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Abstract: Every consumer’s buying decision at the supermarket influences food brands to make first
party claims of sustainability and socially responsible farming methods on their agro-product labels.
Fine wines are often subject to counterfeit along the supply chain to the consumer. This paper presents
a method for efficient unrestricted publicity to third party certification (TPC) of plant agricultural
products, starting at harvest, using smart contracts and blockchain tokens. The method is capable
of providing economic incentives to the actors along the supply chain. A proof-of-concept using a
modified Ethereum IGR token set of smart contracts using the ERC-1155 standard NFTs was deployed
on the Rinkeby test net and evaluated. The main findings include (a) allowing immediate access to
TPC by the public for any desired authority by using token smart contracts. (b) Food safety can be
enhanced through TPC visible to consumers through mobile application and blockchain technology,
thus reducing counterfeiting and green washing. (c) The framework is structured and maintained
because participants obtain economic incentives thus leveraging it´s practical usage. In summary,
this implementation of TPC broadcasting through tokens can improve transparency and sustainable
conscientious consumer behaviour, thus enabling a more trustworthy supply chain transparency.

Keywords: blockchain; agri-food; supply chain; third party certification; green-washing; Ethereum
tokens; ERC-20; ERC-1155; distributed ledger technology; non fungible tokens

1. Introduction
1.1. Sustainable Farming and Consumer Choice

Healthy food starts with honest farming and harvesting. Several factors will, however,
influence the exact quality and properties of each instance of the food that reaches the
consumer. Examples would be the farming methods, seeds, micro-climate, humidity during
the harvesting days, or need to use some agro-chemical against weeds or insect infestation.
The storage at the farm as well as the handling along the supply chain links can also mean
that quality ingredients do not reach the consumer’s table.

In addition to the increasing pressure for greater productivity, farmers are being
pushed by end consumers to use more environmentally friendly procedures and agri-
cultural methods. Consumer awareness that their buying decision at each visit to the
supermarket can positively influence social and environmental equilibrium moves brands
to make claims of sustainable farming methods on their labels. This trend began with
organic production and fair trade initiatives and has grown to a wide variety of certifica-
tion methods.

Certifications are available for crops such as sustainable cocoa, pineapple, cattle, and
palm oil. Certification strategies are gaining widespread customer support and constitute
an important vector in changing how food will be obtained and distributed in the future.
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In 1990, the Organic Foods Production Act (OFPA) established standards for agri-
cultural producers of commodities that claimed to use organic methods. The methods,
practices, and substances used in agricultural practice, including sowing; growing; and har-
vesting; as well as handling crops, livestock, and processed agricultural products, restrict
the wording on the product labels and marketing. Since OFPA, the US consumer has been
continuously increasing demand for certified organic foods brands that claim to use organic
production processes. Nevertheless, these organic farm certification methodologies have
shown limitations and criticism: the authors of [1] conclude that the “current regulatory
framework is not only inadequate to the task of regulating domestic organics, but also
incapable of ensuring the integrity of imported organics. Thus, the USDA Organic seal
misleads consumers”.

The term green-washing was defined [2] as “communication that misleads people
into forming overly positive beliefs about an organization’s environmental practices or
products”. This procedure jeopardizes environmentally friendly consumer behaviour.

1.2. Need for Third Party Certification

Several studies have recently claimed that certification of products hold great ben-
eficial potential, such that [3]: “Product certification is one of the most promising and
developed instruments to reward the socially and environmentally friendly practices of
market producers”.

Third party certification (TPC) differs from first and second party certification mainly
because the third party authority that issues the certificate has no interest in the transaction.
A TPC involves an “independent Organisation with expertise to provide an assessment
and verification of the company’s compliance with standards or legal requirements” [4].

In the last few years, TPC has become a growing regulatory mechanism in the global
plant, agricultural and food industries. This trend represents a major shift from public to
private governance demands and methods. The rise of TPC in the agri-food sector will allow
for more transparency and accountability of negligent or fraudulent market participants.
This phenomenon is akin to the great advances in quality and transparency that the third
party certification trend brought about by the ISO2001 certification of industries and
services in the last decades.

TPC can be very useful to ascertain product physical, chemical, or organoleptic
properties and is allowing bolder certification of social, environmental, and sustainability
properties. According to the work in [5]: “TPC also offers opportunities to create alternative
practices that are more socially and environmentally sustainable”.

1.3. Certification of Farms versus Certification of Each Harvest

Although the farming procedures may be certified according to criteria such as quality,
sustainability, or social fairness, there is no form of ensuring that certification of the
typical farming methods, such as USDA Organic certification methodology, avoids that
specific harvests are stained by malpractices such as agrochemical exposure or used hidden
child labor.

Each harvest of a specific crop is unique. The difference may lie in the seeds used for
that particular season or in the total hours of sunshine in that specific location during the
crop’s growth.

In several agricultural sectors, especially in the wine trade, consumers recognize the
crop timing and the different characteristics between harvest of different years even from
the same farm. The analysis of the organoleptic properties of the wine produced recognizes
major differences in year and location of the harvest of grapes. In the wine sector, the wine
counterfeit problem can be summarized as avoiding the problem where larger quantities
of more valuable wine from grapes harvested on better years or regions reaches retail than
the volume actually produced. This fraud is also known as the mass balance problem [6]
or double spending [7] and is very deleterious to the business as it can stain the reputation
of premium producers. Products that are geographically traceable to a specific region,
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i.e., reserved by local laws under the protected designation of origin (PDO) concept also
frequently suffer from this type of fraud.

A harvest TPC mechanism with tamper resistant certificates which are easily available
to any stakeholder via mobile devices is needed to avoid double spending and significantly
boost trust along the supply chain.

Thus, the following main research questions (RQ1) and subsidiary research questions
(SRQ2, SRQ3) are posed:

RQ1: “Is it possible to establish a harvest TPC mechanism with tamper resistant certificates
easily available to anyone, even previously unknown food supply chain stakeholder via
mobile devices?”

SRQ2: “If one such mechanism is possible, who will carry the data input and maintenance
costs? In other words, how will each stakeholder be incentivized to use this mechanism?”

SRQ3: “If one such mechanism is possible, what would be the typical time for the response
to a certification query, in other words what quality of service can be expected by the
end consumer?”

1.4. Proposed Solution and Structure of This Document

We propose to use Ethereum-based tokens and smart contracts pointing to TPC
certificates for keeping track of certificates for individual harvests of each farm. In this
manner, we show that it is possible to track the exact origin and quantity of each harvest
from farm to consumer, offering the benefits of TPC available to the last links of the chain.
Practical economic incentives to the chain participants are described allowing for effective
productive usage. The focus is on information availability, reliability, synchronization to
the physical flow of goods, and, above all, ensuring good publicity of the certificate at the
consumer level.

This research paper is structured as follows. Section 2 presents relevant concepts
and literature of food traceability, blockchain, smart contracts, and distributed ledger
technology (DLT) and the Ethereum-based non-fungible token (NFT). Section 3 discusses
the requirements and implementation of a token passing TPC framework using the ERC-
1155 token smart contracts. Section 4 analyses the results obtained. Section 5 presents the
conclusions pinpointing the research’s main contributions and limitations.

2. Related Work
2.1. Main Concepts in Traceability of Foods

Food traceability and food recall actions research has established important concepts.
The Institute of Food Technologists [8] has been able to demonstrate that the sufficient
and necessary conditions to maintain traceability of foods in the six families of foods are
as follows:

• “Critical Tracking Event [8]” (CTE) (http://www.ift.org/gftc/~/media/GFTC/Events/
BestPracticesinFoodTraceability.pdf accessed on 3 August 2021) defined CTE which is
understood as a circumstance in which a traceable resource unit (TRU) undergoes change
of ownership or(( custody or looses part or all its mass.

• “Key Data Element [8]” (KDE) (http://www.ift.org/gftc/~/media/GFTC/Events/
BestPracticesinFoodTraceability.pdf accessed on 3 August 2021) defined KDE as the
information that needs be stored for full provenance, at each CTE, i.e., to characterize the
change of custody or loss of part or all of the mass.

The work in [9] provides a comprehensive overview on the application of blockchain
technology to agri-food value chains. These are in line with the work in [10] which
concludes that the use of blockchain technology can improve sustainability from social, en-
vironmental, and market perspective. In [11–14], blockchain tools are referred to as possibly
the most appropriate to meet the requirements of the rapidly expanding food value chains

http://www.ift.org/gftc/~/media/GFTC/Events/BestPracticesinFoodTraceability.pdf
http://www.ift.org/gftc/~/media/GFTC/Events/BestPracticesinFoodTraceability.pdf
http://www.ift.org/gftc/~/media/GFTC/Events/BestPracticesinFoodTraceability.pdf
http://www.ift.org/gftc/~/media/GFTC/Events/BestPracticesinFoodTraceability.pdf
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such as traceability, auditability, fault tolerance, and flexibility. Research on certification
using blockchain [15] has also evolved with many interesting sustainability efforts.

2.2. Blockchain

Bitcoin [16], the first successful cryptocurrency, was capable of validating the concept
of a scarce digital object. The blockchain replicates an unknown number of copies of
consistent data. A chain of transactions, organized into cryptographically linked blocks,
could, for the first time, reach a consensus, even within a (limited) number of unreliable
(traitor) nodes. For a more detailed description of the data structures involved see in [17,18].
Albeit the eventually synchronized nature of the protocol and possible temporary partitions
in the network, the linear block of data is re-established after a partition, and regains
consistency and availability.

The protocols behind Bitcoin, namely, the blockchain consistency mechanism, is
maintained by worker nodes. These nodes are referred to as miners because they receive
rewards in the form of Bitcoins to find and keep a distributed consensus among the various
persistent data sources. Consistency of distributed data within a predetermined time frame
is achieved, avoiding the double spending [7] of the digital asset.

The technology behind blockchain successfully implements consistency and access
discipline for collaborative data in a diffuse globally distributed accessible trustless environ-
ment. The consistency achieved by the underlying data structures and control mechanisms
with validation through the consensus of third party validators or miners shows that
this technology is an important step towards supply chain transparency and traceability
data [19–21].

A blockchain is a cryptographically auditable, append-only, tamper-resistant, dis-
tributed and replicated data structure, accessible to anyone employing a web browser.
Blockchain can store structured data as well as methods or programs to process this data
according to deterministic program steps known as smart contracts. Blockchains require
no central trust mechanism, thus there exists no central point of failure. The main strengths
of Blockchain Technology (BCT) are listed below.

• Tamper resistance, i.e., cryptographic hashes to previous block, in practice, make it
impossible to change data that has been recorded;

• Pseudo-anonymity, i.e., data are available publicly but encoded through hashed keys
that allow for trust on the existence and on the authorship;

• Distributed presence, i.e., the data structures are replicated maintaining several copies
with no single point of failure and keeping integrity between data sets;

• Software-driven, i.e., the Blockchain mechanism does not require human privileged
operators to maintain the transactions, thus the system is not prone to bribery;

• Allows for certification of the tamper-proof storage of off-chain data by means of side
blockchain. These are hierarchically hash certified sub-database which can store larger
volumes of data, including multimedia and providing evidence and tools for more
detailed analysis.

The main BCT limitations today are very high energy consumption for the blockchains
using the Proof-of-Work (PoW) consensus [22] and slow confirmation of transactions,
typically 10 to 20 min for bitcoin and difficulties in scalability. All of the above limitations
are actively being investigated by many practitioners and researchers today with very
positive perspectives.

2.3. Smart Contracts, Distributed Ledger Technology (DLT), and Tokens

Ethereum [23] expanded the concept of the blockchain to distributed ledger technology
by including tokens and programs called smart contracts that are executed independently
of human intervention. These are open-source, human-readable high level programs that
are stored on the blockchain and run inevitably, without any human intervention, strictly as
implemented thus avoiding any risk of downtime, censorship, or fraud [24]. The Ethereum
Virtual Machine implements “unstoppable” and “unavoidable” Turing-complete computer
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processes. Smart contracts use open-source code and are developed to establish standard
behaviour between blockchain stakeholders and other contracts. They allow for extensive
development and precise control, ensuring transparency of each data manipulation and
thus trust.

Tokens are digital objects capable of representing object properties, assets, or rights that
have strict transactional behaviour and ownership. The execution of the smart contracts
is immune to any human interference and therefore allows for transparent systematic
transactions. Tokens can be used to represent supply chain, intellectual properties, voting,
or identity management systems, among other objects. The associated smart contracts
assure discipline to the corresponding state transitions of token balances and thus generate
trust to the parties without a trusted third party or a single point of failure. This assures
transparency and prevents possible “double-spending” frauds in certification system.

2.4. Blockchain Architectures: Public vs. Private Read, Permissionless vs. Permissioned Write
and Validate

The access permissions to reading, writing, and validating blocks on a blockchain
system follow different models. It is necessary to distinguish between public blockchains,
which allow universal read operations, from private blockchains, which allow read opera-
tions only by predefined users. Further, for operations such as write and commit (validate)
blocks, two types of blockchains models are possible: permissionless blockchains allow uni-
versal write and commit commands as opposed to permissioned blockchains, in which only
pre-qualified users are allowed to issue write or commit commands. Table 1 summarizes
these architectures.

Table 1. Types of blockchain architectures (source: the author).

Public Permissionless
Blockchain Public Permissioned Blockchain Private Permissioned Blockchain

Read access Universal Universal Only pre qualified READERS

Write access Universal Only pre-qualified WRITERS Only pre qualified WRITERS

Commit access Universal (any node can be a
VALIDATOR (miner) Only pre-qualified VALIDATORS Only pre qualified VALIDATORS

Permissioned
(Identity of
Participants)

No requirement Enforces known and permanent Id
for each participant

Enforces known and permanent Id
for each participant

Example Ethereum

Corda
(https://www.r3.com/blog/how-
public-permissioned-blockchains-
are-not-an-oxymoron-2/ accessed
on 3 August 2021)

Hyperledger Fabric (https:
//hyperledger-fabric.readthedocs.
io/en/release-2.2/blockchain.html
accessed on 3 August 2021)

2.5. Digital Tokens Families

Tokens are digital objects that represent specific rights or assets. They should be
understood as assets that can be negotiated or used as guarantees. Note that the neces-
sary and sufficient condition for full ownership of the balance of the token on a public
address is the knowledge of its private key. Figure 1 shows an Euler–Venn diagram for
most common assets and rights, grouped into families along with their corresponding
registration requirements.

https://www.r3.com/blog/how-public-permissioned-blockchains-are-not-an-oxymoron-2/
https://www.r3.com/blog/how-public-permissioned-blockchains-are-not-an-oxymoron-2/
https://www.r3.com/blog/how-public-permissioned-blockchains-are-not-an-oxymoron-2/
https://hyperledger-fabric.readthedocs.io/en/release-2.2/blockchain.html
https://hyperledger-fabric.readthedocs.io/en/release-2.2/blockchain.html
https://hyperledger-fabric.readthedocs.io/en/release-2.2/blockchain.html
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Figure 1. Families of assets and rights according to registration requirements (source: the author).

The registration of the rights and property of assets, if required by law or regulation,
will usually be centralized at a government-trusted centralized database. Because these data
are maintained in centralized databases they are prone to corruption, fraud, censorship,
downtime, or misuse. On the other hand, distributed registration schemes based on
replicated databases, such as distributed ledgers, provide very high availability, are fraud-
resistant, are fault-tolerant, and typically cannot be censored. Security and utility assets can
reliably be represented, registered, and easily traded as cryptographic tokens. Automated
processes through smart contracts allow high availability, low costs of transaction, full
traceability, non-repudiation, and pseudo-anonymity.

In order to be useful, tokens should not be copyable (i.e., should not be prone to
double spending attacks) or suffer arbitrary changes. Thus, they need to follow a strict
discipline at each change of state to usefully represent real world objects.

The development of digital objects to simulate real-world objects requires that the
objects properties and behaviour are modeled through common data structures and coded
procedure. Smart contracts manipulating tokens must respect some standard to allow
for multiple users and contracts to share functionalities among different applications.
Application independency and fungibility of digital objects could be achieved with a
minimum set of functionalities. The ERC-20 token fungible objects standards are key
to the success of many cryptocurrencies and many Ethereum decentralized applications.
Because the ERC-20 token metadata structure holds all relevant property data within the
blockchain, they can be freely transferred from one blockchain to another, allowing these
to be exchanged for other ERC-20 assets.

It is important to note that alike a real estate property record, which entitles the bearer
to have full use and ownership of a real estate asset, the possession of a private key of a
token on one blockchain entitles that person or smart contract to unrestricted use of that
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token for payment, exchange, deposit as warrant or collateral, lend or sell this assets at
his discretion.

Further, it is important to recognize that objects can be categorized in fungible objects
and non-fungible objects. Fungible objects are those that need not be distinguished from
one another. The important question here is “How many of these objects?”. Non-fungible
objects, on the other hand, are those that are distinguishable from similar objects. The
decisive question here is “Which of these similar although unique objects?”

The distinctive property between fungible and non-fungible tokens is that the former
are fully exchangeable and thus can be added, e.g., coins of same face type and value can be
added or subtracted at will. The latter, not being exchangeable, can only be transactioned
as unique identifiable objects.

A non-fungible token (NFT) is a unique blockchain-based digital entity which can
represent a non-fungible object. If this token follows a protocol such as the ERC-1155 or ERC-
721, it can be traded as an asset between various stakeholders in possibly multiple applications.

The methods defined in the ERC-1155 standard assure consistent behaviour, trans-
parency, no double spending and a verifiable auditable trail to families of similar, yet
unique, objects. An ERC-1155 compliant NFT has one identifier that points to a specific
URI, in which typically all properties and details are described. Additionally a numerical
characteristic of this object is also available (https://github.com/ethereum/EIPs/blob/
master/EIPS/eip-1155.md accessed on 3 August 2021).

Table 2 summarizes and compares the applicability of each standard.

Table 2. Comparison of Ethereum Request for Comments (ERC) tokens (source: the author).

ERC-20 ERC-721 ERC-1155

Nature of token Fungible Non Fungible Fungible/Non
Fungible

Limitation
Each smart contract
creates and handles
one fungible token

One smart contract
creates NFT only

One contract can
create and handles
Fungible and NFT

Costs of transaction Cheaper Expensive Cheaper

Efficiency High (fungible tokens
only)

High (one of-a-kind
token only)

High (fungible tokens
and sets of NFT)

Example EOS CryptoKittens Enjin

2.6. Applications of DLT to Supply Chain Management

DLT has the potential to monitor social and environmental responsibility, improve
provenance information, facilitate mobile payments, reduce transaction fees including
credit and financing operations, and manage supply chain in a secure and trustworthy way.

Recent research literature searches for keywords such as “supply chain”, “food
traceability”, and “blockchain” covers several reviews pointing to many interesting use
cases. Benefits, disadvantages, and trade-offs of using blockchain technology to promote
trust among the supply chain participants for food traceability have been discussed in
detail [9,10,25–31]. However, none of these references addresses reliable third party certifi-
cation information flow from farm to consumer.

Another important initiative is TE-FOOD (https://tefoodint.com/ accessed on 3 Au-
gust 2021), a Hyperledger-based traceability product largely used to trace meat, vegetables,
and produce. Whereas TE-FOOD has been commercially very successful, the TE-FOOD
methodology today is unable to trace or certify commingled products such as the “bak-
ery”, “processed food”, or “dairy” products, as described in [8]. Further, by allowing the
farmer to directly register instances of his harvested products, it is basically a first-person
certification scheme, lacking the necessary credibility for end consumer.

https://github.com/ethereum/EIPs/blob/master/EIPS/eip-1155.md
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-1155.md
https://tefoodint.com/
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2.7. Consumer Valued Properties Tokens in Agro Products

For decades, important crops have been traded as commodities. Commodities are
intrinsically fungible. Once the product is classified in a certain grade, according to purity,
size, or maximum cross-contamination levels, then the lot is handled as a commodity.
Global trading standards and procedures require that a bushel of wheat is fully fungible
with another bushel of wheat.

However, a specific harvest is a unique object. No other harvest possesses the exact
same properties, therefore harvests are non-fungible physical objects. To track this object
appropriately, it is necessary to record all relevant data which will individualize and keep
the history of that specific harvest product.

Food consumers are becoming more demanding and requiring different processes
and raw-materials. Claims such as “non-genetic-modified seeds”, “organic crop cultures”,
“agro-chemical-free”, and “gluten-free” are more present in food labels and adverts than
ever. Nevertheless, food suppliers are seldom willing to provide evidence for those
claims. In many cases the claims cannot be evidenced and must be understood as mere
“green-washing”.

In [32], a DLT-based system is described to record a specific harvest from seed supplier
to end customer using smart contracts. The mechanism allows for registering each step of
the value chain, but does not allow for a third party (authority) certification, and therefore
is more prone to fraud. Further, the tiresome recording of each link in the chain would be
relegated without some type of incentive.

In [33], an ERC-20 Ethereum token, named the IGR token, and its smart contracts is
shown to allow consumers to evidence TPC for any “consumer value perceived property”.
This includes properties in physical, biological, social, or environmental domains. The
framework was developed for TPC of ingredients of commingled products. The major
concern was to retain traceability and certification without requiring brand owners of these
commingled products to jeopardize their trade secrets such as recipes or ingredient supplier
base. The IGR token allowed for a higher level of consumer trust in the commingler’s
claims on their labels. The framework is applicable to a large spectrum of foods such as
prepared foods, baked goods and commingled foods. For the other food families, such as
produce, meat and poultry and seafood the traced item usually follows the supply chain
links as a single whole item, or in parts, but is never mixed to other “ingredients”.

2.8. Why Non-Fungible Tokens

The original IGR token framework does not differentiate between tokens obtained
from different harvests because it considers the tokens to be fully interchangeable, i.e.,
fungible. This is not an accurate picture of the real world and would allow potential
fraudulent usage of tokens. For example, a malicious user of the IGR token could acquire
tokens of the same value property description but from different harvests and use all
tokens as if they were of the more valuable source. In other words, although different
harvests have different perceived value, the original IGR smart contract implementation
allowed malicious users to use any tokens for the same property as if all were from a more
valuable harvest.

We made changes to the original IGR smart contracts to avoid this type of attack and to
ascertain that any IGR-token certified object or harvest is handled as a non fungible object.

3. Research Methodology

The research methodology chosen to systematically answer the Research questions
RQ1 and subsidiary research question SRQ2 and SRQ3 involves designing a proof-of-
concept set of smart contracts, then deploying them and testing for the design requirements,
and finally evaluating the research objectives and questions. The detailed procedure is
depicted in Figure 2. The diagram shows a step by step description of the methodology for
Harvest TPC validation using a Proof-Of-Concept (PoC) set of smart contracts.



Sensors 2021, 21, 5307 9 of 20

Figure 2. Methodology for Harvest TPC validation using Proof-Of-Concept Smart Contracts (source:
the author).
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In summary, the methodology systematic develops the following steps:

• 1—Elicit and define user requirements (both Functional and Non Functional).
• 2—Harvest Traceability - Define and Identify Traceable Units - Discipline data collec-

tion, i.e., when and what needs to be collected.
• 3—Design and implement proof-of-concept (PoC)—Deploy smart contracts.
• 4a—Analyze if third party certification authority is capable of issuing tokens easily

and transfer them along the Supply Chain Participants.
• 4b—Analyze if a token transfer allows the URI information to be made accessible to

token buyer along the Supply Chain Participants.
• 5—Analyze if consumer can access URI for TPC with mobile App easily, reliably, and

fast (RQ1).
• 6—Evaluate PROOF OF CONCEPT and respective results and improve Implementa-

tion.
• 7—Analyze the incentive structure along the chain (SRQ2).
• 8—Analyze the Complexity of distributed algorithm. Perform empirical test for Time

of Response to query? (SRQ3).

Note that the very essence of the blockchain immutability helps any researcher to
trace all the test runs and deployments of the smart contracts by means of any blockchain
scanner. This allows the research methodology and procedures to be easily reproducible
and traceable (Examples of blockchain scanners are https://www.etherchain.org/, https:
//www.EthPlorer.io or https://www.Etherscan.io all accessed on 3 August 2021). In other
words, both the smart contract source code as well as all the test runs of all test performed
to the PoC can be followed in detail on any browser.

4. Proposed Architecture
4.1. Requirement Analysis

The desired functionalities of the system, i.e., the functional requirements are listed below.

• to allow for farmers to request any third person authority to inspect and certify
properties that a specific harvest may have;

• to allow the inspection authority to issue a certificate in any web site including
quantitative data about the desired property of the yield;

• to allow the authority to create (“mint”) tokens, i.e., digital objects representing the
harvest and carrying the URI linked to the certificate, representing information about
the mass of product inspected (yield);

• to allow these tokens to be “passed on” along the chain of buyers of the yield;
• to allow the buyer that applies the package, wrapper or label to the food product to

write the URI to an easily and freely accessible reliable database and
• to destroy (“burn”) these tokens to avoid garbage or misusage, after a predeter-

mined time.

As for the nonfunctional requirements, it is important to ascertain that the system
brings the following:

(a) Universal access: allowing any supply chain participant, even previously unknown,
to use the tool, without previous registration;

(b) Robustness to faults: allowing writing to a common persistent information layer in
a robust manner;

(c) Cost effectiveness: allowing information to be recorded in an inexpensive manner;
(d) Tamper free auditability: enforcing tamper free, auditable transactions between

any parties;
(e) No double spending fraud: avoiding that token balances are used more than once;
(f) Universal read access: allowing any potential consumer to freely read the certificate

by means of a mobile device
(g) Usability: allowing for comfortable user experience.

https://www.etherchain.org/
https://www.EthPlorer.io
https://www.EthPlorer.io
https://www.Etherscan.io


Sensors 2021, 21, 5307 11 of 20

(h) Quality of Service: guaranteeing that responses to a consumer query returns to the
requesting device within short time period;

(i) Interoperability: allowing usage with different systems and devices and
(j) Scalability: allowing for a much larger number of transactions running within

acceptable quality of service i.e performance.

4.2. Persistence Layer Design Alternatives

Although the above requirements point to a blockchain architecture, we asked: Is
a blockchain-based architecture, as opposed to a conventional centralized server–client database,
persistence architecture really needed?

If harvests are to be certified for the benefit of the entire chain of potentially stake-
holders in the food industry, which type of data structure would be required to keep this
information useful and trustworthy? In other words, is it necessary to use a blockchain to
record and make all relevant information consistently available to all stakeholders?

Figure 3 adapted from in [34] shows a flowchart approach that helps analyze the
data structure requirement for distributed systems. Note that our particular requirements
for TPC of Harvest in the Food Supply Chain leads to the use of public permissionless
blockchain as the best architecture. Applying the flowchart to the TPC of harvest we
would ask:

Figure 3. Procedure to define type of data persistence layer (database or blockchain) (source: adapted
by author from the work in [35]).

• Is it necessary to store current State (Current Custodian on Supply Chain)? YES;
• Is a Trusted Third Party available online? NO;
• Is WRITE access needed outside your organization? YES; (because of the possibly

many unknown chain participants).
• Are all Writers known? NO.

Thus, the recommended architecture is Public Permissionless Blockchain. Note that,
because it is desired that the system maintains open doors to new entrants to the supply
chain such as new farmers, known farmers with new crops, new mills, new re-sellers, new
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comminglers or new retailers, the choice of a permissioned blockchain such as Corda or
Hyperledger was discarded.

As Ethereum meets all the non-functional requirements (a–i) listed above, the public
Ethereum environment with the non-fungible token ERC-1155 standard protocol was
chosen. The choice of using Ethereum may be considered suboptimal for the non functional
requirement (j): scalability, but was chosen given the great advances this research theme is
currently receiving from the academic and practitioner communities.

4.3. Implementation

The IGR token smart contract code used for ingredient certification in [33] was mod-
ified to implement the non-fungible token (NFT) discipline that better represent each
instance of a crop with the use of the ERC-1155 (https://github.com/enjin/erc-1155
accessed on 3 August 2021) objects and methods. A set of public blockchain smart
contracts govern the token synchronization framework to positively identify each har-
vest along the food supply chain to the end consumer. The fully documented source
code for all the smart contracts in Solidity programming language was published in
the Ethereum main net where all variables and algorithms are fully commented and
documented. The code was developed, tested, deployed, and made available at https:
//etherscan.io/address/0x1448eab3182b71ae5322168d037feb0125cac92f#code (accessed on
3 August 2021).

The token flow follows the commercial transactional changes of custody, usage, or
depletion of the product. Figure 4 shows the synchronization between flow of food lots
and the flow of certification data.

Using the IGR token set of smart contract after modifications to ERC-1155, the farmer
responsible for the harvest can freely choose the properties to be certified between:

• functional (e.g., minimum size of fruit or grade);
• organoleptic (e.g., color or aroma);
• social (e.g., free of child labor cultures);
• environmental (e.g., “grown in certified no forest devastation areas”, “organic—no

xyz herbicide”, or non Genetic Modified seeds only).

as well as the appropriate authority that will audit and issue the corresponding certificate
for each harvest.

The authority is then invited to audit the farm at harvest time. After the appropriate
auditing procedures, including inspection to the farm and qualitative and quantitative
evaluation of crop yield, the authority formalizes the audit results by publishing the
certificate as a webpage at the authorities domain web server.

The link to this certificate, in the form of the URI is part of the minting process. An
example can be found at https://etherscan.io/tx/0x728ecf16e13939a62aba532b1df2f5b5
2ed9133ad0924c9109dc5b1fe5c6536f ( accessed on 3 August 2021). Further, this smart
contract will issue the exact number of tokens to match the numerical mass yield of that
specific harvest in grams. Thus, the ERC-1155 unified resource identifiers (URI) descriptor
will point to the web page containing the full technical details of the certified “consumer
valued properties”, including the original mass of goods in grams. The number of IGR
tokens issued will represent this specific mass of ingredient.

The smart contracts were coded in the high-level programming language Solidity.
Figure 5 shows the simplified UML class diagram for the smart contract implementation
(Details on ERC-1155 classes and methods available at https://eips.ethereum.org/EIPS/
eip-1155 accessed on 3 August 2021).

https://github.com/enjin/erc-1155
https://etherscan.io/address/0x1448eab3182b71ae5322168d037feb0125cac92f#code
https://etherscan.io/address/0x1448eab3182b71ae5322168d037feb0125cac92f#code
https://etherscan.io/tx/0x728ecf16e13939a62aba532b1df2f5b52ed9133ad0924c9109dc5b1fe5c6536f
https://etherscan.io/tx/0x728ecf16e13939a62aba532b1df2f5b52ed9133ad0924c9109dc5b1fe5c6536f
https://eips.ethereum.org/EIPS/eip-1155
https://eips.ethereum.org/EIPS/eip-1155
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Figure 4. Synchronization of Food Lots of Harvests with Traceability Token (source: the author).
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Figure 5. UML class diagram for the new implementation of the IGR Token (source: the author).

Third party certification is assured. Note that, by using the delegated transfer “se-
tApprovalForAll()” and “safeBatchTransferFrom()” primitive in the smart contracts, it is
not possible for the farmer to issue or make first person claims on the certificate. Only the
Authority has this capability, thus enforcing strict third person certification (TPC).

The ERC-1155 discipline allows for the farmer to sell all or part of the harvested
product but stops any attempt to add tokens from different harvests. Just like in any
blockchain, “double spending” of these tokens is not possible.

The necessary information in order to evidence to a final consumer that a specific
harvest or food ingredient raw material was effectively inspected and certified by a third
party to hold some “consumer value property” is handed over from chain participant
to the next, all the way to the recipe final processor. The final processor, sometimes also
known as commingler or packer, uses information printed on the product retail label to
generate a Public key and link this to the certificate URI. Since most consumer products
show a barcode (GTIN-13 SKU identifier) and a lot “consume before” date on the wrapper,
these are used to provide an unique public key to the data stored in the blockchain. The
hash of the “GTIN-13 + Date” string is the public key to the block chain. Querying the
blockchain at this address reveals the certificate URI link. Access is facilitated through
an App (available at https://play.google.com accessed on 3 August 2021) for Android
mobile devices.

The farmer, based on his/her target consumer beliefs, defines a “consumer value
property” and a certifying authority by using the smart contract farmerRequestCertificate().
After an inspection of the farm, the certification authority confirms the scope, quantity,
and date of the lot produced and includes this information in the generated web page,
with its URI under the authorityś web domain, certifying this information. This lot of crop
will then be awarded an appropriate quantity of IGR tokens. For simplicity we define one
IGR to be one gram of any certified ingredient, irrespective of the nature of the property.
The authority issues IGR tokens through the smart contract certAuthIssuesCert() including
nature, quantity, location and time of the harvest. Additionally the token holds the URI
to the web page with all certificate details. Note that only the certification Authority has

https://play.google.com
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the permission to issue or not issue the tokens in the correct quantities. This assures the
necessary independence of the third party certification and avoids conflicts of interest.

At each CTE where changes of ownership, custody or quantities of the raw-material
are involved, a smart contract captures the transfer of custody data, such as mass reduction
and writes these into the blockchain. These changes are automatically recorded by the sale
of the tokens. The transactions are between pseudo-anonymous public Ethereum addresses,
thus without disclosure of supplier identities or business critical data. At each transaction
where the mass of the product is reduced the smart contract issues a proportional “burn”
token command. At the packaging or commingler link, after the URI is written to the
public address related to the hash of “SKU bar code + lot date” the rest of the tokens are
“burned” to avoid misuse of any “zombie” tokens.

At the final links, a retailer or a consumer, by means of a mobile application, is able
to scan the bar code on wrapper of the item, capturing the stock keeping unit (SKU) code
and lot number to confirm the certification URIs. Figure 6 shows this App. The transfer of
custody of the physical product and of the tokens are synchronized to the final consumer.

Figure 6. IGR Token Scanner and Certificate Look Up App on Google Play).

The tokens are unique and act as digital twins representing each quantifiable crop
harvest instance. This allows TPC by authorities that will publish their specific audit report
at their website of each harvest. The unified resource identifier (URI) of this certificate can
be conveyed along the chain to consumers through a self sustained incentive mechanism.

The original IGR token smart contracts (ERC-20) was modified to use the ERC-1155
and deployed at the Rinkeby testnet. The Rinkeby test contract code at https://rinkeby.
etherscan.io/address/0x841c5c79d9ae35db8fb4f216a478cd184fdae634#code (accessed 3
August 2021) was subjected to tests. The final code was deployed to the main net at https:
//etherscan.io/address/0xa63006f554566a788226d384bf70ed4e91851e05#code (accessed 3
August 2021).

Because of the blockchain immutability and traceability, all test runs leave a full trace-
back log of events. These events can be reviewed on the Rinkeby or main net blockchains,
as, for example, https://etherscan.io/address/0xa63006f554566a788226d384bf70ed4e918
51e05#events (accessed 3 August 2021).

Testing, albeit limited so far, allowed to conclude that the code transfers the URI from
original minter (authority) to each of following supply chain participants.

https://rinkeby.etherscan.io/address/0x841c5c79d9ae35db8fb4f216a478cd184fdae634#code
https://rinkeby.etherscan.io/address/0x841c5c79d9ae35db8fb4f216a478cd184fdae634#code
https://etherscan.io/address/0xa63006f554566a788226d384bf70ed4e91851e05#code
https://etherscan.io/address/0xa63006f554566a788226d384bf70ed4e91851e05#code
https://etherscan.io/address/0xa63006f554566a788226d384bf70ed4e91851e05#events
https://etherscan.io/address/0xa63006f554566a788226d384bf70ed4e91851e05#events
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4.4. Incentives along the Chain

In order to cover the extra efforts with traceability documentation and data admin-
istration, the farmer and other stakeholders along the chain need some type of incentive.
This is intrinsic to the framework as the farmer that decides to certify his or her product
will be able to ask for higher sales price for his/her crop and transfer the tokens. Similarly,
each participant in the custody chain can request a premium in price due to the fact that the
merchandise is no longer a mere commodity. The end consumer will also pay a premium
price for a certified product.

5. Discussion

In order to provide food value chain stakeholders an easily accessible, fraud-resistant
tool to evidence that a specific harvest was environmentally and socially friendly, blockchain
tokens and smart contracts are proposed as reliable certification tools.

Blockchain technology with appropriate smart contracts is proposed as a reliable
methodology for certification of all types of harvest properties. Using this framework,
farmers can be certified by any authorities and make their URI based certificates propagate
along the supply chain links to the consumer. This provides food value chain stakeholders
with a reliable tool capable of evidencing whether these harvests are environmentally and
socially acceptable.

The proposed solution is helpful to avoid possible green washing attempts, thus
preventing consumers being misled by unverified label information.

The use of distributed ledger technology (DLT) in the form of an Ethereum blockchain
non-fungible utility token is shown to help fill this gap. The main advantages are low
cost of transaction, providing incentives to each traceability partner along the chain and
avoiding the mass balance fraud, also known as the “double spending” issue. This research
implements a framework to support TPC on a harvest to harvest basis, as opposed to the
farm processing method certification of, e.g., USDA organic farmer methods certification.
Allowing farmers to select any certification authority enhances trust along the agro supply
chain and empowers consumers to choose relevant certification and easily check for the
TPC certificates directly via their mobile devices.

To meet the requirements of a third party certification scheme capable of certifying
both physical properties, as well as social properties, the Ethereum IGR token and its set of
smart contracts were modified to use the ERC-1155 discipline. A world wide web page
URI with full details of the certificate is published by the authority, Thus, quantitative
information on the yield is made available to the farmer to sell to the next supply chain
participant in an incentivized structured manner. These tokens are passed along the chain
and are capable of identifying a specific harvest and point to their unique third party
certificates URIs (web link).

The Ethereum based IGR tokens and smart contracts for keeping track of each harvest
of each farm offer the benefits of TPC. In this manner it is possible to track the exact origin
and quantity of each partial element of the harvest from farm to consumer with TPC,
ensuring proper economic incentives to the chain participants.

Suppose a bottler of wine intends to cheat and use a high priced harvest more than
once (i.e., try to double spend the higher valued ingredient). We can show, by stepping
through the smart contract code, that the IGR-1155 framework is capable of avoiding this
attempted green-washing fraud.

Figure 7 shows the smart contract code snippet for the method “Routine 50” and of
its submethods.



Sensors 2021, 21, 5307 17 of 20

Figure 7. Smart contract snippet of the new IGR Token as deployed and in operation at the Rinkeby test network).

If the commingler attempts to write to the Blockchain with sufficient IGR token balance
of the same harvest, the code will be successfully executed and follow through the marked
numbers 1–4. However, if the IGR token balance for the specific harvest is not sufficient,
denoting a double spending attempt, the require() command will block the smart contracts
from successfully executing at step 4 generating a fallback and therefore avoiding the fraud.

This paper significantly extended previous work [33], which focused on the traceability
of commingled foods. The present research and smart contract code retains the original
functionalities while extending the framework to allow for non fungible objects such as
harvests of food products to be certified as unique objects. It has a major new focus on the
conception, validation and usability of the smart contracts for TPC of non-fungible objects.

As answers to the main research questions RQ1 and subsidiary Research question
SRQ2 and RQ3 we conclude the following:

RQ1: Yes, the modified ERC-1155 IGR token smart contracts publicly available on the
Ethereum Blockchain are capable of demonstrating harvest TPC with tamper-resistant
certificates easily available to anyone, even previously unknown food supply chain stake-
holder via mobile devices, as shown by the proof of concept running on the Rinkeby test
net described.

SRQ2: Yes, the mechanism establishes price incentives for each participant stakeholder.
They will share the premium price the final consumer is willing to pay for the access to the
TPC certification of products. The incentives at each link of the supply chain are limited to
the premium the final link, i.e., the consumer actually pays.

SRQ3: The typical time for the response for an end consumer to a certificate query using
the Android App IGR-token described above is very comfortable because it uses only one
direct hashed blockchain (linear data structure) access and one direct URI DNS web access
to the certificate, both of which in linear time. This is due to the fact that, at each change of
custody, the URI to the certificate is “handed over” to the next in the chain all the way to
the commingler/packer. The public key information (GTIN-13 + lot date) to the certificate
URI saved on the blockchain is on the product wrapper.
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In summary, the synchronization of the transfer of custody of the crop with the
corresponding IGR token representing each gram of the yield instantiated for each different
harvest is possible and incentivized using the modified IGR-token smart contracts suite.
The modifications to the IGR-token code to use of the ERC-1155 disciplined methods
maintains the previous functionalities enforcing necessary non fungible restrictions such
that yields from different harvests now can not be added.

The most important limitation is that physical counterfeit of packaging, within a short
period, i.e., re-utilization of original packaging material with counterfeit content whilst
the spent tokens are still “live” can not be detected by the system. The methodology can
not detect if packaging tampering shortly after the consumption may have led to “double
spending” of the certificate.

Limitations to the current usage of the ERC-1155 IGR token framework may include
the communication difficulty inherent to clearly defining and communicating the property
being certified. In other words, the definition of the specific property, specially social
or environmental, can be difficult to communicate: minor wording changes may cause
consumer misunderstanding or wrong perception.

A further limitation may be the need, by the transacting parties in the supply chain,
for some knowledge of token smart contracts or wallets and Ethereum usage. This requires
development of user friendly front end applications. Note that the consumer does not
require to write to the blockchain and can therefore directly obtain the certificate accessing
the live Ethereum net (using a block scanner, e.g., www.etherscan.io) (accessed 3 August
2021) via the public key hash of the code plus lot date on the product wrapper.

Future work is required towards systematic testing of current IGR token smart con-
tracts implementation, optimization of code to cater for “garbage collection” such as
elimination of residual token balances, i.e., old token balances that may have been left
after product being depleted as well as the development of optimized front-end apps with
respect to user experience.

6. Conclusions

Farmers are under pressure to use more sustainable farming methodologies and
simultaneously become more competitive. Some producers use labels inducing customers
to believe that their ingredients are harvested in environmentally and socially friendly
manners without proper evidence. Third party certification along with better availability
of this information to the general public and supply chain actors can help fight this green-
washing and promote consumer trust. Reliable publicity of the certificates with fast and
easy access needs to be assured. Distributed ledger technology using tokens pointing
to a certificate at the authority’s website, being transferred at each change of custody
of the harvested crop along the chain, poses a practical solution. Transferring tokens
with an embedded link to the certificate alongside the transfer of product at each of
the transactions along the chain, provides traceability and integrates practical economic
incentives. Non fungible tokens representing one harvest cannot be added to tokens
representing another harvest. This behaviour is consistent with current commercial needs
and practices. The Ethereum IGR token smart contracts were modified to use ERC-1155 non
fungible tokens and thus enable tamper free TPC on a harvest to harvest basis, as opposed
to farm certifications, such as Fairtrade or USDA Organic farm process certification. Main
advantages of the framework are low cost of transactions, the incentives provided to each
traceability partner along the chain, the disciplined mass balance, i.e., no “double spending”
and the immediate access to the certificate URI through an internet portable device app.

The framework sets forth powerful incentives for the transacting parties to maintain
a systematic recording of the required traceability data at each change of custody of the
product. This is achieved by the economic incentive of the token transfer, synchronizing the
appropriate amount of tokens with the transfer of custody of the product along the supply
chain. The precondition for this intrinsic economical incentive is that the consumer, at the
point of sale, is willing to pay a bonus for being able to readily view the TPC certificate.

www.etherscan.io
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To do this, the consumer can scan the wrapper of the food item with a free Android App,
and obtain the public key to the blockchain address where the URI of the TPC certificate
is stored. The IGR smart contracts were rewritten using the ERC-1155 NFT methods and
deployed. This proof-of-concept along with a front end Android app allow consumers
to retrieve the TPC of the raw material at the retailer. The analysis of these distributed
methods showed that the certificate’s URI can be retrieved in linear time, i.e., requiring one
single access to the blockchain and to the corresponding TPC web page.

The main contribution of this research is to allow for effective TPC harvest instance
certification, as opposed to more generic farm certification. It shows that true TPC, via the
certificate URI at the authority’s website, can easily and publicly be made available via a
mobile application. Note that the authority can be freely chosen by the farmer to allow
for credibility among the target consumer. The authority certification discretion to certify
or deny certification is fully protected, i.e., authorities are free to decide. The architecture
privileges practical usage through inherent economic incentive to each stakeholder along
the typical agro-supply chain links. This methodology enhances trust along the supply
chain, allowing prompt and economical TPC publicity via mobile phones thus inhibiting
“green-washing” attempts.
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