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Abstract: Human falls pose a serious threat to the person’s health, especially for the elderly and
disease-impacted people. Early detection of involuntary human gait change can indicate a forthcom-
ing fall. Therefore, human body fall warning can help avoid falls and their caused injuries for the
skeleton and joints. A simple and easy-to-use fall detection system based on gait analysis can be
very helpful, especially if sensors of this system are implemented inside the shoes without causing
a sensible discomfort for the user. We created a methodology for the fall prediction using three
specially designed Velostat®-based wearable feet sensors installed in the shoe lining. Measured
pressure distribution of the feet allows the analysis of the gait by evaluating the main parameters:
stepping rhythm, size of the step, weight distribution between heel and foot, and timing of the gait
phases. The proposed method was evaluated by recording normal gait and simulated abnormal
gait of subjects. The obtained results show the efficiency of the proposed method: the accuracy of
abnormal gait detection reached up to 94%. In this way, it becomes possible to predict the fall in the
early stage or avoid gait discoordination and warn the subject or helping companion person.

Keywords: feet pressure sensor; human gait; falling diagnosis

1. Introduction

According to the World Health Organisation (WHO), falls are the second leading cause
of accidental deaths globally, with 37.3 million deaths. A total of 30% of people over 65 fall
at least once a year, and this number increases with age [1,2]. Factors leading to the onset of
falls in older age are: culture and gender, determinants related to health and social services,
physical and social environments, as well as personal factors (attitudes, fear of falling,
coping with falls, ethnicity, and race), economic and behavioural (physical activity, healthy
eating, use of medicines, risk-taking behaviours) determinants [1,2]. Moreover, the analysis
of the causes of falls in the elderly revealed an association between postural stability,
control and reflexes, and physiological and neuromuscular changes with decreased muscle
strength and amplitude of lower limb joint movements [3], displacement of the centre
of gravity [4], changes of the vision [5], head injuries, bone fractures, joint distortions
and dislocations, and soft-tissue bruises, contusions, and lacerations [6–8]. All the factors
become a cause of dangerous and consequent falls. Therefore, detecting changes in human
gait by simple, cheap, and effective methods is a fundamental issue. The main parameters
analysed to determine ways to prevent or delay falls are becoming essential: balance,
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posture, gait, locomotion, gait variability, gait disorders, gait disturbance, elderly, ageing,
falls, and vision [5].

Various systems were used for human gait analysis: 3-D-acceleration sensors with
data logger and a computer program for processing the acceleration signals and calculating
the gait parameters [2]; Vicon 3D motion capture system, with 10 digital cameras and the
reflective markers for measuring the movements of the segments of lower extremities, and
two sequentially staggered AMTI force platforms measuring ground reaction forces [8];
insole-force sensors used for gait analysis and wireless plantar force measurements in
hopping, walking, and running [9]; Vicon 370 system with strobe cameras, force plates,
reflective markers, and Vicon Clinical Manager software used for gait analysis, and the
handheld dynamometer for the muscle strength [10]. These methods are effective and ac-
curate; however, they are too expensive and complicated to use in everyday activities. The
other solution could be implementing flexible tactile sensors based on polymeric composite
materials [11–13] exhibiting piezoresistive properties. Flexible piezoresistive sensors are
used for the evaluation of pressure or applied normal force in non-stiff objects [14–17], in
some robotics issues [18–21], and as wearable sensors [22]. The polymeric materials in
such sensors must be biocompatible, mechanically and chemically stable, and reliable. To
use these materials in sensors for everyday life, they also should be relatively inexpen-
sive and freely available on the market. The auspicious polymeric composite material
for such application is Velostat®, also known as Linqstat [23,24]. Velostat® consists of
carbon-impregnated polyethylene, which makes it an electrically conductive piezoresistive
material, applied in the design of flexible sensors [24–27]. The resistive sensors are of low
manufacturing cost compared to other types of sensors. Required interfacing circuits and
data acquisition processes are simple and often preferred in various applications. A more
detailed description of Velostat®-based sensors, their mechanical and electrical properties,
working principle, and applications can be found in our previous paper [27]. We showed
that it is possible to use such sensors as lifelong and reliable devices where absolute accu-
racy is not a crucial parameter. The determined mechanical and electrical properties of the
material and the load-unload deflection behaviour revealed sensor reliability and signal
drift issues.

The aim of this article is to provide methodology and equipment for human gait
and falling diagnosis without limiting the human’s everyday activities. To predict the
fall in the early stage or to avoid gait discoordination and warn the subject or helping
companion person, we proposed three specially designed Velostat®-based wearable feet
sensors installed in the shoe lining solution.

2. Formulation of the Research

Typically, a human’s gait consists of four main phases (Figure 1a): right stand, right
swing, left stand, and left swing [28,29]. The standing phase includes cases when the human
body is supported by two legs, and then the human stands on one leg. This phase takes
about 60% of one step duration: 20% for both legs support and 40% for standing on one
leg. The swing phase takes the remaining 40% of the step duration and defines the weight
distribution process from one leg to another. Non-rhythmic variation in phase distribution
and durations and unequal load distribution on the feet notify gait discoordination and
fall possibility.

There are many methods and a lot of available equipment to detect gait discoordination
in specialised laboratory conditions. Still, those methods only suit short-term monitoring
and investigations since they are not applicable in causal activities. To overcome those
limitations, it is necessary to develop an automated gait analysis and warning system
that will not disturb human mobility and will be comfortable and straightforward to use
in everyday life. The basis of such a system is the gait analysis sensors and their data
processing methods.
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Figure 1. Scheme of human gait analysis: (a) human gait phases [28,29]; (b) sensors placement; (c) extraction of main 
parameters from sensors signals. L1–3; signals from left foot sensors, R1–3; signals from right foot sensors, AR1–3 and AL1–3; 
parameters representing weight distribution on the right and left feet, SR1–3 and SL1–3; duration of left and right stance 
phases, DR1–3 and DL1–3; stepping abruptness, L1–3–R1–3 and R1–3–L1–3; stepping unevenness. 

To detect gait phases, we propose the use of six force (Figure 1b) sensors installed in 
the shoe linings (three sensors for each foot). Such a solution allows simultaneous detec-
tion of all gait phases and load distributions on the feet, which is essential in evaluating 
gait discoordination. Such sensors will form pulse sequences whose periods and ampli-
tudes correspond to the duration of gate phase and load distribution on feet, respectively 
(Figure 1c). Comparing signals from both feet makes it possible to detect non-rhythmic or 
unequal steps leading to gait discoordination and possible falls. Moreover, such a method 
can be applied to detect congenital gait defects by analysing feet load distribution. 

We developed specialised low cost Velostat®-based wearable feet sensors suitable to 
mount under the lower surface of the simple shoe lining for feet load measurements. Ve-
lostat® as a sensitive sensor element was selected due to a few reasons: firstly, due to its 
piezoresistive nature, resistive sensors are well known, and they do not require special-
ised readout hardware; secondly, it allows the manufacture of thick film type sensors with 
custom-sized surface area; implementation of such sensors is simple and can be per-
formed by an unqualified consumer. Moreover, the proposed method is based on detect-
ing relative changes in sensors response signals. Analysing sensors output signals, we do 
not compare absolute values but differences between the states when a foot is on the 
ground and when it is raised. Therefore, the proposed method is insensitive to installation 
misalignments of a few millimetres and does not require calibration to relate resistance 
variation with an absolute value of pressure or load. 

Figure 1. Scheme of human gait analysis: (a) human gait phases [28,29]; (b) sensors placement; (c) extraction of main
parameters from sensors signals. L1–3; signals from left foot sensors, R1–3; signals from right foot sensors, AR1–3 and AL1–3;
parameters representing weight distribution on the right and left feet, SR1–3 and SL1–3; duration of left and right stance
phases, DR1–3 and DL1–3; stepping abruptness, L1–3–R1–3 and R1–3–L1–3; stepping unevenness.

To detect gait phases, we propose the use of six force (Figure 1b) sensors installed in
the shoe linings (three sensors for each foot). Such a solution allows simultaneous detec-
tion of all gait phases and load distributions on the feet, which is essential in evaluating
gait discoordination. Such sensors will form pulse sequences whose periods and ampli-
tudes correspond to the duration of gate phase and load distribution on feet, respectively
(Figure 1c). Comparing signals from both feet makes it possible to detect non-rhythmic or
unequal steps leading to gait discoordination and possible falls. Moreover, such a method
can be applied to detect congenital gait defects by analysing feet load distribution.

We developed specialised low cost Velostat®-based wearable feet sensors suitable
to mount under the lower surface of the simple shoe lining for feet load measurements.
Velostat® as a sensitive sensor element was selected due to a few reasons: firstly, due to its
piezoresistive nature, resistive sensors are well known, and they do not require specialised
readout hardware; secondly, it allows the manufacture of thick film type sensors with
custom-sized surface area; implementation of such sensors is simple and can be performed
by an unqualified consumer. Moreover, the proposed method is based on detecting relative
changes in sensors response signals. Analysing sensors output signals, we do not compare
absolute values but differences between the states when a foot is on the ground and when
it is raised. Therefore, the proposed method is insensitive to installation misalignments
of a few millimetres and does not require calibration to relate resistance variation with an
absolute value of pressure or load.
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The developed sensor (Figure 2) is a sandwich-type structure in which a piece of
Velostat® 20× 20 mm is placed between electrodes made from 100 µm thickness aluminium
foil. The position of the Velostat® and the electrodes are fixed using about 150 µm thick
adhesive PVC film, which at the same time acts as the sensor housing and protects it from
the direct electric circuit and external influences, such as variation of humidity.
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Figure 2. Structure of the developed wearable foot sensor.

The remaining part of our paper is intended to prove the functionality of the pro-
posed human gait and falling diagnosis method by evaluating various cases of human
gait discoordination.

3. Experiments

The effectiveness of the developed sensor and the proposed method were researched
by performing physical experiments in scientific laboratories of the Mechatronics, robotics,
and digital manufacturing department at Vilnius Gediminas technical university accord-
ing to recommendations provided by colleagues from the Republican Vilnius Univer-
sity Hospital.

3.1. Experimental Setup

To perform experiments under conditions as close to real ones as possible, we devel-
oped a particular experimental setup (Figure 3).

The developed gait analysis system consists of sensors and two main modules: the
data transmission module, which acts as a wireless transmitter, and the data acquisition
module acting as receiver and data logger.

A total of six piezoelectric pressure sensors of the original design, made of Velostat®

PVC film that protects them from external influences, were used in the experiment. The
sensors were attached to the lower surface of the universal shoe lining (Figure 1b) using a
general-purpose adhesive film. Such installation ensures the potential patient’s minimal
discomfort level since there are no direct contacts between the sensor surface and the
human body in the system. A minor inconvenience is only the thin, flexible wires from the
sensors, but they are designed not to restrict human movement.

All sensors were connected to the data transmission system, consisting of a microcon-
troller mounted in a unique 3D printed PLA (polylactic acid) plastic housing/box made
to be attached to clothing or placed in a pocket. The data transmission module consists
of an ESP32 microcontroller with an integrated wireless interface, a sensor connection
circuit operating on a voltage divider scheme with reference resistors of 200 Ω, and a 7.4 V
1300 mAh lithium polymer battery providing system power. This module is used for sensor
data acquisition and transmission via a wireless 2.4 GHz WIFI interface. Technical solutions
based on wireless data transmission reduces the amount of equipment a person needs to
carry and ensures free movement in the relatively large area around the data acquisition
system. For example, the receiver can be placed anywhere in the house while the patient
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moves between the separate rooms. Moreover, the transmission system is compatible with
all WIFI devices and can be adjusted to send data to tablets or smartphones.
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Figure 3. Experimental setup: 1; potential patient, 2; shoe linings, 3; feet sensors, 4; shoes, 5; data transition system, 6;
microcontroller, 7; battery, 8; voltage regulator, 9; reference resistors, 10; data acquisition system, 11; microcontroller, 12;
personal computer, 13; parameters extraction algorithm, 14; gait changes detection algorithm, 15; reports and warnings
generation function. Black lines represent power supply lines, and green represent data flow.

The data acquisition module consists of an ESP8266 microcontroller connected to a
personal computer via a USB interface. This module acts as a receiver and is responsible for
receiving the data sent by the master controller and transmitting it to the personal computer.
The obtained data is stored in the MS Excel database, where it is further processed by
analysing the changes in the parameters describing the gait.

3.2. Methodology

Our experiments were focused on proving the functionality of the developed sensors
and the proposed method. Therefore, we focused on the possibility of detecting gait
changes by analysing our selected parameters. For this purpose, we performed experiments
simulating various gait changes. We recorded the gait sequence consisting of more than
four full steps of one person under six different cases: turnaround, scrolling, climbing
upstairs, climbing downstairs, climbing upstairs one by one, walking with one straight leg.
Each experiment was repeated three times to compile a dataset consisting of 18 graphs for
further analysis (see supplementary data). There was a 5 min break before each experiment
and its repetition to avoid the impact of fatigue.

The acquired data were analysed in a semi-manual mode using standard features
available in MS Exel. From sensors signals, we extracted all parameters shown in Figure 1c.
Firstly, we analysed load distribution over the feet during all six simulated cases. The
obtained results proved our initial hypothesis. Therefore, for further validation, we selected
the two most often examples of gait discoordination: scrolling and walking with one
straight leg. Secondly, we evaluated the duration of the left and right stance phases.
Thirdly, we defined variation of stepping abruptness since this parameter provides reliable
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information about gait robustness. Finally, we extracted parameters representing stepping
unevenness as a shift in time between the left and right stance phase.

All obtained numerical values were averaged and statistically processed according to
the below-provided methodology.

3.3. Calculations

The confidence of the obtained results was evaluated by statistical parameters using
correlation-regression analysis. Arithmetic averages, their standard deviations, and con-
fidence intervals at 0.95 probability level were calculated according to the methodology
provided in [30].

In correlation-regression analysis, absolute measurement error was defined as the
difference between the measured result mv and the real measured parameter value rv [30]:

∆mv = mv − rv (1)

The measured parameter mv has a prescribed probability of representing the real
measured value if the same measurement is repeated n times. The arithmetic mean from
several measurements mv can be calculated as:

mv =
1
n ∑n

i=1 mvi =
mv1 + mv2 + . . . mvn

n
(2)

Absolute measurement error consists of systematic, random, and random errors of
deduction. Using correlation-regression analysis, only random errors are estimated in
statistical data evaluations. In our case, we evaluated only random errors, as if the method-
ology and measurement devices are far more accurate than expected error, systematic and
accidental deduction errors are not significant and therefore can be not considered [30]. To
evaluate random error, it is necessary to calculate the experimental standard deviation σ of
each measurement:

σ =

√
∑n

i=1(mv −mv)
2

n− 1
. (3)

Experimental standard mean deviation Smd is calculated by:

Smd =
σ√
n

(4)

The random error of the measured parameter is calculated by:

∆mv,n,P = Sc·Smd (5)

where: Sc = the value of the student criterion selected according to the number of experi-
ment variables (n − 1) and the probability level (α = 0.95). The final result of the measured
(n times) value mv is expressed as the sum of the arithmetic mean mv and the random
error ∆mv,n,P:

mv ± ∆mv,n,P (6)

4. Results
4.1. Analysis of Feet Load Distribution

Feet load distribution (Figure 1c AR1–3 and AL1–3) at different gaits, turnaround
(Figure S1), upstairs (Figure S2), downstairs (Figure S3), scrolling (Figure S4), upstairs
one by one (Figure S5), and walking with one straight leg (Figure S6), were evaluated by
extracting signal amplitude values (Figure 4) from the raw data provided in the supplemen-
tary data. The graphs show the averaged amplitude values of each sensor that corresponds
to the load generated by the feet. Dots shown on the feet symbol represent the position of
the highest measured pressure on the feet.
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Figure 4. Analysis of signal amplitudes obtained from simulating various gates: (a) turnaround; (b) scrolling; (c) upstairs;
(d) downstairs; (e) upstairs one by one; (f) walk with left straight leg.

The graph shows that the turnaround was performed by turning on the left foot heel
and supporting the body with the right foot (Figure 4a). Sensors R2 and L3 are of the
highest activity and clearly show the nature of the actual gait. In addition, the left foot
sensors have higher signal amplitude than right foot sensors since the turnaround was
performed standing on the left foot.

In the case of scrolling, sensor R1 shows the highest activity, as it should be for this
type of gait (Figure 4b). The upstairs and downstairs gaits look similar. The highest activity
is at the R1 sensor since the major part of the body load is distributed on the front of
the foot (Figure 4c,d). For the left foot, in this case, all the sensors show similar activity.
Nevertheless, it can be noted that in the case of scrolling, the main load of the left leg is
placed on the heel while climbing upstairs, and the downstairs left foot load is distributed
almost equally among all sensors.

The gait of upstairs one by one was performed by stepping one leg and then stepping
with the other leg to the same step of stairs (Figure 4e). The left foot was the first, on which
a human stands while moving the other one. The sensors L1, L2, and L3 show that a major
part of the load was placed on the left foot, especially the front part, while the right foot
was loaded almost equally. However, there is an exceptional tendency to load the heel
of the right foot a little more than the front part of the same foot. Walking with the left
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straight leg shows the heel’s activity, while on the right foot, the highest activity is on the
front sensor R2 (Figure 4f), similar to in the turnaround case.

In conclusion, feet load distribution and its variation due to natural obstacles or gait
changes can be distinguished by analysing the amplitudes of the signals from pressure sen-
sors placed in the shoe lining. If human gait changes, for example, from up or downstairs
to upstairs one by one, the effect will be distinguishable from the normal gait. However,
the analysis of load distribution is insufficient to determine the reason for the change
in gait unambiguously. Other gait cycle parameters must also be evaluated to have a
clearer picture.

4.2. Analysis of Gait Phases Duration

Analysis of signal amplitudes proves the functionality of our sensor and its sufficient
sensitivity and response time. For further analysis, we selected two gaits (scrolling and
walking with one straight leg) that often occur in the case of older or disease affected
adults (Figure 5). The values of SR1–3 and SL1–3 (Figure 1c) were extracted from the
supplementary data. In the scrolling case, the sensors’ behaviour looks similar, comparing
one foot’s sensors with another, but the stance time differs: the right foot presses the sensors
longer than the left leg. The gait with one straight leg shows that the sensor at the heel R3
is active longer since the straight leg does not allow the pressuring of all the sensors in the
same manner. The L1 sensor at the foot front is activated longer when a human stands on
the other leg to balance the walk.
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The stepping abruptness indicates gait certainty, shows how fast a human places
their foot, from initial contact to full loading, since it is the time between a pressed and
unpressed sensor (Figure 1c, DR1–3, DL1–3). The longest time, as expected, is shown by front
sensors in both gaits (Figure 6) because typically, in normal gait, initial contact with the
ground is done with the front part of the foot. Nevertheless, simulating abnormal gait, it is
seen that initial contact was detected by sensors R2 and L2 instead of sensors R1 and L1.
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Figure 6. Analysis of stepping abruptness at various gaits: (a) scrolling; (b) walk with one straight leg.
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Stepping unevenness was evaluated by extracting L1–3–R1–3 and R1–3–L1–3 parameters
(Figure 1c). A scrolling gait shows that the signal increases from 1st to 3rd sensors, i.e.,
from front to heel, and the signal is similar for the same sensors. For example, R1–L1 is
practically the same as L1–R1 (Figure 7a). On the contrary, one straight leg walk shows
that the signal decreases from 1st to 3rd sensors for R–L measurement and increase from
1st to 3rd for L–R measurement. It means that scrolling almost does not impact stepping
rhythm contrarily to walking with one straight leg.
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The gait parameters detected by various methods and different types of sensors are
provided in Table 1. Some of the methods implement IMUs [28,29,31], accelerometers [2,32],
or reflective markers mounted on the body. In the case of IMUs or accelerometers, a
huge processing power is needed to define essential gait parameters in real-time. On
the other hand, the measurement result will depend on the mounting place; therefore
sensor placement requires some measurement skills. In the case of reflective markers, it
is necessary to use stationary cameras to detect the positions of the markers [8,10], which
makes this method impossible to use in everyday life. In the case of the proposed sensor
skill, computing power and limited space restrictions are not applicable. Sensors can
be placed in any type of shoe using a universal shoe lining; also, it is not sensitive to
sensor placing inaccuracy and can be replaced by the user. It is relatively cheap and does
not requires additional mounting elements, such as a belt or elastic band. Moreover, the
proposed solution uses simpler data acquisition and analysis than IMUs or vision-based
systems. Furthermore, it is better suited for long-term gait monitoring in everyday activity
without human comfort and mobility limitations.

Table 1. The methods used for the gait disturbances researches.

Sensor Type and Placing Method Gait Parameters Ref.

Accelerometers in belt on the waist.

Time measure, vectorial
calculations, FFT, autocorrelation,
wavelet analysis, and
statistical regressions.

Global kinetic behaviour of the gait. [2]

Reflective markers on the body and
cameras. Two sequentially
staggered AMTI force platforms.

The 3D kinematics calculated by
the Euler angle theorem and
inverse dynamics.
Statistical analyses.

Gait speed, stride length and width,
cadence, stance, hip extension, hip
flexion, knee extension, knee flexion,
ankle dorsiflexion, ankle plantarflexion.

[8]

Reflective markers, cameras, and
force plates placed in the middle of a
walkway. Handheld dynamometer.

The 3D kinematics calculated by
commercial software.
Statistical analyses.

Spatiotemporal, kinematic, and kinetic
variables of gait, strength of hip flexor,
adductor, and abductor’s muscles.

[10]
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Table 1. Cont.

Sensor Type and Placing Method Gait Parameters Ref.

IMUs placed on the upper surface
of shoe or feet

The MLA and Kalman filtering.
IC/FO detection algorithm.

A rich set of standard spatio-temporal
gait metrics. [28]

Seven different IMU sensors,
OptoGait measurement system.

The MLA and Kalman filtering,
double integration of acceleration
measurements.

Stride length, stance and swing times,
and walking speed. [29]

Custom assembled IMUs on feet,
shank, and thigh. The MLA with data fusion.

Stride length, stride speed, stride
frequency, walking cycle, stance time,
swing time, clearance, and knee ROM.

[31]

IMU sensor on bare foot.
The MLA with sensor fusion and
Kalman filter. Double integration
of acceleration data.

Stride distance, speed, length, and
period. The ratio and phases between
stance and swing.

[33]

Insole equipped with pressure
sensors and a triaxial accelerometer.

Gait data recorded as time series
signals.

Heel strike, foot flat, mid-stance, heel
off, toe-off, mid-swing, and late swing. [32]

Insole-Force Sensors.
Shapiro–Wilk-Test,
Mann–Whitney-U-Test, Statistical
analyses.

Loading of the lower limbs. [9]

Six original flexible piezoresistive
pressure sensors attached to the
lower surface of the universal
shoe lining.

Signal analysis in the time
domain. Statistical analysis.

Feet load distribution, stance phase
duration, stepping abruptness, and
stepping unevenness.

This article

IMU—The inertial measurement unit; MLA—machine learning algorithm; IC/FO—initial-contact/foot-off.

5. Conclusions

The pressure sensor, designed and developed in our lab [27], was applied for the
human gait diagnosis by placing three sensors in each shoe lining and measuring the
response. The pressure distribution of the feet allows the analyses of the human gait by
evaluating the main parameters: stepping rhythm, size of the step, weight distribution
between heel and foot, and timing of the gait phases. The gait mode can be detected
by analysing sensor signals in the time domain and extracting main parameters, such
as pulse amplitude, pulse width, steepness of the pulse front edge, and shift between
pulses. Analysing weight distribution in feet, the most significant difference observed
in amplitude between signals from one-foot sensors was ~2 volts. The largest difference
detected comparing the signals from both legs was ~1 volt. Respectively, analysing step
phase parameters, the average difference between one leg signals was ~0.15 s, the difference
between both legs sensors reached ~0.25 s. Analysis of stepping unevenness in the case of
walking with one straight leg showed the step phase difference of ~0.3 s while stepping
from right leg to left and vice-versa. The obtained results prove that we selected suitable
parameters for data analysis, and the proposed system is applicable for the automated
detection of gait variation.

Moreover, the proposed method and equipment setup is universal and adjustable
according to the individual case. Even analysis of solely signal amplitudes shows some
gait variations. If human gait will change, for example, from up or downstairs to upstairs
one by one, the effect will be distinguishable from a normal gait. Furthermore, our method
also suits clinical applications and can define gait changes during the rehabilitation process
after trauma or invasive surgery.

This type of sensor can be implemented directly in the shoe insoles for the control
of therapies, curing after surgery, or control of human gait for senile or disease damaged
patients. The analysis of sensor signals can be automatised and performed directly by a
mobile phone application, which can deliver results to a specialised server for observation
or instant help. Shoe insoles with sensors in mass production will have a marginal increase
of price, data transmitting and analysis devices and software brings affordable prices even
for old or handicapped persons as well as social services.
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This research proves the functionality of the proposed method and developed sensors.
Nevertheless, future development should include the creation of automated data extraction
and analysis algorithms, implementation of the warning system, and method validation
with a sufficient number of tests, including peoples of different ages and health conditions.
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one by one gate phase, first, second and third try (a–c), Figure S6: Walk with one straight leg gate
phase, first, second and third try.
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