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Abstract: A MedRadio RF receiver integrated circuit for implanted and wearable biomedical devices
must be resilient to the out-of-band (OOB) orthogonal frequency division modulation (OFDM)
blocker. As the OFDM is widely adopted for various broadcasting and communication systems
in the ultra-high frequency (UHF) band, the selectivity performance of the MedRadio RF receiver
can severely deteriorate by the second-order intermodulation (IM2) distortion induced by the OOB
OFDM blocker. An analytical investigation shows how the OFDM-induced IM2 distortion power
can be translated to an equivalent two-tone-induced IM2 distortion power. It makes the OFDM-
induced IM2 analysis and characterization process for a MedRadio RF receiver much simpler and
more straightforward. A MedRadio RF receiver integrated circuit with a significantly improved
resilience to the OOB IM2 distortion is designed in 65 nm complementary metal-oxide-semiconductor
(CMOS). The designed RF receiver is based on low-IF architecture, comprising a low-noise amplifier,
single-to-differential transconductance stage, quadrature passive mixer, trans-impedance amplifier
(TIA), image-rejecting complex bandpass filter, and fractional phase-locked loop synthesizer. We
describe design techniques for the IM2 calibration through the gate bias tuning at the mixer, and
the dc offset calibration that overcomes the conflict with the preceding IM2 calibration through
the body bias tuning at the TIA. Measured results show that the OOB carrier-to-interference ratio
(CIR) performance is significantly improved by 4–11 dB through the proposed IM2 calibration. The
measured maximum tolerable CIR is found to be between −40.2 and −71.2 dBc for the two-tone
blocker condition and between −70 and −77 dBc for the single-tone blocker condition. The analytical
and experimental results of this work will be essential to improve the selectivity performance of a
MedRadio RF receiver against the OOB OFDM-blocker-induced IM2 distortion and, thus, improve
the robustness of the biomedical devices in harsh wireless environments in the MedRadio and
UHF bands.

Keywords: RF receiver; blocker; second-order intermodulation (IM2); orthogonal frequency divi-
sion modulation (OFDM); CMOS; MedRadio; medical implanted communication service (MICS);
biomedical device; biosensors

1. Introduction

An RF transceiver integrated circuit operating in the MedRadio band is widely em-
ployed for biomedical devices and sensors, as the wireless communication is essentially
needed between the implanted or body-worn medical devices and outside controllers. The
wireless connectivity for the biomedical devices is used to exchange the diagnostic and
therapeutic data. Its non-invasiveness significantly improves the patient’s comfortability
by avoiding unnecessary painful surgical operations. The MedRadio band was assigned
in 2009 [1], in the frequency band of 401–406 MHz providing a total 5 MHz of contiguous
spectrum on a secondary and non-interference basis. The MedRadio rule was amended
later in 2011 to allow networking of the devices and controllers and referred to as a medical
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micropower network (MMN) [2]. Since then, numerous implanted and wearable medical
devices equipped with the MedRadio RF transceiver have been reported in literature, such
as a wireless bio-signal monitoring system [3], an implanted cardiac defibrillator [4], an im-
planted pacemaker [5], an intraocular pressure monitoring system [6], physiological state
monitoring prosthetic teeth [7,8], wireless position sensing system in total hip replacement
surgery [9], capsule endoscopy [10,11], and so on.

The RF communication channel of the MedRadio is accessed on a shared or secondary
basis. Hence, they must be robust to interferers coming from nearby other authorized
primary users [12]. For mitigating the interferences, system-level techniques, such as
error detection and correction via proper channel-coding, listen-before-talk (LBT), and re-
transmission via a frequency monitoring and classification process, are widely employed [1].
Yet, even though the system-level interference mitigation techniques are employed, ad-
ditional circuit-level techniques are still needed in the RF transceiver design to improve
the overall interference resilience. Unfortunately, however, most previous MedRadio RF
integrated circuits, either transceivers [4,5,12,13] or receivers [14–17], did not address those
issues nor present proper circuit designs for its mitigation. Ba et al. [12] and Cha et al. [14]
indeed mentioned the in-band interference issue and described the adjacent channel rejec-
tion (ACR) and the third-order intercept power (IIP3) performances. However, their studies
were still limited only to the in-band interference situation and cannot be generalized to
the out-of-band interference situation. It is also interesting to note that Cho et al. [18]
addressed the very-high frequency (VHF) band interference issue in their dual-band RF
receiver and demonstrated a blocker tolerance level of −45 dBm for the MedRadio receiver
against the VHF body-channel communication interference. However, their result was also
limited to the VHF-band single-tone interference issue and not applicable to the UHF-band
multi-tone interference issue. It is also worth noting that non-conventional signal modula-
tion techniques can be also effective for the interference resilience improvement. Novel
approaches such as the two-tone modulation [19] and the spread-spectrum modulation [20]
were proven effective in 900 MHz transceivers. Yet, they were only applicable to the on-off
keying (OOK) modulation and not to the constant-envelope modulation that is more widely
adopted by MedRadio devices.

The modern UHF and VHF bands are crowded with a variety of multi-tone signals.
They always can be seen as unwanted strong interferers to the MedRadio biomedical
devices and sensors. For example, the fifth-generation new radio (5G NR) band encom-
passes 600–800 MHz UHF band in its frequency range 1 (FR1) band. Additionally, digital
broadcasting standards such as the advanced television systems committee (ATSC) of the
United States and Korea [21], the digital video broadcasting (DVB) of Europe [22], and the
intelligent service digital broadcasting (ISDB) of Japan [23] are serviced in the VHF band of
54–216 MHz and UHF band of 470–860 MHz. Moreover, these interferences are likely to
adopt the orthogonal frequency division modulation (OFDM) signaling for high data rate
and strong multi-path fading resilience. When an equally spaced multi-tone OFDM signal
comes into the MedRadio device as an interferer, numerous intermodulation distortion
components will be created by the multiple subcarrier tones, even though they are out of
the band. Thus, in modern MedRadio receiver design, it is essential to analyze the effects
of the out-of-band (OOB) interference on the receiver’s signal-to-noise ratio (SNR) and to
design circuits for mitigating its effects. Note that this issue usually cannot be neglected
in typical MedRadio receivers even though the interference exists out of the band. We
cannot expect sufficient filtering and attenuation for the OOB interference at the RF front
end because typical MedRadio antennas show wideband characteristics [11], a complex
of high-order matching and filtering at the RF front end may not be favored for low cost
and small form factor realization [10], and the LNA in a receiver integrated circuit is not
typically band-specific because resistive loads are frequently adopted rather than bulky
inductors for the small silicon area.

In this work, we analyze the intermodulation distortion effects induced by the OOB
OFDM interferer on the MedRadio receiver and, then, present a design of a CMOS RF
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receiver by focusing on the second-order intermodulation (IM2) distortion tolerance im-
provement. This work is carried out based on our prior work [17], which is expanded by
adding a complex bandpass filter to realize a low-IF receiver and an IM2 calibration circuit
to minimize the OOB OFDM-induced IM2 distortions.

2. Analysis of OFDM-Induced IM2 Distortion Effects

Let us assume that a desired MedRadio RF signal comes into the receiver along with an
OOB OFDM blocker. Since the OFDM signal comprises multiple subcarrier tones that are
independently modulated and equally spaced in the frequency domain, any combination
of two subcarrier tones within the entire OFDM signal will create multiple intermodulation
distortion components. Figure 1a shows the first situation such that two subcarrier tones at
fk and fm create the third-order intermodulation (IM3) distortion at 2fk − fm. The resulting
IM3 falls inside the desired RF channel at fRF, directly leading to SNR degradation at fRF.
Considering that the typical subcarrier spacing is in the range of a few 100 Hz to a few
kHz for the communication and broadcasting signals, this effect is only possible when the
two subcarrier tones are very close to fRF. Such a close blocker signal will be likely to exist
inside the desired band. Then, the in-band interference mitigation techniques such as the
channel-scan-and-search-based LBT will be effective enough for its mitigation.
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Figure 1. Two-tone blocker effects. (a) Third-order intermodulation effect for the close-in blocker,
(b) second-order intermodulation effects for the far-out blocker.

On the other hand, when the OFDM blocker signal is far away from fRF as shown in
Figure 1b and is, thus, likely to be out of the MedRadio band, then its IM3 tone cannot
directly affect the desired band at fRF. Yet, the IM2 distortion at fm − fk will fall in the
down-converted IF or baseband channel at fIF and lead to the SNR degradation. The LBT
technique that works for the close blocker signal will not work for this situation because
the blocker signal is located far away out of the band and is, thus, likely out of the channel
scan range.

It should be noted that a variety of communication and broadcasting services that
are being offered worldwide in the UHF and VHF bands employs the OFDM signaling.
Hence, the IM2 distortions induced by the OOB OFDM blocker signal need to be analyzed
rigorously to accurately assess the SNR degradation in the MedRadio receiver. Figure 2
illustrates that the OOB OFDM blocker signal at fBL appears beside the desired MedRadio
RF signal at fRF. Let the number of subcarriers and subcarrier spacing of the OFDM blocker
are Nsub and fsub, respectively. For example, in the ATSC 3.0 standard [21], given the channel
bandwidth of 6 MHz, fsub is 843.7, 421.8, and 210.9 Hz depending on the OFDM FFT modes
of 8K (Nsub = 6913), 16K (Nsub = 13,826), and 32K (Nsub = 27,649), respectively. Similarly, we
can find that fsub is 279–8929 Hz for DVB-T2 [22], and 992–3968 Hz for ISDB-T [23].
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Figure 2. IM2 distortions induced by the multi-tone OFDM blocker.

As shown in Figure 2, any combination of two subcarrier tones out of the total Nsub
subcarrier tones will create (Nsub − 1) of IM2 tones at the baseband, starting from the first
at fsub to the last at (Nsub − 1)·fsub. If the desired IF signal band overlaps with the IM2
tones, the total IM2 distortion power can be computed by integrating its power spectral
density (PSD) over the IF channel bandwidth. Then, the SNR degradation caused by the
OFDM-induced IM2 distortions can be accurately evaluated. For example, the IF signal
bandwidth of Figure 2 encompasses the 3rd IM2 tone at 3·fsub through the 10th IM2 tone at
10·fsub. Thus, the total IM2 distortion power should be computed by integrating from the
3rd through the 10th IM2 distortion power.

The well-known input-referred second-order intercept point power (IIP2) of an RF
receiver is expressed as

I IP2 = Pin + (Pout − POIM2) (1)

where Pin is the input power, Pout is the output power, and POIM2 is the output-referred
IM2 distortion power, all expressed in dB or dBm. When a OFDM blocker signal that
has the total power of Pin.total is fed to a receiver having IIP2 and a power gain of GP, the
input-referred IM2 distortion power PIIM2 (= POIM2 − GP) can be expressed by

PI IM2 = 2Pin.total − I IP2 (2)

If the total number of subcarriers is Nsub, the power of each subcarrier Pin.sub is given by

Pin.sub = Pin.total − 10log(Nsub) (3)

Now, let us compute the total input-referred IM2 distortion power by integrating the
IM2 PSD over the band of interest. Ranjan et al. in their OFDM distortion analysis [24]
derived an analytic expression of the IM2 PSD by assuming that IM2 tones at the baseband
are uncorrelated with the original causative OFDM data. Although the exact PSD expres-
sion (Equation (12) of [24]) is not repeated here, we can find that the numerical integration
of PSD can be simply carried out by collecting and adding the subcarrier PSD components
at their center frequencies without a significant loss in generality and accuracy. Let us take
an example of the 3rd PIIM2 illustrated in Figure 2, which is the first IM2 tone that exists
in the IF band. We can find that the 3rd PIIM2 is created by (Nsub − 3) of two subcarrier
tones that are apart by 3·fsub in the original OFDM blocker signal. This observation can be
generalized such that the k-th IM2 power PIIM2.kth can be obtained by k-th PIIM2 multiplied
by the total number of the subcarrier pairs responsible for creating the k-th IM2 tone. It is
expressed by

10
PIIM2.kth

10 = (Nsub − k)·10
2Pin.sub−I IP2

10 (4)

If the band of interest covers from the ki-th IM2 tone through the kf-th IM2 tone, then,
the total input-referred IM2 power PIIM2.total that exists within the band of interest can be
calculated by summing (Nsub − k) of PIIM2.kth of (4) from the first ki-th through the last kf-th.
It is expressed as follows

10
PIIM2.total

10 = ∑
k f
k=ki

(
(Nsub − k)·10

2Pin.sub−I IP2
10

)
(5)
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Equation (5) can be written again in dB as follows

PI IM2.total = (2Pin.sub − I IP2) + 10 log
(
∑

k f
k=ki

(Nsub − k)
)

(6)

By substituting Pin.sub of (6) with (3), Equation (6) can be arranged as

PI IM2.total = 2
(

Pin.total − Po f f set

)
− I IP2 (7)

where Poffset is given by

Po f f set = 10log
Nsub√

∑
k f
k=ki

(Nsub − k)
(8)

Equations (7) and (8) imply that the IM2 distortion power induced by the OFDM
signal can be equivalently evaluated by the IM2 distortion power induced by the two-tone
blocker signal as long as the two-tone blocker signal power is set to be lower than the
original OFDM blocker signal power Pin.total by Poffset.

This finding greatly simplifies the simulation and characterization of the OFDM-
induced IM2 distortion in an RF receiver. Involvement of a multi-carrier OFDM signal
in RF circuit simulations will typically require a sophisticated OFDM signal modeling, a
very complex numerical analysis method, and a long simulation time. Thus, it is very time-
consuming and impractical to examine the OFDM-induced IM2 effects in RF circuit design.
However, if the OFDM blocker signal can be replaced simply by an equivalent two-tone
blocker signal by considering an offset parameter Poffset, the whole simulation process will
become much simpler and more convenient because we can use the conventional time-
and frequency-domain circuit simulation methods. Thus, these analytic results enable
us to evaluate the OFDM-induced IM2 effects very efficiently when only examining an
equivalent two-tone blocker induced IM2 effects.

Let us take an example of 16K FFT mode of ATSC 3.0 [21], which has Nsub = 13,825 and
fsub = 421.875 Hz. When the IF band of a low-IF MedRadio receiver resides in 150–450 kHz,
the IM2 tones appearing within the band are from ki = 356th to kf = 1066th components.
Then, Poffset is computed to +6.56 dB by (8). It implies that if an ATSC blocker of −10 dBm is
injected to a receiver and induces IM2 distortion at the baseband, the same amount of IM2
distortion power is also induced by a simple two-tone blocker of −16.56 dBm. Moreover,
assuming the input signal power of the receiver is −50 dBm, and the receiver IIP2 is
+30 dBm, PIIM2.total will be −63.1 dBm (=2 × (−10 − 6.56) − 30) according to Equation (7),
and the resulting SNR will be +13.1 dB as the input signal power is −50 dBm and the
input-referred distortion power PIIM2.total is −63.1 dBm

3. Designs

Figure 3 shows the architecture of the MedRadio RF receiver. It is designed in an RF
CMOS process. The receiver comprises a low-noise amplifier (LNA), transconductance
(Gm) stage, quadrature down-conversion mixer with IM2 calibration, trans-impedance
amplifier (TIA) with dc offset calibration (DCOC), three-stage variable gain amplifiers
(VGAs), complex bandpass filter (BPF), fractional-N phase-locked loop (PLL) synthesizer,
and a divide-by-4 local oscillator (LO) generator.
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Figure 3. The MedRadio RF receiver architecture.

The receiver takes a low intermediate-frequency (IF) architecture employing a quadra-
ture single down-conversion scheme. The IF frequency is set equal to the channel band-
width of 300 kHz so that the down-converted IF band resides in 150–450 kHz.

The image band of the desired RF signal is rejected by the complex BPF. As shown in
Figure 3, the complex BPF comprises two-stage complex biquads and three-stage VGAs.
The detailed block diagram of the single-stage complex biquad is shown in Figure 4a. The
unit biquad is based on a modified Tow-Thomas low-pass filter (LPF) structure in which
the lossless integrator block (OPA1, C1) is put before the lossy integrator block (OPA2, R3,
C3). Since the second-order filtering is given by the unit biquad, the overall two-stage
complex BPF presents a fourth-order bandpass filtering characteristics. Figure 4b illustrates
how the low-pass characteristics of the unit biquad are translated to the complex bandpass
characteristics. The cross-interconnecting resistors Rxa and Rxb that are placed between
the I- and Q-path biquads as shown in Figure 4a shift the complex conjugate poles to real
poles, resulting in the original low-pass filter response being shifted to the desired complex
bandpass filter response, which gives the image rejection capability [25]. For optimal image
rejection performance, the center frequency fo is equally set to the channel bandwidth. As
a result, the image component at the negative frequency band at −fo is suppressed with
respect to the wanted positive frequency band at +fo. To cope with process variability
and also to support variable channel bandwidth modes, key performance parameters
of the complex biquad are tunable by realizing the on-chip resistors and capacitors in a
switched value structure. The resulting switched tuning ranges are given by 34–136 kΩ
with 2-bit control for R1, 82–103 kΩ with 3-bit control for R3, and 0.6–7.35 pF with 4-bit
control for C1 and C3, while R2 and R4 are fixed to 135 kΩ. Then, the overall complex BPF
shows a tunable gain of −22–+45 dB, tunable center frequency of 0.25–3 MHz, tunable
bandwidth of 0.23–2.7 MHz, and tunable quality factor of 0.9–1.1. In addition, the passband
flatness is also tunable by independently controlling the on-chip Rxa and Rxb in the range of
78–106 kΩ so that the band-edge gain difference is adjusted in the range of −1–+1 dB [25].

Figure 4c is the schematic of the operational amplifiers OPA1 and OPA2. It is a fully
differential two-stage amplifier with a dc common-mode feedback (CMFB). The first stage
is a differential pair having p-FET input pair of M1,2 and n-FET active load of M3,4, and the
second stage is n-FET common-source stage of M5,6. Designed parameters of the FET’s gate
width/length are 200/0.2 µm for M1,2, 80/0.5 µm for M3,4, 64/0.2 µm for M5,6, 192/0.5 µm
for M7,8, and 480/0.5 µm for M9. The dc bias currents are 42 µA for M9 and 18 µA for M7,8.
The frequency compensating RC and CC are 4 kΩ and 0.9 pF, respectively.
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Figure 4. Complex biquad. (a) Block diagram, (b) transfer characteristics, (c) operational amplifier schematic.

The LO signal is generated by the fractional-N PLL frequency synthesizer. A 20-bit
digital delta-sigma (∆∑) modulator is employed for the fractional-N frequency generation.
Details of this PLL can be found in the author’s prior work [26]. The voltage controlled
oscillator (VCO) covers 1.4–1.8 GHz, which is 4× higher than the MedRadio RF band of
401–406 MHz. The automatic frequency calibration (AFC) searches for an optimal sub-band
out of the 32 sub-bands through 5-bit switched capacitor bank of the VCO. The divide-by-4
LO generator circuit after the VCO buffer generates I/Q LO signals with 25% duty cycle
for driving the mixer FETs. The 25% duty-cycle LO signal improves the conversion gain
and noise figure performances of the quadrature mixer [17].

Figure 5 shows the detailed circuit schematic of the RF front end. The LNA is based on
the single-ended cascode structure with M1,2 (gate width = 128 µm, gate length = 60 nm)
and a resistive load RD (408 Ω), dissipating 520 µA. The source degeneration inductor Ls
of 9 nH and the additional gate-to-source capacitor Cgsx of 0.74 pF are used for simulta-
neous noise and power matching. The input impedance matching is achieved only by
a single off-chip inductor Lext (132 nH). The Gm stage with M4,5 (gate width = 5.6 µm,
gate length = 60 nm) and M6,7 (gate width = 16 µm, gate length = 60 nm) performs a single-
to-differential conversion for interfacing between the single-ended LNA and differential
mixer. It also prevents a severe degradation of the LNA performance that can be otherwise
caused by the low input impedance of the passive mixer. The passive mixer with M11,14
(gate width = 14 µm, gate length = 60 nm) is adopted for the benefits of the low power
dissipation and low 1/f noise. The differential I/Q LO signals LOIp,m and LOQp,m are fed
to the mixer via ac-coupling capacitors Cb (10 pF).
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Figure 5. Circuit schematic of the RF front end.

The TIA comprises an operational amplifier A1 and feedback components R1 and C1.
The R1 and C1 are designed in a switched value structure for achieving the bandwidth
tunability between 3.4 and 9.5 MHz. R1 is switchable among 2, 8, 9, and 10 kΩ, and C1
is switchable between 0 and 3.5 pF with 0.5 step. The A1 is a fully differential two-stage
structure with its gain bandwidth product of 21.6 MHz. The total gain of the RF front end
is +42.2 dB.

The IM2 calibration at the mixer is designed to minimize the IM2 distortion. It is
generally known that the IM2 distortion created by FET non-linearities is manifested by the
differential mismatches in FETs, dc bias voltages, passive impedances, and layout routings.
Thus, the differential mismatches need be minimized to suppress the IM2 distortion at
the receiver output. In this design, as proposed in [27,28], the dc gate bias voltages Vgp
and Vgm for the switch FET’s M11–14 are controlled by employing a 6-bit R-2R digital-to-
analog converter (DAC). The DAC needs to have a fine-tuning resolution for precise IM2
calibration, but a higher number of total bits will make the calibration process slow. Thus,
in order to overcome the two conflicting requirements of the fine resolution and lower
number of control bits, we set the full scale of the DAC to a significantly reduced value of
only 50 mV, while its common-model level is tunable for a wider range between 0.5 and
0.9 V by using another 3-bit DAC. As a result, the gate bias tuning resolution is as fine as
0.78 mV. In this work, the IM2 calibration is done manually by monitoring the IM2 level
with respect to the mixer gate bias voltages. In a practical mass-production stage, this IM2
calibration can be done more efficiently by using automatic test equipment (ATE).

IM2 calibration is verified through circuit simulations. Figure 6 shows simulation
results. The desired RF input of −30 dBm at 402 MHz is injected, and the OOB two-
tone blockers of −10 dBm at (420, 421 MHz) in one simulation and (650, 651 MHz) in
the other simulation are injected. With the LO frequency set to 404 MHz, the wanted IF
signal appears at 2 MHz, while the IM2 distortion appears at 1 MHz. The IM2 distortion
power with respect to the wanted tone power is examined with the gate bias voltage Vgp
tuned from 0.5 to 1.0 V, while the other gate bias Vgm is fixed at 0.7 V. As can be seen,
the IM2 distortion level is drastically reduced when the gate bias voltage Vgp is set to an
optimal point, which is 0.65 V for 420/421 MHz blocker and 0.7 V for 650/651 MHz blocker.
It clearly implies that any unwanted mismatches that are inevitable during the circuit
fabrication processes can be successfully compensated by the proposed IM2 calibration
circuit, thus guaranteeing a satisfactory IM2 distortion level in the receiver.
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Figure 6. Simulation results of the IM2 calibration.

Meanwhile, it is found that the proposed IM2 calibration circuit creates an unwanted
dc level change at the mixer output during the IM2 calibration. Since the signals from
mixer output to the TIA, the first VGA, and the first biquad are all dc-coupled, the dc
level changes at the mixer output will directly lead to a significant dc offset at the first
biquad output of the complex BPF. The dc offset must be cancelled out even though the
down-converted signal resides in the low-IF band and not in dc. It is because the residual
dc offset created by the preceding IM2 calibration will harmfully reduce the dynamic range
of the following stages. In the conventional low-IF receiver designs, for example, that
reported in [12,29], the signals after the mixer output are ac-coupled. Then, the dc offset can
be cancelled out by directly controlling the gate biases of the input FETs of a subsequent
stage. However, in this design, that approach cannot be taken because the gate bias tuning
will adversely alter the optimum IM2 calibration condition obtained at the previous mixer
stage. Thus, in this work, we tune the body bias voltages of the input FETs of A1 to cancel
out the dc offset. This approach successfully cancels the dc offset at the biquad output,
while avoiding the adverse interaction with the IM2 calibration condition at the mixer.

4. Results and Discussions

The MedRadio receiver is fabricated in a 65 nm RF CMOS process. A micrograph of
the fabricated chip is shown in Figure 7, in which the major building blocks are denotated.
Note that the chip includes not only the RF receiver of Figure 3 but also an RF transmitter
comprising a divide-by-4 circuit and a class-D power amplifier. However, the design details
and measurement results of the RF transmitter are not discussed in this paper because
they are out of the scope. Nevertheless, the total die size including the entire receiver and
transmitter is 2.46 × 1.26 mm2. The fabricated die is mounted and directly wire-bonded
on a printed circuit board for experimental measurements. A single supply voltage of 1 V
is used.
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Figure 7. Chip micrograph.

Figure 8 shows the measured S11 of the receiver. The input impedance bandwidth
having S11 < −10 dB is 37.5 MHz between 389.4 and 426.9 MHz. It shows that the single
series off-chip inductor Lext shown in Figure 5 is enough to achieve the satisfactory input
bandwidth for the MedRadio applications. Note that this external Lext is not changed
during the subsequent whole OOB blocker measurements.
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Figure 8. Measured S11 of the receiver.

The measured gain and noise figure performances of the RF front end are plotted
in Figure 9. The measurements were done by probing intermediate test ports at the TIA
output. The gain is measured by applying the RF and LO signals by using signal generators
and reading the output power level by using a spectrum analyzer (N9030B of Keysight
Technologies Inc., Santa Rosa, CA, USA). The measured passband gain of the RF front
end is +42.2 dB. As shown earlier in Figure 5, the on-chip feedback components R1 and
C1 of the TIA are tunable. By controlling these, the TIA bandwidth is tuned between
3.4 and 9.5 MHz in eight steps. Among them, Figure 9 only displays three selected curves
corresponding to the minimum 3.4 MHz, medium 4.9 MHz, and the maximum 9.5 MHz
conditions for the TIA bandwidth.
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Figure 9. Measured gain and noise figure of the RF front end.

For the noise figure measurement, the total output noise power Pn,out with the in-
put port terminated by 50 Ω is measured by using the spectrum analyzer. With Pn,out
and the receiver’s power gain GP are known, the receiver noise figure is calculated by
(Pn,out + 174 dBm/Hz − GP). This method is convenient because it does not need a noise
source or noise figure meter and also ensures sufficient accuracy because the noise floor
level of the spectrum analyzer is more than 30 dB lower than Pn,out. The measured noise fig-
ure at the low-IF band of 150–450 kHz is given by 3.7–4.5 dB. Assuming that a non-coherent
detection for binary frequency shift keying (BFSK) signal is adopted, the minimum required
SNR should be 14 dB for achieving a bit error rate (BER) of 10−6. In practice, the minimum
BER required by a raw RF radio excluding a digital processor can be as high as ~ 10−3 [5],
and the required SNR for this can be further lower by 3 dB, that is, only 11 dB. However, in
order to take various practical errors and margins into account, we decide to use 14 dB for
the minimum required SNR in the following discussions. Note that the receiver sensitivity
Psens is given by

Psens = −174(dBm/FHz) + NF + 10 log(B) + SNRmin (9)

where NF is the receiver noise figure, B is the signal bandwidth, SNRmin is the minimum
required SNR. With SNRmin = 14 dB, B = 300 kHz, and NF = 4.5 dB, the receiver sensitiv-
ity Psens is calculated to be −100.7 dBm or 2.06 µVrms. This sensitivity performance is
comparable to [12,15] and much better than [5,13].

Figure 10 shows the measured frequency responses of the complex BPF. The measured
curves exhibit the bandwidth tuning and image rejection performances at a medium gain
condition. Although not shown here, the gain is also tunable between −22.5 and +45.4 dB
in 24 steps. However, normalized gains are drawn in Figure 10 for the sake of clarity. The
bandwidth is tunable between 230 and 2700 kHz in 16 steps by tuning the switched resistor
and capacitor components R1, C1, R3, and C3 in Figure 4. Figure 10 only displays the four
selected curves out of the total 16 curves. The image rejection ratio can be evaluated by
taking the ratio of the two gain values, one at the passband’s center-frequency point and
the other at its image-frequency point. The resulting image rejection ratio is 26.4–33.3 dB,
which is sufficient enough considering that the minimum required SNR is 14 dB.
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Figure 10. Measured frequency response of the complex BPF.

Figure 11 is the measured phase noise of the PLL synthesizer at the output frequency
of 400 MHz. The measured phase noise is −98.7 and −125.3 dBc/Hz at 100 kHz and
1 MHz offsets, respectively. The phase noise performance is comparable to the previously
reported similar LC VCOs in [12,17], whereas it is much better than [30] for the same
MedRadio applications because of the LC cross-coupled structure rather than the ring
oscillator structure.
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Figure 11. Measured phase noise of the PLL synthesizer.

The IM2 calibration is verified through extensive measurements over more than
five samples. All results show reasonably good agreements with acceptable variabil-
ity. Figure 12a shows the measured spectrum, demonstrating how the IM2 distortion is
suppressed by the proposed IM2 calibration. The desired RF single tone of −90 dBm
at 403.5 MHz are fed to the receiver together with two-tone blocker of −50 dBm at
433.0 and 433.2 MHz. The receiver is set to a nominal gain condition. Then, the wanted IF
and unwanted IM2 tones appear at 300 kHz and 200 kHz, respectively. Before the IM2 cali-
bration, the desired and distortion tones are −47.8 and −48.5 dBm, respectively. After the
IM2 calibration is carried out, the desired tone power does not show a noticeable change,
whereas the IM2 tone power is significantly reduced from −48.5 dBm to −66.1 dBm. As a
result, the signal-to-IM2-distortion ratio is improved from +0.7 dB to +18.3 dB. It implies
that before the calibration, the receiver cannot satisfy the 14 dB SNR requirement, but after
the calibration, it successfully satisfies the SNR requirement with a sufficient margin of
4.3 dB.
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Figure 12. IM2 calibration performance measurements. (a) Spectrum, (b) results over the UHF band.

The IM2 calibration measurements are further carried out over the entire UHF band
between 420 MHz and 900 MHz, and the results are plotted in Figure 12b. It is observed
that the IM2 distortion is suppressed typically by 15 dB in the range of 8.3–20 dB through
the IM2 calibration, while the desired tone remains almost unchanged.

The interference tolerance performances of the receiver against the OOB two-tone
blocker are evaluated through the carrier-to-interference ratio (CIR) measurements and
plotted in Figure 13. The maximum tolerable CIR is measured as following. First, a
−90 dBm desired signal at 403.5 MHz is fed to the receiver, and an OOB two-tone blocker
with 200 kHz spacing between 420 and 900 MHz is injected together. Then, the blocker
signal power is raised until the output SNR reaches 17 dB. Note that we use a 3 dB higher
SNR requirement for this CIR test by considering that any more noise and distortion
contributions other than this IM2 distortion can be additionally involved in practice. Then,
the ratio of the signal and blocker power at this 17 dB SNR condition is defined as the
maximum tolerable CIR. The measured results are plotted in Figure 13. The maximum
tolerable CIR indicates the receiver’s selectivity performance against the two-tone blocker.
As can be seen in Figure 13, the proposed IM2 calibration effectively improves the CIR
by 4–11 dB across the UHF band. The CIR after the calibration is −40.2 dBc at 420 MHz,
which is very close to the in-band, and gradually improves up to −71.2 dBc as the blocker
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frequency moves farther away out of the band. The measured CIR can also be translated to
the maximum tolerable two-tone blocker power of −49.8–−18.8 dBm. Then, considering
Poffset = 6.56 dB as discussed in Section 2, we can conclude that the equivalent OFDM
blocker power of −43.2–−12.2 dBm can be tolerated by this RF receiver.
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Another important interference tolerance is against a single tone blocker. The mea-
sured results are plotted in Figure 14. The desired signal power is set to −98 dBm at
403.5 MHz, which is 3 dB higher than the sensitivity level. The single-tone blocker signal
across the VHF and UHF band is injected together, and its power is raised up to a point
such that the output SNR becomes 17 dB in the same reason described earlier. The CIR
at a frequency that is only 4 MHz away from the desired tone is found to be −41 dBc,
which corresponds to the maximum tolerable single-tone blocker power, is −57 dBm.
However, in general, the maximum tolerable CIR shows much better performance as low
as −70–−77 dBc for the rest of the band between 50–370 MHz and 430–900 MHz. One
exception is observed at a half LO frequency near 200 MHz, where the CIR is observed to
be −49 dBc. Although the MedRadio standard [1] does not clearly state this, such a limited
set of exceptions would be generally accepted for the overall system operations because it
can be avoided through high-level channel classification and a search process as is typically
done in the Bluetooth receiver for internet-of-things (IoT) applications [28,29].
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The 1 dB gain desensitization against the single-tone blocker is measured and shown
in Figure 15. The worst point appearing at 403.5 MHz corresponds exactly to the input-
referred 1 dB compression power (IP1dB) of the receiver, which is −40.8 dBm. As the blocker
frequency moves away from the in-band, the 1 dB desensitization power continually grows
from −26.7 dBm at 350 MHz to −9 dBm at 100 MHz for the lower band and also from
−32.7 dBm at 450 MHz to −16.8 dBm at 900 MHz for the upper band.
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Key performances of this work are summarized and compared with previous CMOS
MedRadio receivers in Table 1. It should be noted that most of the previous works [4,5,12,14–16]
did not address the OOB blocker tolerance performances. Only a few works reported
selectivity performances. Cho et al. [18] reported an OOB CIR of −30 dBc against the
VHF band interference between 30 and 70 MHz, and Ba et al. [12] demonstrated the ACR
performance of 15 dB in their MedRadio receiver. Huang et al. [19] reported the CIR of
−10 dB in their 915 MHz OOK receiver. Such performances should be compared to the
CIR against the single tone blocker of this work. As discussed in Figure 14, this work
shows much better performance, which is better than −41 dBc without an exception, or
even better than −70 dBc if two exceptions are allowed at the half LO and 4 MHz away
in-band frequencies. As can be seen in Table 1, this work is the first reporting the OOB CIR
performances against the two-tone and single-tone blockers, which can be translated to the
maximum tolerable OOB blocker power levels. Additionally, the maximum tolerable CIR
against the two-tone blocker can be translated to the maximum tolerable CIR against the
OFDM blocker when the Poffset of Equation (8) is taken into account.

Table 1. Performance summary and comparison.

This Work [4] [18] [16] [15] [14]

Receiver Architecture Low IF
with complex BPF

Low IF
with complex BPF

Low/Zero IF
with baseband filter

Front end
only

Front end
only

Front end
only

Gain (dB) 19.7–87.6 1 32 36 31 25.7 28.7

Noise figure (dB) 4.5 5.9 - 5.2 10.2 5.5

Sensitivity (dBm) −100.7 −85 −75 - −97 -

IIP3 (dBm) −24 - - −19.5 −17 −25
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Table 1. Cont.

This Work [4] [18] [16] [15] [14]

OOB CIR 2

by two-tone blocker (dBc) −40.2–−71.2 - - - - -

OOB CIR 3

by single-tone blocker (dBc) −70–−77 - −30 4 - - -

Power consumption (mW) 6.78 22 8.5 0.37 1.3 0.49

CMOS process (nm) 65 180 180 180 180 180
1 RF front end gain is +42.2 dB. 2 OOB two-tone blocker frequency at 420–900 MHz. 3 OOB single-tone blocker frequency at 50–370 MHz
and 430–900 MHz with two exceptions at the half LO frequency and 4 MHz away in-band frequency. 4 OOB single-tone blocker frequency
at 30–70 MHz.

5. Conclusions

The OFDM signal in the UHF band for various broadcasting and communication
services can severely aggravate the selectivity performance of the MedRadio RF receiver
through the IM2 distortion. We have presented an analytic investigation on how the OOB
OFDM signal induces the IM2 distortion and leads to the SNR degradation at the RF
receiver. We also have performed theoretical analysis on how the OFDM-induced IM2
distortion can be equivalently translated to a two-tone-induced IM2 distortion. As a result,
we have introduced an offset parameter Poffset for compensating the difference between the
multi-tone and two-tone effects. The designed MedRadio low-IF RF receiver is fabricated
in a 65 nm CMOS process. Two design techniques have been described, one for the IM2
calibration through the gate bias tuning at the passive mixer’s FETs, and the other for
the dc offset calibration through the body bias tuning at the subsequent TIA’s FETs. The
proposed RF receivers have shown significant OOB CIR improvements, and the measured
maximum tolerable CIR performances are between −40.2 and −71.2 dBc for the two-tone
blocker and between −70 and −77 dBc for the single-tone blocker. To the author’s best
knowledge, this work is the first to present the analytical and experimental investigations
on the OFDM-induced OOB selectivity performances in the MedRadio RF receiver for the
biomedical and biosensor applications. The results of this work will be essential to enhance
the selectivity performance of the MedRadio RF receiver and guarantee reliable and robust
wireless communication services in implanted and wearable biomedical devices.
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