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Abstract: Signal denoising is one of the most important issues in signal processing, and various
techniques have been proposed to address this issue. A combined method involving wavelet
decomposition and multiscale principal component analysis (MSPCA) has been proposed and
exhibits a strong signal denoising performance. This technique takes advantage of several signals
that have similar noises to conduct denoising; however, noises are usually quite different between
signals, and wavelet decomposition has limited adaptive decomposition abilities for complex signals.
To address this issue, we propose a signal denoising method based on ensemble empirical mode
decomposition (EEMD) and MSPCA. The proposed method can conduct MSPCA-based denoising
for a single signal compared with the former MSPCA-based denoising methods. The main steps of
the proposed denoising method are as follows: First, EEMD is used for adaptive decomposition of
a signal, and the variance contribution rate is selected to remove components with high-frequency
noises. Subsequently, the Hankel matrix is constructed on each component to obtain a higher order
matrix, and the main score and load vectors of the PCA are adopted to denoise the Hankel matrix.
Next, the PCA-denoised component is denoised using soft thresholding. Finally, the stacking of PCA-
and soft thresholding-denoised components is treated as the final denoised signal. Synthetic tests
demonstrate that the EEMD-MSPCA-based method can provide good signal denoising results and is
superior to the low-pass filter, wavelet reconstruction, EEMD reconstruction, Hankel–SVD, EEMD-
Hankel–SVD, and wavelet-MSPCA-based denoising methods. Moreover, the proposed method in
combination with the AIC picking method shows good prospects for processing microseismic waves.

Keywords: signal denoising; principal component analysis; ensemble empirical mode decomposition;
microseismic signal; P-phase arrival picking

1. Introduction

Signals from various practical applications are usually corrupted by unwanted noise,
such as background noise, electronic noise, and instrumental noise. Consequently, to
improve signal detection, classification, and phase arrival picking, it is necessary to remove
unwanted noise. Currently, signal denoising is widely used in the fields of medical sig-
nals [1], speech signals [2], mechanical diagnosis [3], structural health monitoring [4–6],
and seismic monitoring networks [7–9]; however, this study focused specifically on micro-
seismic (MS) signal denoising.

Spectral filtering is frequently applied to denoise a signal, and a Butterworth-based
filter (low-pass filter, high-pass filter, and band-pass filter) is usually adopted [10], which is
simple but may filter out a frequency band that contains useful information when the noise
and signal share the same frequency band. In addition, the adopted frequency band may
vary for different signals; in other words, it cannot denoise a signal adaptively. Therefore,
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more effective filtering methods have been proposed for signal denoising, especially based
on multiscale features (e.g., wavelet analysis and empirical mode decomposition).

For wavelet analysis-based signal denoising, Beenamol et al. [7] used Shannon and
Tsallis entropies to select important wavelet coefficients to denoise a signal; however, noise
may still exist in the selected wavelet coefficients. Thus, Tang et al. [8], Mousavi et al. [9],
and Chen et al. [11] denoised MS signals based on the combination of wavelet transforma-
tion and adaptive thresholding, synchro squeezing wavelet transformation and custom
thresholding of single-channel data, and empirical wavelet transformation and automatic
noise attenuation thresholding algorithms. However, redundant information in the low-
frequency band is not removed by filtering out the high-frequency components and thresh-
olding. Patil [12] combined wavelet transformation and singular value decomposition
(SVD) for noise reduction, whereas Bakshi [13] decomposed signals by wavelet transforma-
tion and applied principal component analysis (PCA) to denoise the wavelet coefficients
of multiple signals containing similar noises and obtained good denoising results. SVD
and PCA can efficiently separate useful signals from noise. Wavelet analysis decomposes
signals from high- to low-frequency components through wavelet function expansion and
translation, which has limited adaptive decomposition abilities for complex signals.

Empirical mode decomposition (EMD), proposed by Huang et al. [14], has better
adaptability than wavelet decomposition, and EMD and its improvement have been widely
used in signal processing. Mao et al. [15], Dao et al. [16], and Li et al. [17] proposed
signal denoising methods based on EMD and thresholding; however, some redundant
information could not be denoised by thresholding. Qiao et al. [18] adopted EMD with
multiscale eigenvalues of SVD for denoising, which could further reduce noise. However,
similar components may exist in different scales for EMD, making it difficult to separate
useful components and noise. To overcome this problem, Wu and Huang [19] proposed
ensemble empirical mode decomposition (EEMD). On this basis, Jia et al. [20], Han et al. [21],
and Li et al. [17] took advantage of permutation entropy, adaptive thresholding, and soft
thresholding to denoise signals, attaining a better denoising performance than that based
on EMD. Moreover, variational mode decomposition (VMD) has been applied for signal
denoising [22], which successfully avoids mode mixing and is robust for both noise and
sampling, unlike EMD.

Subsequently, SVD was combined with the Hankel matrix to denoise a signal [23],
where the Hankel matrix can expand a signal into a high-dimensional matrix and is very
beneficial for feature extraction. Recently, coda wave interferometry (CWI) has been suc-
cessfully applied to monitor stress distribution and damage detection in engineering [4–6],
where wavelet transformation [5], normal band-pass filter, narrow band-pass filter, and
double-notch filter [6] were used to extract useful signal features. These techniques pro-
vided a good research direction for noise reduction and damage detection. In addition,
deep neural networks have been proposed for signal denoising; for example, DeepDe-
noiser [24] achieves impressive denoising of seismic signals, even when the signal and
noise share a common frequency band. However, perfect separation of signal and noise in
the time–frequency domain requires recovering two complex spectra for the signal and
noise from the complex spectra of the noisy signal.

In this study, we focused on the PCA denoising concept proposed by Bakshi [13],
which can enhance useful signal and noise separation, and the highly adaptive EEMD,
Hankel matrix, and multiscale PCA (MSPCA) are combined to remove noise from a single
signal. The main innovations and contributions of this research are as follows: (1) The
EEMD was introduced into MSPCA denoising to achieve improved signal decomposition
adaptability compared to wavelet decomposition. (2) The Hankel matrix was used to
transform a single EEMD component into high-dimensional data that are suitable for
conducting PCA denoising on only one signal. (3) Soft thresholding was selected for
further denoising of the PCA-denoised component. (4) The denoising results are superior
to those of the low-pass filter, wavelet reconstruction, EEMD reconstruction, Hankel–SVD,
EEMD-Hankel–SVD, and wavelet-MSPCA-based denoising methods. The remainder of
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this paper is organised as follows. Section 2 introduces the EEMD, Hankel matrix, and
MSPCA-based denoising methods. The synthetic and application tests are described
in Sections 3 and 4, respectively. Section 5 compares the proposed method with other
denoising methods. The research results and prospects are presented in Section 6.

2. Theoretical Fundamentals
2.1. Basis of EEMD

Wu and Huang [19] proposed a noise-assisted EEMD based on EMD by adding white
noise to the signals. The steps of the EEMD algorithm are as follows.

(1) By adding a group of white Gaussian noise ωj(t) into a noisy signal x(t), a new
signal x′j(t) is obtained as follows:

x′j(t) = x(t) + ωj(t) (1)

where t is the signal time, j is the jth time of adding white Gaussian noise, and j = 1, 2, . . . ,
M, where M is the number of times white Gaussian noise is added.

(2) Through EMD of x′
j
(t), n intrinsic mode functions (IMFs), cj,i, and one residual

component cj,n+1 are obtained as follows:

x′
j
(t) =

n

∑
i=1

cj,i(t) + cj,n+1 (2)

where i is the IMF identity, i = 1, 2, . . . , n, and n is the number of IMFs.
(3) By adding different white Gaussian noises [ωj(t)] into the noisy signal x(t) and

repeating steps (1) and (2), the ith IMF component cj,i(t) and the residual component cj,n+1
through the jth decomposition are obtained.

(4) Based on the zero-mean principle of the spectra of white Gaussian noise, the
effects of white Gaussian noise as the reference structure of the time-domain distribution
are eliminated. The average IMF component ci(t) and the residual component cj,n+1
corresponding to noisy signals can be expressed as follows:

ci(t) =
1
M

M
∑

j=1
cj,i(t)

cn+1(t) =
1
M

M
∑

j=1
cj,n+1(t)

(3)

The relationship between the amplitude, times, and denoising effect of the added
white Gaussian noise into the noisy signal x(t) is represented as follows:

εi =
ε√
M

(4)

where εi is the denoising effect of the added white Gaussian noise, and ε is the amplitude
of the white Gaussian noise.

As shown in Formula (4), when the noise amplitude is fixed, the larger the number of
times white Gaussian noise is added, the closer the final decomposition result is to the true
values. If the amplitude of the added noise is too small, noise does not affect the selection
of the extreme much, thus playing no small role in complementing the scales.

(5) Finally, the noisy signal x(t) can be decomposed as follows:

x(t) =
n

∑
i=1

ci(t) + cn+1(t) (5)
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2.2. Basis of Hankel Matrix and MSPCA

For a single signal, only one non-zero singular value corresponds to an SVD. Therefore,
a singular value cannot be used for denoising. Hence, we constructed a p × q order Hankel
matrix Hi from ci:

Hi = (ci,km)p×q =


ci,11 ci,12 · · · ci,1q
ci,21 ci,22 · · · ci,2q

...
...

...
...

ci,p1 ci,p2 · · · ci,pq

 (6)

where ci, km = ci (k + m − 1), and k + m − 1 = N, k and m are the row and column identities,
respectively, and N is the total sampling number of ci.

Based on the SVD, matrix Hi can be decomposed as follows: Hi = U ∑ VT, (U ∈ Rp×p,
∑ ∈ Rp×q and V ∈ Rq×q). We marked T = U ∑ and P = V. H can be then treated as the
sum of the outer products of the q vectors:

Hi = TPT =
q

∑
k=1

tkpk
T = t1p1

T + t2p2
T + · · ·+ tqpq

T (7)

where tk and pk indicate the score vector and load vector, respectively, k = 1, 2, . . . , q, and T
represents the matrix transposition.

The tk length reflects the Hi coverage in direction pk: a longer tk represents greater
importance, while a shorter tk is mainly noise and placed in E. Subsequently, matrix H can
be rewritten as

Hi = t′1p1
T + t′2p2

T + . . . + t′q′pq′
T + E (8)

where t′k(k = 1, 2, . . . . . . , q′) is the score vector; a larger tk remains unaltered, whereas a
shorter tk is set as a zero vector.

Considering that the PCA of the matrix, Hi is equivalent to the eigenvector analysis of
the covariance matrix Hi

THi, and the load vector of matrix Hi is the same as the eigenvector
of Hi

THi. Therefore, we determine t′j depending on the eigenvalues of the matrix Hi
THi,

and the descending ordered eigenvalues are

λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂q (9)

In general, 85% of the cumulative ratio between an eigenvalue and the total sum of
the eigenvalues is selected as the threshold to determine t′k. The eigenvalues corresponding
to the abandoned eigenvectors are set as zero vectors, thus providing the reconstructed
Hankel matrix as

^
Hi =

^
TPT = t′1p1

T + t′2p2
T + . . . + t′q′pq′

T (10)

The PCA-denoised component c′i is obtained from the data of the first row and last

column in
^
Hi.

2.3. EEMD-MSPCA-Based Denoising Method

The first few components obtained by EEMD are mainly high-frequency noises, and
noise may exist in the low-frequency components. Therefore, we proposed an EEMD-
MSPCA-based seismic signal denoising method (Figure 1), and the specific steps are
as follows.



Sensors 2021, 21, 5271 5 of 15

Sensors 2021, 21, x FOR PEER REVIEW 5 of 15 
 

 

2.3. EEMD-MSPCA-Based Denoising Method 
The first few components obtained by EEMD are mainly high-frequency noises, and 

noise may exist in the low-frequency components. Therefore, we proposed an EEMD-
MSPCA-based seismic signal denoising method (Figure 1), and the specific steps are as 
follows. 

 
Figure 1. Principle of EEMD-MSPCA-based MS signal denoising. 

(1) The noisy signal x(t) is decomposed by EEMD described in Section 2.1, obtaining 
n IMFs ( )ic t  and one residual component 1( )nc t+ . 

(2) The variance contribution rates (VCR) of the IMFs are calculated, and the first few 
high-frequency components with VCRs < 0.01 are removed. The VCR of the ith IMF ( )ic t  
is defined as 

2 21
2 2

1 1 1 1 1

1 1 1 1( ) ( ) / ( ) ( )
N N n N N

i i i i i
t t i t t

VCR c t c t c t c t
N N N N

+

= = = = =

      = − −      
         

    
 

(11)

(3) The Hankel matrix iH  is constructed for each remaining IMF ( )ic t , which is 
treated as the data matrix for PCA denoising, and its score vector and load vector are 
calculated through SVD. 

(4) Eigenvalues and eigenvectors of the covariance matrix T
i iH H  are calculated, 

and the eigenvalues are ranked in descending order. The score vector that corresponds to 
an eigenvalue with a cumulative eigenvalue percentage larger than 85% is set as a zero 
vector, and a detailed illustration is shown in Section 3. Subsequently, the Hankel matrix 
is reconstructed with the new score vector and load vector to obtain the denoised signal 
' ( )ic t . 

(5) The signal ' ( )ic t  is further denoised with soft thresholding and calculated as fol-
lows: 

' ' '

s '

s i gn( )( ),

0,
i i i

i

c c T c T
Th

c T

 − >= 
≤

 (12)

where |·|, sign(·), and T  indicate the absolute value, sign function, and threshold value, 
respectively. A fixed threshold 2log( )T Nσ= ⋅  (σ denotes data variance) was used in 
this study. 

Figure 1. Principle of EEMD-MSPCA-based MS signal denoising.

(1) The noisy signal x(t) is decomposed by EEMD described in Section 2.1, obtaining n
IMFs ci(t) and one residual component cn+1(t).

(2) The variance contribution rates (VCR) of the IMFs are calculated, and the first few
high-frequency components with VCRs < 0.01 are removed. The VCR of the ith IMF ci(t) is
defined as

VCRi =

 1
N

N

∑
t=1

ci(t)
2 −

(
1
N

N

∑
t=1

ci(t)

)2
/

n+1

∑
i=1

 1
N

N

∑
t=1

ci(t)
2 −

(
1
N

N

∑
t=1

ci(t)

)2
 (11)

(3) The Hankel matrix Hi is constructed for each remaining IMF ci(t), which is treated
as the data matrix for PCA denoising, and its score vector and load vector are calculated
through SVD.

(4) Eigenvalues and eigenvectors of the covariance matrix Hi
THi are calculated, and

the eigenvalues are ranked in descending order. The score vector that corresponds to
an eigenvalue with a cumulative eigenvalue percentage larger than 85% is set as a zero
vector, and a detailed illustration is shown in Section 3. Subsequently, the Hankel matrix is
reconstructed with the new score vector and load vector to obtain the denoised signal c′i(t).

(5) The signal c′i(t) is further denoised with soft thresholding and calculated as follows:

Ths =

{
sign(c′i)(

∣∣c′i∣∣− T),
∣∣c′i∣∣ > T

0,
∣∣c′i∣∣ ≤ T

(12)

where |·|, sign(·), and T indicate the absolute value, sign function, and threshold value,
respectively. A fixed threshold T = σ ·

√
2 log(N) (σ denotes data variance) was used in

this study.
(6) For the remaining IMFs, denoised components ĉi(t) can be obtained by repeat-

ing steps (3–5), and the final denoised signal x̂(t) is obtained by stacking the denoised
components ĉi(t), as follows:

x̂(t) = ĉi(t) + · · ·+ ĉn(t) + ĉn+1(t) (13)

3. Synthetic Tests of EEMD-MSPCA-Based Denoising

Blocks, ECG, Bumps, Doppler shift, and Heavy sine signals with white Gaussian
or random noise are usually adopted to test a denoising method, because it is easy to
calculate the quantitative parameter signal to noise ratio (SNR) compared with a real signal.
Thus, it is convenient for other researchers to reproduce or compare their results with ours.
The Blocks signal [s(t) in Figure 2a] is selected to demonstrate the proposed denoising
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algorithm. The number of signal sampling points was set as N = 1024, and the added noise
was expressed as n(t) = 0.2 × randn(1, 1024), i.e., the noise is 0.2 times the standard normal
distribution, and the noisy signal x(t) is shown in Figure 2b.
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With EEMD, x(t) is decomposed into nine IMF components, c1–c9, and one residual
component, c10 (Figure 3a). These data indicate that the first few IMF components are
mainly high-frequency noises, and the results obtained via Formula (11) show that the
VCRs of the first two IMFs are <0.01. Therefore, they are eliminated (marked as zero vectors
in Figure 3b) before PCA denoising.

c3 was selected to illustrate the PCA-based denoising process. First, the Hankel matrix
H3 constructed with c3 using Formula (6) is decomposed into H3 = U ∑ VT through SVD,
with T = U ∑ and P = V. Eigenvalues and eigenvectors of the covariance matrix H3

TH3
are calculated, and the eigenvalues are ranked in descending order (red points in Figure 4).
The percentages of cumulative eigenvalues are shown in blue points in Figure 4. The
score vectors corresponding to the cumulative eigenvalue percentages <85% are used for
PCA-based c3 denoising, and the denoised signal c′3 is obtained by the reconstructed

Hankel matrix
^
H3, using Formula (10). Finally, the soft thresholding-denoised ĉ3, derived

from Formula (12), is shown in Figure 3b. By utilising the same process, the remaining
components are denoised to obtain ĉ4 ∼ ĉ10.
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As illustrated in Figure 3b, the denoised ĉ3 enhanced the local amplitude characteristics
of N = 100–250 and N = 300–450 and suppressed the noise amplitudes of other bands to
an extent. Similar denoising results were obtained for the other IMFs, demonstrating the
effectiveness of the EEMD-MSPCA-based denoising method. The final denoised signal

(Figure 2c) was obtained using x̂(t) =
9
∑

i=3
ĉi(t) + ĉ10(t). SNR was selected to quantitatively

evaluate the denoising performance, as defined in Formula (14). The SNRs increased from
6.99 to 12.55, and the denoised signal effectively retained the signal characteristics.

SNR = 10lg[
N

∑
i=1

s2
i /

N

∑
i=1

n2
i ] (14)

where si is the amplitude of the signal without noise and ni is the amplitude of noise, which
is equal to the difference between si and the denoised signal.

Furthermore, the ECG, Bumps, Doppler shift, and Heavy sine signals (separately
shown top in Figure 5a–d) were selected to test the proposed denoising method. The
noise is added using the same steps as those used in the Blocks signal test. The obtained
noisy signals and EEMD-MSPCA-denoised signals are shown in the middle and bottom of
Figure 5a–d, respectively, and their SNRs are listed in Table 1. Figure 5 depicts the local
characteristics of the denoised signals, which are obviously enhanced, and Table 1 displays
the increased SNRs of the denoised signals. A comparison of the proposed method with
other denoising methods will be shown in the Discussion section.

Table 1. SNRs of the five noisy signals with different denoising methods.

Signal Name Noisy
Signal

Low-Pass
Filter

Wavelet Re-
construction

EEMD Recon-
struction

Hankel–
SVD

EEMD-
Hankel–SVD

Wavelet-
MSPCA

EEMD-
MSPCA

Blocks 6.99 4.67 10.32 10.45 8.69 10.78 11.83 12.55
ECG 0.49 4.46 8.32 8.63 2.93 9.68 9.26 9.43

Bumps 12.55 6.29 17.83 18.38 14.93 19.23 19.88 20.13
Doppler shift 9.32 6.16 15.18 15.59 11.46 16.51 16.58 16.84
Heavy sine 9.51 15.95 18.52 18.67 14.87 19.18 19.04 19.28
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Figure 5. Four typical signals without noise (top), after adding noise (middle), and after EEMD-MSPCA denoising (bottom).

4. MS Signal EEMD-MSPCA Denoising and P-Phase Arrival Picking

To further verify the effectiveness of the EEMD-MSPCA-based denoising method,
500 MS signals with a sampling frequency of 6000 Hz were randomly selected from the
MS monitoring system in the Yongshaba mine (China) as the application dataset, which
usually contains different noises (e.g., rock drilling, loco transportation, electrical noise,
mine drawing noise, and blower vibration noise) and acts as a good dataset to test the
denoising method. Because the real MS signal is unknown, we used the automatic P-phase
arrival picking error instead of the signal SNR to evaluate the denoising performance. The
STA/LTA, PAI-K, and AIC picking methods described previously [25] were employed, and
the picking error was defined as the difference between the automatic and manual picking
points; a smaller picking error represents better denoising performance.

Three typical MS signals before and after denoising and the P-phase arrival picking
results are shown in Figure 6. The original waveforms (Figure 6a–c) demonstrate that
there is heavy noise in the recorded signals with low SNRs, especially for the third signal
(Figure 6c), which includes high-frequency noise, power frequency noise, and spike noise.
The EEMD-MSPCA-based denoising method can effectively remove the above-mentioned
noises and retain the characteristics of P-phase arrival, which is favourable for P-phase
arrival picking. The STA/LTA, kurtosis, and AIC values of the denoised signals are
sharper than those without denoising, verifying the improvement of signal SNRs and the
effectiveness of the proposed denoising method.
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The picking error statistics of the STA/LTA picking, PAI-K picking and AIC picking
for the 500 MS signals are shown in Figure 7a–c, respectively. The data indicate that there
are more small picking error signals after the EEMD-MSPCA denoising, and the signal
number of picking errors that are larger than 30 ms or no pickings is reduced, suggesting
an improvement in SNR by the proposed denoising method. Furthermore, the total cost
function (TCF) proposed by Li et al. [26] was selected for quantitative comparison. The
cost function (CFi) and TCF are defined in Formulas (15) and (16), respectively, where the
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TCF is obtained through the summation of cost functions corresponding to P-phase arrival
picking errors, and a small cost is incurred for a small picking error. Therefore, a smaller
TCF indicates better picking results. Figure 7 shows that the TCFs of the denoised signals
are smaller than those based on the recorded signals, and the TCF based on denoised
signals and the AIC method showed the best picking results.

CFi =



0.0, accuracy < 5 ms
0.2, 5 ms ≤ accuracy < 10ms
0.4, 10 ms ≤ accuracy < 15 ms
0.6, 15 ms ≤ accuracy < 20 ms
0.8, 20 ms ≤ accuracy < 25 ms
1.0, 25 ms ≤ accuracy < 30 ms
1.5, accuracy ≥ 30 ms

(15)

TCF = ∑
i

CFi (16)
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5. Discussion

To better validate the proposed denoising method, low-pass filter, wavelet reconstruc-
tion, EEMD reconstruction, Hankel–SVD, EEMD-Hankel–SVD, and wavelet-MSPCA-based
denoising methods were selected for comparison. The filter used is a four-order low-pass
Butterworth filter with cutoff frequency of 200 Hz, wavelet reconstruction and EEMD recon-
struction both remove the first few detail coefficients with VCRs smaller than 0.01, Hankel–
SVD was proposed by Jiang et al. [23], EEMD-Hankel–SVD was proposed by Li et al. [27],
and the wavelet-MSPCA-based denoising was proposed by Bakshi [13]. Synthetic tests
were performed on a Thinkpad laptop with 8 GB RAM and a 1.6 GHz Intel Core i5 Dual
Core Processor. The results showed that the computational costs of the low-pass filter,
wavelet reconstruction, EEMD reconstruction, Hankel–SVD, EEMD-Hankel–SVD, wavelet-
MSPCA, and EEMD-MSPCA-based denoising methods were 0.01, 0.02, 0.25, 0.18, 0.15,
2.96, and 3.03 s, respectively. The EEMD has a relatively large computational cost because
of the addition of white Gaussian noise in each EMD step. The EEMD-Hankel–SVD and
proposed EEMD-MSPCA-based denoising methods require a much longer computation
time than wavelet-MSPCA-based denoising, because the EEMD/wavelet decomposition
times are proportional to the row number of the Hankel matrix shown in Formula (6). The
denoising performance of the seven methods for the noisy Blocks signal (Figure 2b) is
shown in Figure 8, and the SNRs of different denoising methods for the five noisy signals
used in the synthetic tests are listed in Table 1.
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Figure 8 demonstrates that the low-pass filter, wavelet reconstruction, EEMD recon-
struction, Hankel–SVD, and wavelet-MSPCA-based denoising methods are inferior to
the EEMD-MSPCA-based denoising method in some respects. Moreover, Table 1 shows
that The SNR of the ECG signal improved from 0.49 to >8. Figure 5a shows that many

amplitudes in the time series of the ECG signal are zero, causing the
N
∑

i=1
s2

i and
N
∑

i=1
n2

i in

the SNR definition to be relatively small and large, respectively, after including noises,
and a small SNR can then be obtained. Furthermore, there is a coefficient of 10 for the
SNR definition. Thus, denoising can significantly improve the SNR in this case. Thus,
the low-pass filter improves the waveform quality; however, it can decrease the SNR due
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to waveform shift, which is harmful for P-wave arrival picking. All the other denoising
methods improved the SNRs, with the EEMD-Hankel–SVD and EEMD-MSPCA obtaining
the best denoising performance. The underlying reasons are as follows: Hankel–SVD de-
noising removes information corresponding to low eigenvalues, while the other denoising
methods eliminate high-frequency components in the denoising process, which illustrates
the importance of removing high-frequency noise. Subsequently, EEMD reconstruction can
reduce the mode mixing effect with a slightly superior denoising result compared to the
wavelet reconstruction method. Finally, PCA- and soft thresholding-based denoising can
denoise the remaining low-frequency noise [28], as well as retain the signal characteristics.

6. Conclusions

In this study, an EEMD-MSPCA-based signal denoising method was proposed to over-
come the difficulty of wavelet-MSPCA in denoising a single signal. This method was veri-
fied using synthetic tests and MS signal denoising. The main conclusions are summarised
as follows: (1) The proposed method eliminates high-frequency noise through EEMD and
the variance contribution rate; subsequently, a Hankel matrix is constructed with each IMF
for PCA denoising. PCA and soft thresholding can denoise low-frequency components,
as well as retain signal characteristics. (2) EEMD-MSPCA-based denoising performs bet-
ter than the low-pass filter, wavelet reconstruction, EEMD reconstruction, Hankel–SVD,
EEMD-Hankel–SVD, and wavelet-MSPCA-based denoising methods. (3) EEMD-MSPCA-
denoised signals effectively improve the P-phase arrival picking accuracy of the STA/LTA,
PAI-K, and AIC methods, and the EEMD-MSPCA and AIC picking method achieves a
good P-phase arrival picking result, which plays an important role in the MS parameter
calculation (e.g., source location and focal mechanism). Further denoising improvements
can consider other adaptive decomposition methods (e.g., VMD, local mean decomposition
(LMD)), noisy component selection parameters (e.g., signal entropy and coefficient), and
combining with other denoising methods.
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