HM4030L). (b) Tungsten carbide end milling cutters with 
2 blades and no coating. 
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Figure 2. Data acquisition devices. (a) The locations of sensors installation. (b) Inverter for measuring spindle current. 

Figure 3 illustrates the flow chart for signal collection, which is summarized as fol-
lows. The sensor MEMS microphone, PCB microphone, tri-coordinate accelerometer, and 
inverter are installed as described above. Subsequently, the preprocessing operations, 
power amplification, and filtering were done for the collected signals. Herein, all signals 
were terminated at the junction box and an industrial computer with a capture module 
was used to acquire signals. The NI PXIe-6361 multifunction I/O module with a sampling 
rate of 100 kHz was applied because of the maximum sampling rate of these sensors, 
which is 20 kHz, and the NI PXIe-6361 multifunction I/O module with a sampling rate of 
100 kHz was applied. To obtain the signals, LabView was used to build an environment 
for signal observation and to acquire signals. 

Figure 1. Experiment setup. (a) Three-axis CNC machine tool (HM4030L). (b) Tungsten carbide end milling cutters with
2 blades and no coating.
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Figure 2. Data acquisition devices. (a) The locations of sensors installation. (b) Inverter for measuring spindle current.

Figure 3 illustrates the flow chart for signal collection, which is summarized as follows.
The sensor MEMS microphone, PCB microphone, tri-coordinate accelerometer, and inverter
are installed as described above. Subsequently, the preprocessing operations, power
amplification, and filtering were done for the collected signals. Herein, all signals were
terminated at the junction box and an industrial computer with a capture module was used
to acquire signals. The NI PXIe-6361 multifunction I/O module with a sampling rate of
100 kHz was applied because of the maximum sampling rate of these sensors, which is
20 kHz, and the NI PXIe-6361 multifunction I/O module with a sampling rate of 100 kHz
was applied. To obtain the signals, LabView was used to build an environment for signal
observation and to acquire signals.



Sensors 2021, 21, 5338 4 of 22Sensors 2021, 21, x FOR PEER REVIEW 4 of 22 
 

 

 
Figure 3. Illustration of signal acquisition. 

For tool wear measurement, a camera (Deryuan RS-500), lens (MML6-HR65D), and 
ring light were mounted inside the machine tool, as shown in Figure 2a. The public image 
processing software ImageJ [36] was used to calculate the distance between the unworn 
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However, there exist unstable signals, which might be caused by the impact of the cutting 
tool on the workpiece or a situation in which the spindle of machine tool has not warmed 
up. Thus, the collected signal should be preprocessed to remove it. In this paper, the stable 
status is defined as twice the magnitude of the signal when not machining as the threshold 
to decide the beginning of the stable state and end of the stable state. Figures 5a–c show 
that process of the signal cutting illustrated by the X-axis vibrational signals; Figure 5a is 
the original data; The threshold of the stable state is shown in Figure 5b; and Figure 5c 
shows the stable state signals after preprocessing. In general, normalization is the im-

Figure 3. Illustration of signal acquisition.

For tool wear measurement, a camera (Deryuan RS-500), lens (MML6-HR65D), and
ring light were mounted inside the machine tool, as shown in Figure 2a. The public image
processing software ImageJ [36] was used to calculate the distance between the unworn
contour and the location of maximum wear, as shown in Figure 4. For surface roughness
measurements, the Surftest SJ400 (Mitutoyo) was used to measure the surface roughness.
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Figure 4. Calculation of the distance between the unworn contour and the location of maximum wear.

2.3. Signal Analysis and Processing

The machining processing is defined as the time between the moment that the cutting
tool touches the workpiece to the moment that the tool leaves the workpiece completely.
However, there exist unstable signals, which might be caused by the impact of the cutting
tool on the workpiece or a situation in which the spindle of machine tool has not warmed
up. Thus, the collected signal should be preprocessed to remove it. In this paper, the stable
status is defined as twice the magnitude of the signal when not machining as the threshold
to decide the beginning of the stable state and end of the stable state. Figure 5a–c show that
process of the signal cutting illustrated by the X-axis vibrational signals; Figure 5a is the
original data; The threshold of the stable state is shown in Figure 5b; and Figure 5c shows
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the stable state signals after preprocessing. In general, normalization is the important
procedure to reduce the variability of each cutting tool based on the various characteristics
of cutting tools. Herein, we compute the root mean square (RMS) of the data over 1 s
for normalization.
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3. Estimation Model Development Using CNN and Sensor Fusion

This section introduces the estimation of tool wear and surface roughness using deep
learning and sensor fusion. The flowchart of the proposed approach is shown in Figure 6.
First, a correlation analysis between CNC parameters and performance indices (tool wear
and surface roughness) is introduced for parameter selection. Subsequently, a UED is
adopted to design experiments for machining and data collection [37]. Simultaneously, sig-
nals are collected from the sensors, and the corresponding tool wear and surface roughness
are measured. All signals are sampled at 100k Hz and the sampling duration is 1 second,
i.e., the data length is 105. After data pre-processing, an influential sensor analysis is
introduced to minimize the number of sensors with accuracy preservation. A 1D-CNN
with raw data inputs is adopted to develop the estimation model. Finally, the tool wear is
estimated and the surface roughness system is developed.
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3.1. One-Dimensional Convolutional Neural Network (1D-CNN)

Deep learning is a branch of machine learning [29,30,38]. By linear or non-linear trans-
forms in multiple hidden layers, it is hoped that features that are sufficient to represent the
characteristics of the data can be automatically extracted. In traditional machine learning,
features are usually generated from an algorithm that is programmed by humans. The
effective features are generated by experts conducting many analyses and discussions from
data and understanding the characteristics of the data. It is also called feature engineering.
Deep learning has the ability to automatically extract features (feature extraction) and can
be regarded as feature learning, which can save time spent on feature engineering. The
most common deep learning method is convolutional neural networks (CNNs), proposed
by prof. LeCun [38]. In many research fields, CNNs are applied for the classification and
prediction of signals and images. Feature extraction can be conducted automatically by
convolution operations [39,40]. Recently, this process has been utilized for signal classifi-
cation and prediction [30–32,38]. It has the ability to carry out input signal convolutional
operations in the local area to get one-dimensional features, and various kernels extract
specific characteristics from the input signals. This means that the CNN can be developed
for automatic feature learning instead of feature extraction and selection by human experts.
The inputs of 1D-CNN can be raw signal data or other one-dimensional data. The typical
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structure of a CNN is composed of three parts, which are the convolutional layers, pooling
layers, and fully connected layers. CNNs make use of filters (also known as kernels) to
automatically detect proper features. We here briefly introduce the utilized 1D-CNN, as
shown in Figure 7, as follows.
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Input: The input of 1D-CNN is one-dimensional data, for example, vibration signals.
Convolution layer: It applies the convolution operation to input and pass the result to

the next layer. After convolution of inputs and filters, the feature map is obtained from
activation function mapping. The filter operation and feature map of the kth convolutional
layer is:

zk
l = f (αl ∗ x + b) (1)

zk =
[
zk

1, zk
2, . . . , zk

N

]
(2)

Length Lz = ceil
(

L− LC
SCL

)
(3)

where x ∈ R1×L is the input, N is the filter number, l is index of filters (l = 1, 2, . . . , N), k
is the index of the convolutional layer, zk

l is the feature map, f is the non-linear activation
function, αl is the kernel matrix of lth filter, b is the bias, L represents length of inputs, LC
represents length of filters in convolutional layers, and SCL represents strides of length in
convolutional layers.

Pooling Layer: Pooling layers play the role of retaining the information of feature
maps. The command pooling method is max-pooling, as shown in following equation.

pk
l = max

(
zk

j , zk
j+1, . . . , zk

j+LP

)
(4)

pk =

[
pk

1, pk
2, . . . , pk

ceil( Lz
LP

)

]
(5)

where r is the index of features after pooling where r = 1, 2, . . . , ceil
(

Lz
LP

)
, LP represents

the length of filters in pooling layers, and pk
l is the pooling result of the lth feature map

after convolving the kth convolutional layer.
Flatten: The feature maps that are the result of convolution and pooling are flattened

into one-dimensional features. The equation is shown below:

y = f

(
n

∑
a=1

waha + b

)
(6)
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where ha is the input of the neuron, wa is the weight of input ha, a = 1, 2, . . . , n, b is the
bias, f is the activation function of the neuron, and y is the output of the neuron.

Fully connected layer: The fully connected layer is a backpropagation neural network.
Herein, the estimation problem is applied, thus, the linear activation function is adopted.

3.2. Parameters Analysis

First, an experiment analysis is presented to select the machining parameters, and
the corresponding machining path with a length of 100 mm, a cutting width of 2 mm,
and a cutting depth of 1.5 mm is designed. There are many machining parameters in the
CNC controller; here, we selected four general parameters (federate, acceleration time
constant, maximum acceleration, and S-curve time constant) according to the interpolation
method [10,41], and the corresponding ranges are shown in Table 1. Figure 8 shows the
experimental design and results for the relationship between the CNC parameters, Vmax,
AC, Amax, SC, and tool wear. The corresponding Pearson product-moment correlation
coefficient computation (PCC) values are −0.9864, −0.4674, 0.9934, and 0.4162, respectively.
From the values of PCC, the maximum feed rate (Vmax) was negatively correlated with tool
wear. The maximum acceleration/deceleration (Amax) was positively correlated with tool
wear. The acceleration time constant after interpolation (AC) and the S-curve time constant
(SC) are less correlated with tool wear. According to the experimental results, AC and SC,
which are related to the interpolation computation of the controller, have less influence
on tool wear. However, Vmax and Amax, which are related to the cutting theory, have a
greater influence on tool wear. Therefore, Vmax and Amax were selected for the design of
machining experiments using a UED [36]. Tables 2 and 3 show the CNC parameter levels
and parameter combinations based on the UED. The selection of CNC parameter levels
was based on the suggestion of the cutler. Then, because of the finished cut, which requires
a slow feed rate to smoothen the surface of the material, we set the maximum level of Vmax
to 360 mm/min.

Table 1. Range of CNC parameters.

CNC Parameter Range Unit

Maximum feed rate (Vmax) 0–6000 mm/min
Acceleration time constant

after interpolation (AC) 1–50 ms

Maximum acceleration (Amax) 0.001–2.5 m/s2

S-curve time constant (SC) 0–500 0.5 ms

Table 2. Selection level of UED for Vmax and Amax.

Level Vmax (mm/min) Amax (m/s2)

Level 1 120 0.1
Level 2 240 1.3
Level 3 360 2.5

The experimental design is presented in Table 4 and Figure 9. Figure 9 shows a
schematic of the experiment. In this study, two modes of the machining method were
created in the experiment, namely normal milling and accelerated wear. Accelerated
milling is designed to speed up the tool wear and to obtain the tool wear at different stages.
In order to be closer to the actual industrial machining, three levels of Vmax and Amax were
selected in normal milling. The following procedure describes the experimental operations.
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Table 3. Selected values of Vmax and Amax.

Experiment Vmax (mm/min) Amax (m/s2)

EX 01 120 0.1
EX 02 120 1.3
EX 03 120 2.5
EX 04 240 0.1
EX 05 240 1.3
EX 06 240 2.5
EX 07 360 0.1
EX 08 360 1.3
EX 09 360 2.5

Table 4. Experimental design for machining.

Items Unit Normal Milling Accelerated Wear

Purpose – Signal Collection Accelerated Wear
Workpiece Material – S50C S50C
Material Hardness HRC <5 50

Vmax mm/min 360/240/120 20
Amax m/s2 0.1/1.3/2.5 0.3

Spindle Speed rpm 8000 8000
Milling Path – KAKINO Straight
Depth of Cut mm 1 0.9
Width of Cut mm 0.4 0.9
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Experiment Procedure:
Step 1. Experimental Design—CNC parameters are selected based on an analysis of

the CNC parameter and tool wear, and the combination of parameters is determined using
the UED method (Table 3).

Step 2. Rough Cutting—Rough cutting is carried out to obtain the workpieces with a
KAKINO shape.

Step 3. Finished Cutting and Data Collection—The finished cutting is employed to
acquire the signals. When one finished cutting is completed, the cutting tool needs to be
replaced, and the signal from these sensors must be saved.

Step 4. Measurement and Label—The tool wear value is measured using a camera
(Deryuan RS-500) with the image processing tool (ImageJ), and the surface roughness is
measured usin Surftest SJ400 (Mitutoyo).

Step 5. Accelerated wear—After one finished cutting is completed, the accelerated
wear experiment is conducted to obtain the next tool wear stage.

Step 6. Repeat Steps 4–6 until the tool wear stage reaches 0.35 mm.

3.3. Influential Analysis for Sensor Selection

In industrial applications, low-cost and minimum add-on sensors are preferred for
manufacturing. We here present an influential analysis pertaining to sensor selection. As
mentioned above, even if some sensors are mounted on machine tools for research appli-
cations, there are also differences between these sensors, which are suitable for various
applications. Signals that are collected by unsuitable sensors may cause the model recogni-
tion or prediction to become poor. This causes a difference in the results of classification or
estimation based on the signals from these sensors as training data for the model. Therefore,
it is important to select an appropriate sensor for model training.

Based on the concept of [42], sensors whose estimation is better using 1D-CNN are
chosen, where the model input is the signal and the model output is the tool wear or
surface roughness. The procedure is as follows:

Procedure for Sensor Selection
Step 1: Sensor selection—All signals of the six sensors are obtained to investigate the

tool wear and surface roughness.
Step 2: Construct the 1D-CNN model—Six 1D-CNN models are established using

each sensor’s raw signal as the model input and tool wear or the surface roughness as the
model output. Figure 7 shows the construction of the 1D-CNN model for tool wear and
surface roughness estimation.
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Step 3: Calculate the RMSE values of each prediction model, which corresponds to
the prediction error of the model.

Step 4: Ranking by RMSE—Sort the RMSE values of each tool wear and surface
roughness estimation model.

Step 5: Influential sensor selection—Select the sensor signals according to the
RMSE ranking.

Step 6: Sensor number decision—Determine the number of sensors according to
requirements and cost.

Finally, the raw data of the selected sensors are the inputs of the proposed monitoring
system, as shown in Figure 6. In actual machining, many uncertain factors affect the results
of the sensors. The use of small sensors for collecting data or monitoring states is more
influenced by external factors. In addition, it is impossible to use a few small sensors to
obtain all the information of the machining condition. By combining the characteristics of
sensors, external noises can be reduced. Therefore, sensor fusion plays an important role in
the acquisition of data or the monitoring of states in the machining process.

4. Experimental Results and Discussions

In this section, the experimental results of tool wear and surface roughness are pre-
sented, and the relationship between tool wear and surface roughness is discussed. Sub-
sequently, the relevant sensor selection is discussed. Finally, the 1D-CNN combined with
sensor fusion based on the relevant sensor selection analysis is introduced, and the experi-
mental results are presented.

4.1. Relationship between Tool Wear and Surface Roughness

Surface roughness is an important indicator that is used to measure the quality of
finished products. The quality of the cutting tool influences the surface roughness of the
workpiece when the cutting tool contacts the workpiece during the machining process.
Thus, tool wear, which is a process of continuous variation, affects surface roughness.
Therefore, the relationship between tool wear and surface roughness should be verified. We
used the KAKINO path for actual milling. The relationship between tool wear and surface
roughness is shown in Figure 10. From the experimental results and the PCC computation,
it can be observed that tool wear is positively related to the surface roughness. Table 5 lists
the PCC values of the different experiments. It can be verified that tool wear and surface
roughness are positively related.

Table 5. Pearson’s correlation coefficient in different experiments.

Experiment Vmax (mm/min) Amax (m/s2) Pearson’s Correlation Coefficient

EX01 120 0.1 0.9869
EX02 120 1.3 0.9939
EX03 120 2.5 0.9953
EX04 240 0.1 0.9939
EX05 240 1.3 0.9969
EX06 240 2.5 0.9933
EX07 360 0.1 0.9876
EX08 360 1.3 0.9897
Ex09 360 2.5 0.9790

Average 0.9907
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4.2. Results of Influential Sensor Selection Analysis

As mentioned above, the 1D-CNN model is established for the estimation of tool wear
or surface roughness. The utilized 1D-CNN structure is shown in Figure 11 and Table 6.
Here, six sensors are labeled by Sensors 1–3: X-Y-Z coordinate accelerometer (vibration
signals), Sensor 4: PCB microphone (sound signals), Sensor 5: Knowles MEMS microphone
(sound signals), and Sensor 6: spindle current signals. Table 7 introduces the data for
different machining conditions. The sample length is 100,000 after the signal analysis and
processing introduced in Section 2. Note that the data numbers are not the same due to
different machining conditions. The training, validation, and testing data were 70%, 15%,
and 15% of the data, respectively. In addition, the corresponding hyper-parameters for
the influential sensor selection analysis are shown in Table 8. Tables 9 and 10 show the
corresponding estimated RMSE values of the testing data of the tool wear and surface
roughness using 1D-CNN under different machining conditions and sensors, respectively.
The definition of RMSE is as follows:

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2 (7)

where yi is the predicted value, ŷi is the actual value, and n is the number of data points.
It can be found that the average predictive ability of the tri-coordinate accelerometers in
the estimation of tool wear are improved, and the estimation of the surface roughness of
the tri-coordinate accelerometers is similar to the average estimation ability of the PCB
microphone and the Knowles MEMS microphone. According to the results shown in
Tables 8 and 9, we can conclude that the relative influence of sensors for tool wear is
sensor 2 > sensor 1 > sensor 3 > sensor 4 > sensor 5 > sensor 6, that is, influence ranking as
Y-coordinate, X-coordinate, Z-coordinate, PCB microphone, Knowles MEMS microphone,
and spindle current, respectively. In addition, for the surface roughness, the corresponding
ranking is Y-coordinate, X-coordinate, PCB microphone, Knowles MEMS microphone,
Z-coordinate, and spindle current, respectively. The results were employed for sensor
fusion using 1D-CNN.
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Table 6. Structure of 1D-CNN for the estimation of tool and surface roughness.

Layers Filter Size Stride Number of
Filters or Nodes

Activation
Function

Conv. 1 36 5 30 Sigmoid

Pool. 1 20 –

Conv. 2 18 5 30 Sigmoid

Pool. 2 10 –

Flatten –

Fully connected 1
–

128 Sigmoid

Fully connected 2 64 Sigmoid

Outputs 1 None

Table 7. The numbers of data in different machining conditions.

Conditions
Sensors

Total
Sensor 1 Sensor 2 Sensor 3 Sensor 4 Sensor 5 Sensor 6

F120A0.1 654 636 562 577 657 362 3448
F120A1.3 548 497 560 429 517 268 2819
F120A2.5 684 562 449 530 533 461 3219
F240A0.1 264 268 239 211 247 184 1413
F240A1.3 357 347 302 228 307 252 1793
F240A2.5 291 305 239 271 291 227 1624
F360A0.1 221 233 197 170 218 160 1199
F360A1.3 211 218 172 147 157 144 1048
F360A2.5 154 139 148 137 151 191 920

Total 3384 3205 2868 2700 3078 2249 –

Table 8. Hyperparameters of 1D-CNN for influential sensor selection analysis.

Hyperparameter Types or Values

Epoch 5000
Batch Size 16

Learning Rate 0.00001
Loss Function Mean Square Error

Optimizer Adamax
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Table 9. RMSE values of testing data for tool wear.

Conditions
RMSE Values of Testing Data (mm)

Sensor 1 Sensor 2 Sensor 3 Sensor 4 Sensor 5 Sensor 6

F120A0.1 0.0506 0.0503 0.053 0.0464 0.0438 0.0969
F120A1.3 0.058 0.0627 0.0621 0.0631 0.0696 0.0917
F120A2.5 0.0577 0.0451 0.0465 0.0598 0.0524 0.0918
F240A0.1 0.0596 0.0572 0.0533 0.0781 0.0741 0.0981
F240A1.3 0.074 0.0718 0.0872 0.073 0.0849 0.1022
F240A2.5 0.1116 0.0959 0.109 0.106 0.1279 0.1212
F360A0.1 0.0994 0.1129 0.1232 0.1395 0.1413 0.1276
F360A1.3 0.0833 0.0809 0.0812 0.0854 0.0886 0.139
F360A2.5 0.1031 0.0977 0.1035 0.1039 0.1051 0.1373
Average 0.0775 0.0749 0.0799 0.0839 0.0875 0.1116

Table 10. RMSE values of testing data for surface roughness.

Conditions
RMSE Values of Testing Data (µm)

Sensor 1 Sensor 2 Sensor 3 Sensor 4 Sensor 5 Sensor 6

F120A0.1 0.0736 0.0587 0.0863 0.0744 0.0791 0.0941
F120A1.3 0.0737 0.0741 0.072 0.0906 0.0993 0.1049
F120A2.5 0.0683 0.0488 0.057 0.0706 0.0704 0.1061
F240A0.1 0.0722 0.0663 0.0635 0.0758 0.0851 0.1246
F240A1.3 0.1042 0.0964 0.1237 0.1126 0.1149 0.1239
F240A2.5 0.1158 0.1239 0.1285 0.1016 0.1048 0.1312
F360A0.1 0.1139 0.1132 0.1256 0.1134 0.1208 0.1329
F360A1.3 0.1134 0.1035 0.1302 0.1019 0.1095 0.1328
F360A2.5 0.1025 0.1015 0.1058 0.1026 0.1086 0.1273
Average 0.0931 0.0874 0.0992 0.0937 0.0992 0.1197

4.3. Estimation of Tool Wear and Surface Roughness Using 1D-CNN with Sensors Fusion

Based on the above results of the sensors’ influential ranking, we designed an ex-
perimental validation process by adding sensor signals step-by-step from the influence
ranking. Table 11 shows the RMSE values of the testing data for the tool wear and the
surface roughness for different sensor fusions. Note that ‘Number’ denotes the number
of sensors for the CNN input, for example, if Number is equal to three, the inputs of
the model are the X -, Y -, and Z-coordinates for estimation. Based on the experimental
results obtained, the best RMSE of the testing data is a CNN that uses five sensor inputs.
However, the corresponding RMSE values that were computed by the five models using
these five signals as input data were very close. This means that the five sensors have a
good predictive effect on the tool wear and surface roughness. Therefore, the best sensors
for model training can be filtered out using the prediction results of a single sensor.
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Table 11. RMSE values of testing data of the tool wear for different sensor fusions.

Tool Wear

Number Sensor 2 Sensor 1 Sensor 3 Sensor 4 Sensor 5 Sensor 6

1 0.0977 mm –
2 0.0626 mm –
3 0.0523mm –
4 0.0465 mm –
5 0.0286 mm –
6 0.0529 mm

Surface Roughness

Number Sensor 2 Sensor 1 Sensor 4 Sensor 5 Sensor 3 Sensor 6

1 0.1015 µm –
2 0.0571 µm –
3 0.0546 µm –
4 0.0543 µm –
5 0.0368 µm –
6 0.0653 µm

However, in the actual manufacturing of industrial applications, it is impossible to
mount a large number of sensors on machine tools during the machining process because of
cost considerations, machining environment constraints, and the ease of sensor installation.
In this study, according to the design of the experimental path, the KAKINO path is a two-
dimensional (2D) plane (X-Y plane). Therefore, based on the cutting theory, the signals of
the X-coordinate and Y-coordinate accelerometers should be considered. To reduce the cost,
Knowles MEMS microphone is an industrial technology that combines microelectronics
and mechanical engineering, and it is cheaper than other sensors that are sound acquisition
devices. Thus, the experiment is designed to combine the signals of the X-coordinate,
Y-coordinate, and Knowles MEMS microphone as inputs of the 1D-CNN using the sensor
fusion method. The corresponding RMSE values of the testing data of the tool wear and
surface roughness were 0.0566 mm and 0.0592 µm, respectively. The results show that the
estimation performance obtained, considering the cost reduction, can yield better results.

4.4. Verification of Influential Sensor Selection Analysis

To verify the feasibility of the influential sensor selection analysis, the exhaustion
method was adopted to estimate tool wear and surface roughness with different num-
bers of sensor combinations. The RMSE values of each estimation model are shown in
Figures 12–15 for two, three, four, and five sensors, respectively. The current signals are
removed owing to the incorrect RMSE results in Table 11. Figures 12–15 show the predicted
RMSE results of the tool wear and surface roughness in (a) and (b), respectively. According
to the experimental results, the best estimation performances of different sensor combina-
tions are generally consistent with the results of the influential sensor selection analysis.
Table 12 shows a comparison of the results of the method of exhaustion and influential
sensor selection analysis for tool wear and surface roughness, respectively. The results
of the exhaustion method are the same as those of the influential sensor analysis. This
validation demonstrates the effectiveness of the proposed approach, which has the ability
to select the sensors.
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Table 12. Comparison of influential sensor selection analysis and method of exhaustion.

Number of Sensors
Tool Wear

Influential Sensor Selection Analysis Method of Exhaustion

1 Sensor 2 Sensor 2
2 Sensors 1 and 2 Sensors 1 and 2
3 Sensors 1, 2, and 3 Sensors 1, 2, and 3
4 Sensors 1, 2, 3, and 4 Sensors 1, 2, 3, and 4
5 Sensors 1, 2, 3, 4, and 5 Sensors 1, 2, 3, 4, and 5

Number of Sensors Surface Roughness

1 Sensors 2 Sensors 2
2 Sensors 1 and 2 Sensors 1 and 2
3 Sensors 1, 2, and 3 Sensors 1, 2, and 3
4 Sensors 1, 2, 4, and 5 Sensors 1, 2, 3, and 4
5 Sensors 1, 2, 3, 4, and 5 Sensors 1, 2, 3, 4, and 5

4.5. Demonstration of On-Line Monitoring

Herein, the on-line monitoring result is introduced to demonstrate the effective-
ness of the proposed approach. As result of sensor selection, X- and Y-acceleration vi-
bration signals and sound signals are adopted to implement in the on-line monitoring.
The proposed system acquires real-time signals by sensors and detects the tool wear
amount by the trained AI model. Finally, alarming users based on the predicted wear
amount. The Advantech industrial PC with CPU (ARMv8.2 HMP CPU) and NVIDIA GPU
(384 CUDA Cores, 48 Tensor Cores, Performance up to 21 TOPS) is utilized, as illustrated in
Figure 16. Figure 16a introduces hardware architecture and monitoring; Figure 16b shows
the machining method; and Figure 16c is the monitoring result with alarm and validation
(measured off-line). As shown in Figure 16b, three signals are real-time acquired and
shown, and visual monitoring using a color bar is used for the alarm (shown in Figure 16c).
The results demonstrate the effectiveness of our proposed approach.



Sensors 2021, 21, 5338 19 of 22

Sensors 2021, 21, x FOR PEER REVIEW 19 of 22 
 

 

Figure 16a introduces hardware architecture and monitoring; Figure 16b shows the ma-
chining method; and Figure 16c is the monitoring result with alarm and validation (meas-
ured off-line). As shown in Figure 16b, three signals are real-time acquired and shown, 
and visual monitoring using a color bar is used for the alarm (shown in Figure 16c). The 
results demonstrate the effectiveness of our proposed approach. 

 
(a) 

 
(b) 

 
(c) 

Figure 16. On-line monitor implementation. (a) Hardware architecture; (b) machining method illus-
tration; and (c) monitoring result with alarm and validation (measured off-line). 
Figure 16. On-line monitor implementation. (a) Hardware architecture; (b) machining method
illustration; and (c) monitoring result with alarm and validation (measured off-line).



Sensors 2021, 21, 5338 20 of 22

5. Conclusions

This paper introduced a tool wear and surface roughness estimation system using
deep learning and sensor fusion techniques. A one-dimensional convolutional neural
network (1D-CNN) with X-and Y-coordinate vibration signals and sound signal fusion was
proposed. The machining experiments with CNC parameters were designed by UED to
guarantee a variety of collected data. The vibration, sound, and spindle current signals were
collected and labeled according to the machining parameters. In addition, we proposed
an influential sensor selection analysis to preserve the estimation accuracy and minimize
the number of sensors. To verify the feasibility of influential sensor selection analysis,
the method of exhaustion was adopted to estimate tool wear and surface roughness with
different numbers of sensor combinations. The results show that the best estimation
performances of different sensor combinations are mostly consistent with the results of
the influential sensor selection analysis. Finally, the estimation system of tool wear and
surface roughness with five sensors has the best estimation performance, the RMSE of
tool wear is 0.0286 mm, and the RMSE of the surface roughness is 0.0368 µm. We propose
an experiment that combines the signals of the X-, Y-, and Knowles MEMS microphones
for cost reduction. The corresponding RMSE of the testing data from the estimated tool
wear model was approximately 0.0566 mm, and the RMSE of the testing data from the
estimated tool wear model was approximately 0.0592 µm. Finally, the proposed approach
has been applied to on-line monitoring of tool wear with an alarm, which demonstrates
the effectiveness of our approach.
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