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Abstract: In order to achieve high precision from non-contact temperature measurement, the hard-
ware structure of a broadband correlative microwave radiometer, calibration algorithm, and tem-
perature inversion algorithm are innovatively designed in this paper. The correlative radiometer is
much more sensitive than a full power radiometer, but its accuracy is challenging to improve due to
relatively large phase error. In this study, an error correction algorithm is designed, which reduces
the phase error from 69.08◦ to 4.02◦. Based on integral calibration on the microwave temperature
measuring system with a known radiation source, the linear relationship between the output voltage
and the brightness temperature of the object is obtained. Since the metal aluminum plate, antenna,
and transmission line will have a non-linear influence on the receiver system, their temperature
characteristics and the brightness temperature of the object are used as the inputs of the neural
network to obtain a higher accuracy of inversion temperature. The temperature prediction mean
square error of a back propagation (BP) neural network is 0.629 ◦C, and its maximum error is 3.351 ◦C.
This paper innovatively proposed the high-precision PSO-LM-BP temperature inversion algorithm.
According to the global search ability of the particle swarm optimization (PSO) algorithm, the initial
weight of the network can be determined effectively, and the Levenberg–Marquardt (LM) algorithm
makes use of the second derivative information, which has higher convergence accuracy and iteration
efficiency. The mean square error of the PSO-LM-BP temperature inversion algorithm is 0.002 ◦C,
and its maximum error is 0.209 ◦C.

Keywords: correlative radiometer; correction algorithm; integral calibration; PSO-LM-BP inver-
sion algorithm

1. Introduction

The research and development of non-contact temperature measurement equipment
is of great significance for medical clinical application, especially in emergency department
and intensive care units (ICUs) [1,2]. Non-contact temperature measurement equipment
can detect hot spots in subcutaneous tissue of ICU patients with a depth of 3 cm to 4 cm
and a diameter of 2 cm. Non-contact temperature measurement can be carried out on the
human body, which lays a good foundation for preventing the spread of the coronavirus
disease 2019 (COVID-19). It has become the development trend of non-contact temperature
measuring equipment to develop a thermometer that measures temperature with high
accuracy even under clothing [3].

In 2011, Gilreath et al. used a five-stage low-noise amplifier to optimize the W band
direct detection receiver in the best condition and minimize the deviation [4]. In 2013,
Zhang et al. improved the structure of the superheterodyne receiver by dividing the
converted signal into two orthogonal I/Q signals, which were sampled and uploaded to
the computer for analysis and processing [5]. Both of the above research studies used a
diode for detection, which caused a large error when the input power is small. In this
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paper, the concept of correlative detection is applied to the design of the receiver, which
can effectively limit the influence of uncorrelated signal and noise component [6,7].

To improve the temperature measurement accuracy, the high-precision temperature
inversion algorithm is carried out based on measurements from the correlative microwave
radiometer [8,9]. In recent years, a series of achievements have been made in the field of
temperature inversion algorithms. In 2016, Lou et al. proposed an inversion method of an
internal temperature field of slow wave structure based on a BP network model for the
measurement of internal temperature of a traveling-wave tube [10]. However, since it is
easy for the BP network to fall into local optimal solution, further optimization is needed
to achieve higher accuracy. In 2019, Ling et al. used the particle swarm optimization (PSO)
algorithm to optimize the BP network for the inversion of the magnetic nanoparticles’
temperature measurement model, and Ling et al. combined the Gaussian Newton iteration
method (GN) with PSO to obtain the PSO-GN algorithm. This algorithm improves the
local search ability of the temperature inversion algorithm, but the effect is poor under the
condition of low SNR, and the error is greater than that of the traditional PSO algorithm [11].

Using a correlative microwave radiometer after phase correction and integral calibra-
tion, a linear relationship between receiver output voltage and brightness temperature
can be obtained. The high-precision PSO-LM-BP inversion algorithm is innovatively pro-
posed in this paper to predict the temperature, which uses the global search ability of
the PSO algorithm to determine the initial weight and then uses the second-derivative
information of an LM algorithm to obtain high accuracy. The microwave temperature
measuring system is introduced from the following four aspects: (1) structure of microwave
radiometer temperature measuring system, focusing on the radio frequency front end,
orthogonal demodulator, difference amplifier, and analog-to-digital converter; (2) the phase
correction algorithm corrects the I/Q channel signal phase error and amplitude malad-
justment caused by the original signal passing through the power divider; (3) signal after
autocorrelation arithmetic, the square of the input voltage contained in the output voltage,
so the direct linear relation between the output voltage and input power—on this basis, the
integral calibration is to determine the output voltage and brightness temperature linear
mathematical expression, according to a two-point calibration method, using radiation
characteristics of two known sources, this article for absorbing material and an aluminum
drum. By determining the linear mathematical expression, the brightness temperature of
the measured object corresponding to the output voltage can be obtained; (4) interference
factors are added to the input end of the neural network to eliminate the interference on
an antenna caused by the environment, receiver, and aluminum barrel. The improved
PSO-LM-BP neural network inversion algorithm is implemented on the corrected and
calibrated data to get the predicted temperature value with high accuracy. The process
of correlative microwave radiometer calibration and temperature inversion is shown in
Figure 1.
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radiation power detection but also effectively reduce the influence of system noise. 

Figure 1. Correlative microwave radiometer calibration and temperature inversion process.

2. Materials and Methods
2.1. Structure of Microwave Radiometer Temperature Measuring System

The design block diagram of the microwave receiver is shown in Figure 2. The signal
is processed by a multi-stage low-noise amplifier and a multi-stage bandpass filter; in this
design, three low-noise amplifiers (ZX60-83LN-S+, Mini-Circuits, Brooklyn, NY, USA) with
noise figures of 1.59 dB and gain of 20 dB are placed at the front end of the radio frequency
front end, which can effectively reduce the noise figure of the receiver system. Then, we
cascade three low-noise amplifiers with two 15 dB low-noise amplifiers (ZX60-V63+, Mini-
Circuits) to make the radio frequency front end gain up to 90 dB. At the same time, a set of
bandpass filters is added between the low-noise amplifiers to control the bandwidth of the
receiver. Each bandpass filter is composed of a high-pass filter (VHF-3800+, Mini-Circuits)
and a low-pass filter (VLF-5500+, Mini-Circuits); then, the receiver autocorrelation element
reaches the working point. In order to realize autocorrelation, the I+,I−/Q+,Q− channel
signals are realized by the power divider and multiplier. After the differential amplifier
and AD converter, the output voltage signal represents the power value of the measured
signal. The amplitude of the output signal of the complex correlator is proportional to
the square of the voltage amplitude of the received signal, and the phase of the output
signal is the phase difference of the two received signals, so the linear relationship between
the input power and the output voltage can be established [12]. In addition, the radiation
power received by the antenna has a linear relationship with the brightness temperature of
the measured target [13]. Therefore, based on experimental data and the supervised neural
network algorithm, the microwave receiver can determine the physical temperature of the
object. Applying the concept of a complex correlator to the structure design of a receiver
cymoscope can not only realize the function of microwave radiation power detection but
also effectively reduce the influence of system noise.
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Figure 2. Design block diagram of a broadband microwave receiver.

The actual temperature measuring system is built as shown in Figure 3a. The receiver
designed in this paper mainly consists of a radio frequency front end, orthogonal demod-
ulator, difference amplifier, and analog-to-digital converter. The correlative microwave
receiver designed in this paper will be used to measure the temperature of human skin
and subcutaneous tissue [14,15]. Therefore, the microwave receiver should have a wide
working frequency bandwidth from 4 to 6 GHz. Considering the non-contact method of
human body temperature detection, this paper designed a pyramid horn antenna for the
microwave radiometer front end in order to reduce the impact of environment on the sys-
tem noise. Its advantages are low-voltage standing wave ratio, wide working bandwidth,
high directivity, and easy to manufacture. The technical specifications of the antenna are
as follows: the width of the horn is 88.04 mm, the depth of the horn is 89.05 mm, and the
length of the horn is 49.08 mm. The phase accuracy and amplitude balance index of the
orthogonal demodulator should be high enough to ensure that the input signal can be
recovered from the output result after the correlation calculation. In this paper, ADL5380-
EVALZ from Analog Devices is selected, which can operate in the bandwidth range of
400 MHz to 6 GHz, and it has high phase accuracy and amplitude balance, which can
effectively guarantee the accuracy of the receiver. The fully differential amplifier amplifies
the signal after autocorrelation processing. In order to ensure the accuracy, ADA4940-
2ACP-EBZ fully differential dual-channel amplifier from Analog Devices is selected in this
paper. Its misadjustment error is 0.35 mV and the rail-to-rail output is −VS + 0.1 V to +VS
− 0.1 V, which has good dynamic performance. EVAL-AD7903SDZ from Analog Devices
is used as part of the analog-to-digital converter to obtain the digital quantity of the signal.
It consists of two channels and uses a successive approximation conversion mode with
high speed, low power loss, and no delay. By matching the EVAL-SDP-CB1Z evaluation
board, the analog-to-digital converter sampling data can be uploaded to a PC for analysis
and processing.

This paper uses a model with electromagnetic properties similar to human tissue for
physical temperature measurement. The permittivity model parameters of various tissues
show that muscle, blood, and skin have high water content [16,17], so this paper uses
water as the measurement object to study the performance of a non-contact temperature
measurement system based on a correlative receiver. The test diagram is shown in Figure 3b.
Next, this paper will discuss the correction, calibration, and inversion algorithm of the
wideband correlative microwave radiometer for non-contact temperature measurement.
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Figure 3. (a) Physical picture of broadband correlative microwave receiver; (b) Device diagram of non-contact temperature
measurement system based on correlative receiver.

2.2. Design of Correction Algorithm for Correlative Microwave Receiver

In practical measurement, the output voltage of the I/Q channel correlative microwave
receiver is as follows:

VI =
(

hB2 + e
)

cos(ϕ) (1)

VQ =
(

hB2 + e
)

sin(ϕ). (2)

After the power divider, ϕ is the system phase error caused by the circuit; e and h are
maladjustment; and B is the output signal amplitude of the power divider.

The amplitude and phase of the output voltage are:

V =
√

VI2 + VQ
2 =

√
((hB2 + e) cos(ϕ))

2 + ((hB2 + e) sin(ϕ))
2 = hB2 + e (3)

arctan
(

VQ

VI

)
= arctan

((
hB2 + e

)
sin(ϕ)

(hB2 + e) cos(ϕ)

)
= ϕ (4)

The 16-bit AD converter is used in this paper, the sampling time is 2 min, and a total
of 2048 groups of data are measured. The main parameters obtained are the code value
after the AD sampling I/Q channel and the current object temperature value. The results
of system partially sampling data collation are shown in Table 1.

The receiver is connected to the standard signal source, and the phase shifter is
controlled to a 22.5◦ step scan phase; then, we record the phase shift of the phase shifter,
collect the data of the I/Q channel sampling values at each phase point, and calculate the
average voltage value and average phase value of the phase point. The phase error is the
absolute value of phase mean minus theoretical phase. The measurement results of the
uncorrected phase sweeping part are shown in Table 2.
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Table 1. Part of the actual experimental measurement results.

Group Number/Serial
Number

I Channel Sampling
Value

Q Channel Sampling
Value Phase Parameters (◦) Temperature (◦C)

1/1 37,595 38,145 −63.558 43.6

1/2 37,443 39,005 −67.606 43.6

1/3 37,629 38,158 −68.407 43.6

1/4 37,869 38,304 −71.950 43.6

1/5 38,533 39,233 −63.617 43.6

1/6 37,987 38,631 −65.363 43.6

2/1 36,892 38,329 −74.692 43.7

2/2 37,257 38,479 −68.716 43.7

2/3 36,955 39,070 −65.056 43.7

2/4 37,461 38,570 −63.076 43.7

2/5 37,874 39,040 −63.823 43.7

2/6 37,842 38,865 −68.656 43.7

3/1 37,036 38,679 −69.342 43.8

3/2 36,679 38,220 −67.701 43.8

3/3 36,977 39,572 −66.907 43.8

3/4 37,919 39,057 −66.771 43.8

3/5 37,110 38,486 −68.692 43.8

3/6 37,293 38,685 −74.338 43.8

Table 2. Sampling data during phase scanning.

I Channel Voltage (V) Q Channel Voltage (V) Phase Mean ∅ (◦) Theoretical Phase (◦) Phase Error (◦)

−0.253 0.003 179.292 247.5 68.208

−0.244 0.095 158.858 225 66.142

−0.180 0.184 134.372 202.5 68.128

−0.097 0.208 114.987 180 65.013

−0.006 0.230 91.590 157.5 65.910

0.079 0.220 70.362 135 64.638

0.173 0.169 44.334 112.5 68.166

0.227 0.077 18.702 90 71.298

0.253 −0.021 −4.743 67.5 72.2431

0.237 −0.112 −25.407 45 70.407

0.164 −0.197 −50.120 22.5 72.620

0.075 −0.214 −70.638 0 70.638

−0.016 −0.231 −94.000 −22.5 71.500

−0.100 −0.216 −114.869 −45 69.869

−0.193 −0.160 −140.313 −67.5 72.813

−0.224 −0.092 −157.698 −90 67.698

The total phase error of the system can be obtained by averaging the phase error of the
sampled data, which is 69.08◦, and then correcting the phase error in the software through
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the correction algorithm. The software correction phase error is shown in Equations (5)
and (6).

VIchannel = Vmax

[
cos(θTARGET) cos

(
ϕPHASEshi f t

)
− sin(θTARGET) sin

(
ϕPHASEshi f t

)]
(5)

VQchannel = Vmax

[
sin(θTARGET) cos

(
ϕPHASEshi f t

)
+ cos(θTARGET) sin

(
ϕPHASEshi f t

)]
(6)

The scanning phase at 22.5◦ step size, the original sampling data of the I/Q channel,
and the data after phase error correction by the software algorithm are shown in Figure 4.
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Figure 4 shows that after fitting the optimal curve, there is a linear relationship
between the voltage value and the sampling value after phase compensation. The intercept
and slope of the fitting line are the offset e and the slope hreal , respectively. The ideal
misalignment of each signal chain in the receiver subsystem should be 0 for the least
significant bit. The slope of the optimal fitting line represents the slope of the subsystem.
The ideal subsystem slope can be calculated as follows:

hideal =
Codemax − Codemin
+VREF −−VREF

(7)

where Codemax is the maximum sampling value; Codemin is the minimum sampling value;
the reference voltage is 5 volts; and VREF is 5 V. In this paper, a 16-bit AD converter is used,
and the digital value range after conversion is 0–65,535. The error offset contains the DC
component, so the corrected offset is the original offset minus the DC component, which
can be expressed as:

ecorrect = e− 32768 (8)

The gain error correction coefficient is:

hcorrect =
hideal
hreal

(9)

The actual received sample value after correction:

Codecorrect = Code ∗ hcorrect + ecorrect (10)

According to the error correction in Equation (10), the gain error and offset error can
be corrected. The results are shown in the Table 3.
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Table 3. Data after error correction.

I Channel Voltage (V) Q Channel Voltage (V) Phase Mean ∅ (◦) Theoretical Phase (◦) Phase Error (◦)

−0.114 −0.240 −115.401 247.5 2.901

−0.197 −0.200 −134.614 225 −0.386

−0.258 −0.108 −157.386 202.5 −0.114

−0.251 −0.021 −175.12 180 −4.880

−0.239 0.071 163.513 157.5 −6.013

−0.200 0.146 143.764 135 −8.764

−0.118 0.216 118.667 112.5 −6.167

−0.012 0.234 93.033 90 −3.033

0.089 0.222 68.264 67.5 −0.764

0.169 0.174 45.953 45 −0.953

0.222 0.077 19.072 22.5 3.428

0.207 −0.012 −3.454 0 3.454

0.190 −0.104 −28.625 −22.5 6.125

0.146 −0.177 −50.403 −45 5.403

0.060 −0.243 −76.023 −67.5 8.523

−0.015 −0.247 −93.389 −90 3.389

Table 3 shows that the mean phase error of the system is reduced to 4.02◦. In the
actual measurement of water temperature, the mean phase error can be reduced to 1.4◦ by
using the correction algorithm in the temperature range of 37.5 to 38 ◦C. The correction
algorithm can effectively reduce the influence of phase error, gain error, and offset error on
the output results.

2.3. Calibration Based on the Temperature Measuring System

Calibration is to receive the radiation energy of the calibration source with known
radiation characteristics through the antenna and record the output voltage of the receiver
at this time. Calibration is divided into step calibration [18] and integral calibration,
which is a two-point integral calibration method widely applied in microwave radiometer
calibration, so this paper designs an integral calibration scheme with an absorbing material
and aluminum drum for the non-contact temperature measurement system composed of
a correlative microwave receiver and high directivity antenna, in which the receiver and
antenna are calibrated at the same time.

Integral calibration is used to determine the output voltage and brightness temper-
ature linear mathematical expression, which is established in the process of signal after
autocorrelation arithmetic, including the square of the input voltage contained in the out-
put voltage, so featuring the direct linear relation between the output voltage and input
power [19–21]. According to a two-point calibration method, using radiation characteristics
of two known sources, one article for an absorbing material and an aluminum drum, the
brightness temperature of the measured object corresponding to the output voltage can
be obtained.

In this paper, two calibration sources with different emissivity, the metal aluminum
barrel and absorbing material, are selected to design the integral calibration scheme. The
emissivity of the absorbing material is close to 1 and can be regarded as a blackbody. The
surface of the metal aluminum plate is in contact with air and has an oxide film. According
to relevant literature [22,23] and historical experience, its emissivity can be approximately
0.26. Real objects are shown in Figure 5, and the relevant parameters are shown in Table 4.
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Table 4. Calibration data.

Measured Object Temperature T (◦C) Emissivity ε Brightness Temperature TB (◦C) Correction Voltage V (V)

Metal aluminum barrel 27 0.26 7.020 1.213

Microwave absorbing
materials 28.4 0.995 28.258 1.255

After the brightness temperature of the radiation source and the corresponding re-
ceiving voltage at the same brightness temperature are known, the calibration formula
determined by the two-point calibration method is as follows:

V = 0.0019776 ∗ TB + 1.1991173. (11)

Due to the interference of the electromagnetic environment, the loss of equipment
components, and the change of detection position, it is necessary to calibrate regularly.
Generally, the integral calibration is carried out with absorbing material in the environment
of liquid nitrogen and at room temperature. In order to solve the problem of difficult
storage and preparation of absorbing material in a liquid nitrogen environment, this paper
uses a metal aluminum drum instead of it. The calibration scheme in this paper meets the
needs of the calibration process.

2.4. Inversion Algorithm of Object Temperature Prediction

In 2021, Sun et al. used a BP neural network inversion algorithm to predict the tem-
perature; the average error is 0.575 ◦C and the maximum error is 1.358 ◦C [24]. This result
did not meet the accuracy standard of medical temperature measurement (±0.2 ◦C) [25].
In this paper, an improved PSO-LM-BP neural network inversion algorithm is proposed to
predict the temperature with high precision.

Three digital thermometers with metal probes are used to measure the temperature
of the aluminum drum, the antenna surface, and the transmission line. All of them
may affect the inversion results. The metal aluminum drum will accumulate the energy
emitted by itself into the antenna temperature in the form of radiation. The rise of antenna
interface temperature and transmission line temperature will affect the measurement
results by affecting the output voltage of the receiver. Different factors will lead to different
effects [26,27]. By using a neural network, the inversion algorithm is a non-linear inversion
problem. At the input end of the neural network, interference factors are added, which
is characterized by temperature, to eliminate the interference on the antenna caused by
the environment, receiver, and aluminum barrel. Using the improved PSO-LM-BP neural
network structure, the actual temperature of the object can be retrieved with high accuracy.

The unified parameters used in the following networks are as follows:
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• Brightness temperature, aluminum barrel temperature, antenna temperature, transmis-
sion line temperature, and water temperature are taken as the inputs of the supervised
neural network.

• The training set and validation set are 124 sets of data and 30 sets of data in the
temperature range from 27.5 to 64.5 ◦C. Each algorithm is validated in five rounds
and the validation set is selected at random.

• BP network structure: The four input values are normalized, the number of network
layers is three, the number of hidden layer neurons is seven, and the output layer
outputs the predicted temperature.

• Activation function f (x):

f (x) =
1

1 + e−x (12)

where x is the input to the activation function. The non-linear function is introduced
as the activation function, so that the expression ability of the deep neural network is
more powerful, and the output is no longer a linear combination of the input, but it
can approximate almost any function.

• Error function E(x):

E(x) =
1
2

N

∑
i=1

(Yi − Ti)
2 =

1
2

N

∑
i=1

ei
2(x) (13)

where Yi is the neural network predicted value, Ti is the true value, N is the number
of training set groups, and i is the number of each group.

2.4.1. BP Neural Network Algorithm

The BP neural network does not need to determine the mapping relationship be-
tween the input and output in advance. Through the process of forward propagation
and error back propagation, the network constantly adjusts the weights and thresholds
of the network to minimize the error between the actual output value and the expected
output value. Good robustness, adaptability, fault tolerance, and generalization have made
the BP neural network algorithm one of the important algorithms in the field of artificial
intelligence [28–30].

In this section, the parameters of the BP neural network are as follows: the number of
iterations is 2000, and the learning rate is 0.01.

For 30 validation sets, the experimental data show that the average error of the BP
neural network algorithm is 0.824 ◦C, the maximum error is 3.351 ◦C, and the mean square
error is 0.629 ◦C. The large deviation of the BP neural network algorithm in retrieving the
water temperature is due to:

• The structure of the BP neural network only using the gradient descent method, which
makes it easy to fall into a local minimum.

• The accuracy of temperature sensors for measuring the temperature of the aluminum
plate, antenna surface, and transmission line is limited, which leads to the low accuracy
of data used in the inversion algorithm.

Aiming at the problem that it is easy for the BP neural network water temperature
inversion algorithm to fall into the local minimum, this paper designs and uses particle
swarm optimization (PSO) and the Levenberg–Marquardt (LM) algorithm to optimize the
BP neural network without changing the network structure.

2.4.2. PSO-BP Neural Network Algorithm

The particle swarm optimization (PSO) algorithm is based on the foraging behavior of
birds, which is an optimal decision-making process. Each particle in the population has two
attributes: velocity and position. Each particle has a position and the velocity of particles
creates the weight matrix in a BP neural network. There is only one initialization weight
matrix in a BP algorithm, and the PSO-BP neural network algorithm can initialize more
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matrices, increasing the global search ability of the network. The velocity and position of
the particles are brought into the BP forward neural network to calculate and compare with
the historical fitness value, and then, the individual optimal value is determined. Through
comparison, the individual with the best fitness value is selected as the global optimal
value, which is used to guide and update all the particle velocities. The specific PSO-BP
neural network algorithm process is shown in Figure 6.
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In the process of back propagation, the traditional BP algorithm uses the gradient
descent method to update the weight and threshold parameters. When the BP algorithm
falls into a flat area, the weight change becomes smaller, resulting in slow convergence or
even failure of convergence. Using the PSO algorithm to optimize the BP neural network
algorithm can combine the advantages of the two algorithms [31,32]. The updated formula
of weight in the PSO algorithm depends on the performance of all particles, which does not
depend on the gradient information, which increases the global search ability of the network
and effectively prevents the BP algorithm from falling into the local minimum value.

In this section, the parameters of the PSO-BP neural network are as follows: the
number of iterations is 500; the number of particles is 20; the range of velocity is (−5, 5)
and the range of position is (−10, 10); the acceleration constant is 2; and the linear weight
decreasing strategy is used.

The specific iterative formula of particle position and velocity is as follows:

vi+1 = wk ∗ vi + c1 ∗ rand1 ∗ (pbesti − xi) + c2 ∗ rand2 ∗ (gbesti − xi) (14)

xi+1 = xi + vi+1. (15)

wk adopts linear weight decreasing strategy:

wk =
(wini − wend) ∗ (Tmax − k)

Tmax
+ wend (16)

where Tmax is the maximum number of iterations. ci is the acceleration constant. randi
is a random number between (0, 1). vi and xi represent the velocity and position of the
i-th dimension of a particle, respectively. gbesti represents the weight of the particle with
the best fitness among all the particles in the i-th dimension, and pbesti is the weight
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corresponding to the historical optimal solution of the particle itself in the i-th dimension.
k is the number of iterations, and the inertia coefficient decreases linearly from 1 to 0 as the
number of iterations increases.

For 30 validation sets, the experimental data show that the average error of the PSO-
BP neural network algorithm is 0.521 ◦C, the maximum error is 2.920 ◦C, and the mean
square error is 0.210 ◦C. The back propagation process optimized by the PSO algorithm
can effectively improve the problem in which it is easy for the BP neural network water
temperature inversion algorithm to fall into a local minimum.

2.4.3. LM-BP Neural Network Algorithm

The Levenberg–Marquardt (LM) algorithm is a non-linear optimization method com-
bining the gradient descent method and Gauss–Newton method. The algorithm adds a
factor µ. When the solution is far away from the optimal solution, the LM-BP algorithm is
equivalent to the gradient descent method and has the ability of global judgment. When the
distance is close to the optimal solution, the LM-BP algorithm is equivalent to the Gauss–
Newton method and has the ability of local judgment. By using the second derivative
information of the Newton method, the problem is that the gradient descent method drops
slowly or even fails to converge when it is close to the minimum point, which is effectively
alleviated. By using the Jacobian matrix in the Gauss Newton method, the problem in
which Newton’s method needs a lot of calculation in a Hessian matrix is solved.

The error function with matrix increment is:

E(x + ∆x) =
1
2

eT(x + ∆x)e(x + ∆x), e(x + ∆x) = e(x) + J(x)∆x (17)

where E(x) is the error matrix, and x is the matrix composed of the weight and threshold.
Jacobian matrix elements are shown in Equation (18). ei(x) represents the error of the

i-th group of input vectors after passing through the weight matrix.

J(x) =


∂e1(x)

∂x1

∂e1(x)
∂x2

∂e2(x)
∂x1

∂e2(x)
∂x2

· · ·
∂e1(x)

∂xk
∂e2(x)

∂xk
...

. . .
...

∂en(x)
∂x1

∂en(x)
∂x2

· · · ∂en(x)
∂xk

 (18)

It is necessary to satisfy the error function first derivative equal to 0, so that E(x + ∆x)
can reach minimum; the updated matrix increment is:

∆x = min
∆x
{E(x + ∆x)} = −

[
JT(x)J(x)

]−1
JT(x)e(x). (19)

The above is the derivation of the Gauss–Newton method. The LM-BP algorithm is
adopted after increasing the coefficient µ:

∆x = −
[

JT(x)J(x) + µI
]−1

JT(x)e(x), xi+1 = xi + ∆x. (20)

Using the LM algorithm to optimize the BP algorithm can effectively improve the
convergence speed of the BP algorithm, and its algorithm diagram is shown in Figure 7.

In this section, the parameters of the LM-BP neural network are as follows: the number
of iterations is 300; the minimum gradient value gmin is 10−10; step parameters µ = 0.001;
and β = 10. When the number of iterations of the algorithm reaches the preset value and
the ∇E(k)(x) is less than gmin can be used as termination conditions, respectively.
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For 30 validation sets, the experimental data show that the average error of the LM-BP
neural network is 0.101 ◦C, the maximum error is 0.488 ◦C, and the mean square error is
0.003 ◦C. From the inversion results, it can be seen that the LM algorithm can effectively
improve the prediction accuracy of a water temperature inversion BP algorithm.

It can be seen that the LM algorithm needs to control the parameter µ. Switching
between the gradient descent method (GDM) and Gauss–Newton method (GNM) also
determines that the working mode of the LM algorithm depends on the selection of initial
value. When the initial value is not selected properly, the network will easily fall into local
minimum after being proficient [33].

2.4.4. PSO-LM-BP Neural Network Algorithm

Through the above experiments, it can be concluded that the advantage of the PSO
algorithm is to prevent the BP algorithm from falling into a local minimum, and the
advantage of the LM algorithm is to make the BP neural network converge quickly and
accurately. The LM algorithm is more dependent on the selection of the initial value,
and the PSO algorithm can make up for this shortcoming, so the two algorithms can
complement each other. Therefore, the PSO-LM-BP neural network optimization algorithm
is given. The algorithm flow chart is as shown in Figure 8 (states 1 and 2 in Figure 7 are
described in detail in the block diagram of the LM algorithm).

For the PSO-BP algorithm, the particle population size is set as 20, the update range of
velocity is (−5, 5), the update range of position is (−10, 10), and the inertia coefficient de-
creases linearly from 1 to 0 as the number of iterations increases. For the LM-BP algorithm,
the step parameters are µ = 0.001, β = 10, the number of iterations is 300, and gmin is 10−10.
For the PSO-LM-BP algorithm, the PSO algorithm is used to iterate 50 times, and then, the
optimal solution of the current population is transferred to the LM algorithm. The optimal
solution is obtained when the LM algorithm reaches the ending condition [34,35].
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For 30 validation sets, the experimental data show that the average error of the
PSO-LM-BP neural network is 0.055 ◦C, the maximum error is 0.209 ◦C, and the mean
square error is 0.002 ◦C. From the inversion results, it can be seen that the PSO-LM-
BP algorithm can effectively improve the prediction accuracy of the water temperature
inversion algorithm.

3. Results

In order to evaluate the model, mean square error (MSE) is introduced as evaluation
criteria. The calculation formula is as follows:

MSE
(
θ̂
)
=

1
N

N

∑
i=1

(
θ̂ − θ

)2
. (21)

where θ̂ is the estimated value, and θ is the true value. The results of 30 predictions are
shown in Figure 9.

In Figure 9, the loss value is the absolute value of the difference between the actual
temperature and the predicted temperature, which shows that the BP neural network
algorithm and PSO algorithm have a large prediction error, while the LM algorithm uses
second derivative information to make the convergence accuracy higher and the prediction
error smaller. However, the LM algorithm needs to adjust the parameter u, which depends
on the initial weight matrix. Therefore, in combination with the advantages of the PSO
algorithm that can increase the global search capability of the network, this paper uses
the PSO algorithm to calculate the initial weight and threshold matrix first, and then,
it iterates into the LM algorithm and innovatively proposes the PSO-LM-BP algorithm.
Compared with the other three algorithms, the PSO-LM-BP algorithm has higher accuracy
and stronger data-fitting ability.
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The comparison diagram of the four algorithms is shown in Figure 10a, which shows
that the MSE convergence effect of the PSO algorithm is slightly worse, while the con-
vergence process of the other three algorithms is faster and the convergence accuracy is
high. Since the details of the other three algorithms cannot be distinguished, the amplifi-
cation operation is carried out. In Figure 10b, the comparison of MSE values during the
convergence of the other three algorithms except for the PSO algorithm shows that by
combining the advantages of PSO and LM algorithms, the PSO-LM-BP algorithm improves
the iteration efficiency and accuracy, makes it difficult for the network to converge to the
local minimum, and reduces the fluctuation of temperature prediction of the broadband
correlative microwave radiometer compared with the traditional BP neural network.
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The inversion algorithm of the correlative microwave temperature measuring system
in this paper is compared with the paper on temperature measurement by a microwave
radiometer published by Sun et al. [24]; the results are shown in Table 5.



Sensors 2021, 21, 5336 16 of 18

Table 5. Comparison of the temperature inversion algorithm with another correlative microwave radiometer.

Temperature Inversion Algorithm Mean Square Error (◦C) Average Error (◦C) Maximum Error (◦C)

Multiple linear regression algorithm [24] 0.607 0.759 1.777

BP neural network algorithm [24] 0.334 0.575 1.358

BP neural network algorithm 0.629 0.824 3.351

PSO-BP algorithm 0.210 0.521 2.920

LM-BP algorithm 0.003 0.101 0.488

PSO-LM-BP algorithm 0.002 0.055 0.209

The PSO algorithm is used to determine the initial network weight parameters due to
its global search property, and then, the second derivative information of the LM algorithm
is combined to accelerate the convergence speed and improve the iteration efficiency; finally,
an innovative PSO-LM-BP high-precision inversion algorithm is proposed in this paper.
Compared with other correlative microwave radiometers, in the BP inversion algorithm,
the mean square error is reduced by 0.332 ◦C, the average error is reduced by 0.520 ◦C, and
the maximum error is reduced by 1.149 ◦C. The high-precision PSO-LM-BP temperature
inversion algorithm greatly improves the temperature measurement performance of the
correlative microwave radiometer.

4. Conclusions

In this paper, a wide-band correlative microwave receiver is designed for non-contact
temperature measurement, and then, the correlative microwave receiver is applied to
non-contact water temperature measurement. The temperature measurement performance
of the receiver is evaluated and analyzed through actual sampling data. The contributions
made in this paper and the future discussion of this study are as follows:

1. A correlative microwave receiver error correction algorithm is designed. A phase
correction program is designed to compensate the phase error of the receiver system.
The phase error of the signal in each theoretical phase can be minimized. The correc-
tion parameters of gain error and misalignment error are obtained by the linear fitting
method. After correction, the phase error is reduced from 69.08◦ to 4.02◦.

2. The integral calibration scheme of the correlative microwave receiver’s non-contact
temperature measuring system is designed. Using a metal aluminum plate and
absorbing material as the calibration source, the calibration scheme of the system is
designed according to its brightness temperature and corresponding output voltage.
The linear relationship between the output voltage value of the correlative microwave
radiometer and the brightness temperature of the object can be obtained accurately.

3. The temperature inversion algorithm of the non-contact temperature measuring sys-
tem of the correlative microwave radiometer is designed. The influence of the metal
aluminum plate, antenna, and transmission line on the output results is considered.
The BP neural network algorithm and its improved algorithm PSO-BP, LM-BP, and
PSO-LM-BP neural network algorithm are used to obtain the inversion water temper-
ature value. The temperature prediction mean square error of the BP neural network
algorithm is 0.629 ◦C, while the maximum error is 3.351 ◦C. The PSO algorithm and
LM algorithm combined their respective advantages to optimize the back propagation
process of the BP neural network algorithm, which improved the inversion accuracy.
The mean square error of the PSO-BP algorithm is 0.210 ◦C, and the mean square
error of the LM-BP algorithm is 0.003 ◦C. The mean square error of the PSO-LM-BP
algorithm is 0.002 ◦C, and the maximum error is 0.209 ◦C.

4. Laboratory environment, the reflection of the receiver, and the calibration source
itself will affect the brightness temperature of the reflection. To improve the preci-
sion of temperature measurement, the follow-up works in this paper are as follows:
(1) designing a more accurate and stable blackbody calibration source; (2) doing inte-
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gral calibration operation under a microwave dark room test environment;
(3) modifying the integral calibration equation by a correction algorithm.

5. In this paper, the existing data sets of actual measurements are used to design the
inversion scheme of the receiver’s non-contact temperature measurement system.
However, the maximum error of the PSO-LM-BP inversion algorithm used in this
paper is 0.209 K [36–38], which is better than that of the existing infrared thermometer
0.90 K. More data sets need to be added in the subsequent work to improve the inver-
sion temperature range and play to the advantages of the neural network algorithm.
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