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Abstract: Determining ingestive behaviors of dairy cows is critical to evaluate their productivity and
health status. The objectives of this research were to (1) develop the relationship between forage
species/heights and sound characteristics of three different ingestive behaviors (bites, chews, and
chew-bites); (2) comparatively evaluate three deep learning models and optimization strategies for
classifying the three behaviors; and (3) examine the ability of deep learning modeling for classifying
the three ingestive behaviors under various forage characteristics. The results show that the amplitude
and duration of the bite, chew, and chew-bite sounds were mostly larger for tall forages (tall fescue
and alfalfa) compared to their counterparts. The long short-term memory network using a filtered
dataset with balanced duration and imbalanced audio files offered better performance than its
counterparts. The best classification performance was over 0.93, and the best and poorest performance
difference was 0.4–0.5 under different forage species and heights. In conclusion, the deep learning
technique could classify the dairy cow ingestive behaviors but was unable to differentiate between
them under some forage characteristics using acoustic signals. Thus, while the developed tool is
useful to support precision dairy cow management, it requires further improvement.

Keywords: audio; dairy cow; deep learning; mastication; jaw movement; forage management;
precision livestock management

1. Introduction

Modern dairy farms continue to grow in herd size and technology adoption for
maintaining or improving the production and labor efficiencies needed to feed the growing
human population [1]. The U.S. is the largest dairy producer in the world with 9.39 million
milking cows on farms, producing 101.25 million metric tons of milk in 2020 [2]. Despite
only accounting for 6.3% of the total number of dairy farms, dairy farms containing over
500 cows have a 65.9% market share of the U.S. total milking cow inventory [3]. In these
intensive production systems, forage-fed dairy production comprises over 80% [4], in
which forage is a source of food and nutrients for dairy cows. Thus, sufficient provision
of forage is critical to meet cow daily nutrient requirements and sustain desired milk
production goals. On a short-time scale, forage intake of cows has been associated with
a sequence of three jaw movements or ingestive behaviors [5], namely bites, chews, and
chew-bites. A biting behavior is defined as the apprehension and severance of forage,
while a chewing behavior includes the crushing, grinding, and processing of ingested
grass inside the mouth [6]. A chewing-biting behavior results from the overlapping of
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chewing and biting events in the same jaw movement, in which the forage in the mouth is
chewed, and simultaneously, a new mouthful of forage is severed [7]. The frequency and
characteristics of the ingestive behaviors can change in correspondence with individual
animals and surrounding environments. Therefore, efficiently and precisely monitoring
and assessing the ingestive behaviors of dairy cows may provide useful insights into
resource management, nutrition supply, animal health, welfare, and production.

The efficiencies and accuracies of ingestive behavior monitoring can be influenced
by measurement methods. Early strategies for monitoring ingestive behavior relied on
observation by technicians [8], to obtain precise individual information on a few animals
but is costly and impractical for monitoring large herds [9]. Imaging methods combined
with image processing algorithms or deep learning techniques may provide contactless
and non-invasive measures and potentially automate the detection process [1]. However,
high-quality images/videos are prerequisites for this, and appropriately recording the
whole jaw movement process without occlusion within herds could be problematic. Wear-
able sensors including pressure sensors, accelerometers/pendulums, jaw switches, and
electromyography have been examined to detect jaw movements [7]. Most of the wearable
sensors focus on recognizing long-term activities (grazing or ruminating) or overall jaw
movements yet have difficulties differentiating bites, chews, and chew-bites. Andriaman-
droso et al. [7] compared and summarized three types of sensors to classify jaw movements.
They demonstrated that the accuracy of detecting jaw movement was 0.91–0.95 for nose-
band pressure sensors, 0.94–0.95 for microphones, and 0.65–0.90 for accelerometers, but
only microphone data supported differentiating bites, chews, and chew-bites and with a
relatively low accuracy of 0.61–0.95. The great potential of acoustic signals for ingestive
behavior monitoring lies in the fact that ingestive sounds can be clearly transmitted from
bones, skull cavities and soft tissues to recording devices typically attached to animal
foreheads. Additionally, the wearable sound collecting devices do not influence cattle’s
natural behaviors once the animals have acclimated to the devices [6].

Several automatic recognition systems based on acoustic signals have been developed
to detect and classify the three ingestive behaviors of dairy cows. Acoustic signals of dairy
cows suggest that the ingestive behavior characteristics (e.g., intake rate, bite mass, bite rate,
etc.) are associated with forage species (e.g., alfalfa and tall fescue) and grass heights (e.g.,
tall and short) [5,10], which provide critical suggestions on precision forage management
for dairy cows. However, relationships between forage species/heights and key features of
acoustic signals of the three ingestive behaviors remain unclear and should be explored
to supplement knowledge for precision dairy management, such as grass utilization es-
timation, grass preference evaluation, and other forage management. In previous work,
conventional machine learning models or knowledge-based algorithms have been exam-
ined [6,11–14], including random forest, support vector machine, multi-layer perceptron,
decision logic algorithm, and hidden Markov model. Despite great performance, these
methods require thorough designs of feature extractors to obtain appropriate features (e.g.,
duration, amplitude, spectrum, and power). Alternatively, deep learning techniques (e.g.,
convolutional neural network, CNN; and recurrent neural network, RNN) developed from
conventional machine learning are representation-learning methods and can automatically
discover features from raw data without extensive engineering knowledge on feature
extraction [15]. Thus, these techniques may have the potential to automatically classify
the ingestive behaviors of dairy cows based on acoustic signals, but the performance of
various architectures requires further investigation.

The objectives of this research were to (1) examine the effects of forage species and
forage height on key acoustic characteristics of bites, chews, and chew-bites for dairy
cows; (2) evaluate deep learning models and optimization strategies for automatic sound
recognition of these three ingestive behaviors; and (3) examine the efficacy of a deep
learning model for classifying the three behaviors for various forage characteristics.
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2. Materials and Methods
2.1. Dataset Description

A publicly available dataset of dairy cows was used in this research [16]. The dataset
contains data collected using three microphones (Nady 151 VR, Nady Systems, Oakland,
CA, USA) attached to the foreheads of three 4- to 6-year-old lactating Holstein cows weigh-
ing 608 ± 24.9 kg; and ingesting sounds (i.e., chews, bites, and chew-bites) from four types
of microswards were continuously recorded for five days. The microswards consisted of
sets of 4-L plastic pots with either alfalfa (Meicago sativa) or tall fescue (Lolium arundinaceum,
Schreb.) with two heights, tall (24.5 ± 3.8 cm) or short (11.6 ± 1.9 cm). An illustration
of the two forages used in the dataset is provided in Figure 1. The acoustic signals were
saved as WAV files and labeled for observed ingestion behavior by the technicians from
the same research team with a labeling agreement of over 99%. A total of 52 labeled WAV
files totaling 54 min 24 s were in the dataset, and the files were processed and segmented
based on ingestive behaviors, forage species, and forage height, resulting in 3038 segments
with a duration of 1647.37 s being used for model evaluation and experiments (Table 1).

Figure 1. Generic illustration of the two forages described in this manuscript—(a) Alfalfa
(Meicago sativa) and (b) tall fescue (Lolium arundinaceum, Schreb.) Sources: plantillustration.org.

Table 1. Number and duration of audio files used for model evaluation and experiments.

Forage Species Forage Height Number of Audio Files Duration of Audio Files Used (s)

Bites Chews Chew-Bites Bites Chews Chew-Bites

Alfalfa
Short 179 260 123 72.78 74.24 71.99
Tall 148 416 322 175.20 184.56 182.90

Tall fescue
Short 94 454 217 143.87 144.79 141.59
Tall 100 487 238 155.19 149.78 150.48

Total 521 1617 900 547.04 553.37 546.96

Sample illustrations of acoustic signals in frequency and time domains are presented in
Figure 2 for the three ingestive behaviors. The three behaviors showed apparent differences
in temporal and spatial signal patterns, and the acoustic signals of the behaviors were
mostly in low frequencies (<1 kHz) [14]. Additionally, based on the observation reports
from the technicians, each ingestive behavior event commonly lasted for less than 1 s [16].
The recorded acoustic signals are in 16 bit sample depth format taken at a 22.05 kHz
sampling rate. There were 216 = 65, 536 possible values for each recorded signal ranging
from −32,768 to 32,767. For Figure 2, amplitude values in the time domain were normalized
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using Equation (1), and the magnitudes in the frequency domain were normalized using
Equation (3).

Normalized amplitude = Recorded amplitude/216 (1)

FFT value = FFT.RFFT(Normalized amplitude) (2)

ANM = ABS[(FFT value)i]/
m

∑
i

ABS(FFT value)i (3)

where FFT is Fast Fourier Transform; RFFT is Real Fast Fourier Transform; the function
FFT.RFFT is to transform the discrete time domain signals into discrete frequency domain
components; ANM is absolute normalized magnitude; ABS is absolutization operation;
(FFT value)i is the ith FFT value normalized; and m is total number of FFT values converted
and its length is dynamically determined by an audio segment input. Normalized ampli-
tude and ANM range from 0 to 1. All operations in the above equations were vectorized to
improve calculation efficiency.

Figure 2. Sample illustrations of acoustic signals in time (top) and frequency (bottom) domains for the ingestive sounds.
Higher absolute normalized values indicate higher power of the acoustic signal.

2.2. Statstical Analysis for Evaluating Effects of Forage on Acoustic Features

Statistical analyses were conducted to investigate the relationships between forage
species and heights and acoustic features of the ingestive behaviors. The data used for
statistical analysis were all in the time domain. The normalized amplitude and duration of
the acoustic signals were extracted for each of the 3038 segments. The acoustic feature labels
provided with the dataset were processed by the research team [16]. A larger normalized
amplitude indicates that louder sounds were produced around cow mouths; and duration
is the length of a segment, with a longer duration indicating dairy cows spent more time
ingesting forage [16]. The effects of forage species, forage heights, and their interaction on
the amplitude and duration of the segments corresponding to the three ingestive behaviors
were analyzed with ANOVA using PROC MIXED in Statistical Analysis Software (version
9.3, SAS Institute Inc., Cary, NC, USA). Mean values were compared using Fisher’s least
significant difference with PDMIX800 [17], and a significant difference was considered
at p ≤ 0.05. The statistical model is the same for the three behaviors of bites, chews, and
chew-bites, which can be expressed as

Yijk = µ + αi + β j + (αβ)ij + εijk (4)
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where Yijk is the parameter examined (i.e., amplitude and duration); µ is the least square
mean of the parameter; αi is the forage species, i = al f al f a, tall f escue; β j is the forage
height, j = tall, short; (αβ)ij is the interaction effect of forage species and height; and εijk
is the random error.

2.3. Overall Deep Learning Algorithm Workflow

As shown in Figure 3, the overall workflow consisted of four steps. The first step was
to filter background noises (i.e., beeping sounds) from the input acoustic data in order
to reduce interference for classification. The second step was to remove the low power
signals, which can be considered as uninformative data. This may help to constrain model
attention to learn important features and improve inference efficiency and accuracy. The
first two steps were to clean data based on physical characteristics in the dataset. However,
unwanted signals and low-power signals still existed after the initial two steps of data
cleaning. The third step was to convert cleaned data into Mel-frequency cepstral coefficient
(MFCC) features which are used to highlight high-power data and transform the original
acoustic spectrogram into the human perception level [18]. The first three steps all involved
filtering, but only the first step was named “filtering” to differentiate the data cleaning
procedures. The final step was to classify the ingestive behaviors using the processed data
and deep learning models. Details of the four steps are elaborated in Sections 2.4–2.6. The
processing was conducted in a local machine with the processor of Intel(R) Core (TM)
i9-10900KF CPU @ 3.7GHz, installed memory (RAM) of 128 GB, graphics processing unit
(GPU) of NVIDIA GeForce RTX 3080, and Python-based computing environments.

Figure 3. Overall workflow of the algorithms. MFCC is Mel-frequency cepstral coefficient.

2.4. Data Cleaning
2.4.1. Noise Filtering

A routine beeping sound associated with the recording device was produced and
recorded along with the cow sounds and was randomly dispersed in the dataset, and
was removed to reduce interference with detection results (Figure 4). This beeping center-
frequency ranged from 3.6 to 4.5 kHz and could be effectively distinguished from cow
ingesting sounds. A bandstop filter with a stopband frequency range of 3.6–4.5 kHz was
used to exclude beeping sounds and maintain cow sounds.

2.4.2. Uninformative Data Removal

The noise-filtered dataset was then further processed to remove uninformative data.
To maximize the removal efficiency, data in 16 bits without normalization of time domain
were used (Figure 5). The input data were vectorized and averaged for every 1100 acoustic
samples. Several means were obtained at various steps of averaging but only the maxima
within groups were retained. If the maximal mean was smaller than a threshold, the
input data with the corresponding index were set FALSE and discarded once converted
to frequency domain. Based on the preliminary verification, a threshold value of 100 was
used as it can cover most uninformative data while reducing signal loss. Nothing needed
to be supplemented for the discarded data in time domain. Because in later step, the MFCC
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for behavior classification is in frequency domain, and a lack of a specific part in time
domain did not influence the workflow for the behavior classification.

Figure 4. Illustration of the algorithm and sample results for noise removal. White dotted rectangles
indicate period and frequency for device-related beeping before and after filtering.

Figure 5. Illustration of the algorithm for uninformative data removal (left) and a sample result with a signal envelope after
uninformative data removal (right). The amplitude values are in 16 bits and unitless.

2.5. Mel-Frequency Cepstral Coefficients Processing

The MFCC processing workflow involved several steps as summarized in Figure 6.
The short-time Fourier transform was first conducted to generate a short-time amplitude
spectrogram. Acoustic signals were assumed to be constant within short-time scales, and
a rolling window with a length of 23 ms (512 samples) and step of 10 ms (220 samples)
ran through each time-domain signal to the end of an audio file. Each windowed frame
was transformed to a frequency-domain signal using a Fast Fourier transform. To discon-
nect adjacent overlapping frames, the Discrete Fourier Transform was operated for each
frame, and a short-time amplitude spectrogram was produced accordingly. The amplitude
spectrogram was converted to dB-based mel-spectrogram for human-interpretable ranges,
and values in the y-axis were log-transformed for enhanced visualization, resulting in the
short-time power spectrogram. A total of 26 Mel filterbanks were generated to retain more
signals of lower frequency (which fits observed cow acoustic characteristics). The Mel
filterbanks were mapped to the power spectrogram for building Mel-scale spectrograms,
which were fed into deep learning models for behavior classification.
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Figure 6. Overall workflow for the Mel-frequency cepstral coefficient processing. FFT is Fast Fourier transform, and
DFT is Discrete Fourier Transform. Multiple mel-scale spectrograms were produced based on the short-time framing on
time-domain signals.

2.6. Architectures of Deep Learning Models

Three deep learning models, one-dimensional CNN (Conv1D), two-dimensional
CNN (Conv2D), and long short-term memory network (LSTM), were evaluated to classify
acoustic data (Figure 7) [19].

The core component of Conv1D was the time-distributed layer. When a Mel-scale
spectrogram was input into the model, the signal frequency at each time slot of the spec-
trogram was convolved in the time-distributed layer to extract high-level features. The
model included a sequence of a time distributed layer and then a max-pooling layer to
reduce acoustic signal dimensionality. Finally, dense and softmax layers were used to
flatten two-dimensional features and connect target classes (the three ingestive behaviors).
The model size and number of parameters were 706 kB and 348,770, respectively.

The Conv2D took the whole Mel-scale spectrogram as input and extracted major fea-
tures through two-dimensional convolution. The structure was similar to that of Conv1D,
in which a convolution layer followed by a max-pooling layer was repeatedly used to re-
duce dimensionality. The flatten, dense, and softmax layers were also used at the end of the
network. The model size and number of parameters were 2056 kB and 431,290, respectively.

The third network was mainly constructed with two serial LSTM units. In each LSTM
unit, a time distributed layer was to extract spectrogram features across time and skipped
the next-layer connection; then a bidirectional RNN layer was to obtain features both in
forward states (i.e., next frame of spectrogram) and backward states (i.e., previous frame of
spectrogram); and finally, features from the time distributed layer and bidirectional RNN
layer were concatenated to reinforce key components. After the two adjacent LSTM units,
several dense layers and one flatten/softmax layer were built. The model size and number
of parameters were 1862 kB and 392,050, respectively.
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Figure 7. Architectures of the three proposed deep learning models for ingestive behavior classifica-
tion. Conv1D represents one-dimensional convolutional neural network; Conv2D is two-dimensional
convolutional neural network; LSTM represents long short-term memory network; and STFT is
short-time Fourier transform.
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2.7. Optimization for Classifying the Ingestive Behaviors

The classification performance of the ingestive behaviors was optimized by comparing
the three models (Conv1D, Conv2D, and LSTM), two filtering strategies (original vs.
filtered), and two data organization methods (imbalanced vs. balanced). The three models
were trained with a dropout rate of 0.1, activation functions of relu/tanh, and training
epochs of 30. The dataset was randomized into training, validation, and testing sets with a
ratio of 0.7:0.1:0.2. Training and validation accuracy curves were calculated across epochs
to judge whether models were underfitted/overfitted in real time, and the hold-out dataset
was used for the final testing. The filtered dataset resulted from the noise filtering methods
mentioned in Section 2.4.1. Although duration of audio files in Table 1 was similar for the
three ingestive behaviors, the number of audio files was different (i.e., imbalanced), which
may lead to biased inference for the class (i.e., chew) with a large proportion of data. The
dataset was reshuffled and randomized, and the number of audio files was equalized to
521 for the three ingestive behaviors, resulting in a balanced dataset. After data reshuffling,
the duration of the audio files was 547.040 s for bites, 184.460 s for chews, and 328.180 s
for chew-bites.

2.8. Evaluation of Classification Performance under Various Forage Characteristics

After optimization, the optimal model, filtering strategy, and data organization
method were further used to evaluate the classification performance for ingestive be-
haviors under various forage characteristics. Two forage species (alfalfa vs. tall fescue)
and two forage heights (short vs. tall) were compared for the three ingestive behaviors.
The model was trained based on forage species and heights, using the similar training
hyperparameter configurations described in Section 2.7.

2.9. Evaluation Metrics

Three evaluation metrics were calculated using Equations (5)–(7), and higher values
of the metrics indicate better performance.

Precision =
True positive

True positive + False positive
(5)

Recall =
True positive

True positive + False negative
(6)

F1 score = 2 × Precision × Recall
Precision + Recall

(7)

where true positive is the number of cases in which models match manual labeling; false
positive is the number of cases in which models wrongly predict behavior presence; false
negative is the number of cases in which models wrongly predict behavior absence.

Based on the true positive, false positive, and false negative, confusion matrixes were
calculated to indicate class-level performance. Diagonal values in a matrix indicate correct
classification rates, and higher values suggest better class-level performance, whereas
off-diagonal entries are related to misclassification.

Processing time was reported by Python after all audio files were processed, and
processing speed was normalized by dividing the processing time by the total duration of
audio files tested.

3. Results
3.1. Ingestive Sound Characteristics under Various Forage Characteristics

Table 2 shows the mean characteristics (i.e., amplitude and duration) and results of
the statistical analysis for the bite, chew, and chew-bite behaviors with two forage species
and heights. Overall, the amplitude and duration of the acoustic data were 0.323–0.488
and 0.152–0.212 s for bites, 0.084–0.117 and 0.073–0.148 s for chews, and 0.343–0.549 and
0.230–0.301 s for chew-bites, respectively. Except for the amplitude of the chewing sound,
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the amplitude and duration of the three ingestive sounds were larger for tall fescue than for
alfalfa (p < 0.01). Between the two forage heights compared, tall forage resulted in larger
sound amplitude and duration (excluding amplitudes of bites and chew-bites) (p < 0.01).
Interaction effects of the forage species and heights on ingestive sounds were observed
for all parameters examined. Alfalfa, a tender forage, had a lower value for all behaviors
and for both amplitude and duration. The values were also greater for tall alfalfa than
for short alfalfa, but both tended to be less than for the tall fescue regardless of its height.
These results demonstrate that the three ingestive behaviors for the two forage species
and two forage heights can be differentiated by acoustic sound characteristics, namely the
amplitude and duration for specific ingestive behavior. The characteristics of the bite, chew,
and chew-bite sounds of dairy cows were distinct under various forage characteristics,
which could be indications of precision forage management, therefore, model ability to
classify the sounds of ingestive behaviors under different forage characteristics should be
further evaluated.

Table 2. Amplitude and duration of the bite, chew, and chew-bite sound under various forage conditions.

Factors
Bite Chew Chew-Bite

Amplitude Duration (s) Amplitude Duration (s) Amplitude Duration (s)

Forage species
Alfalfa 0.355b 0.176b 0.105 0.110b 0.389b 0.262b

Tall fescue 0.454a 0.208a 0.105 0.132a 0.520a 0.301a
SEM 0.012 0.004 0.002 0.003 0.008 0.004

Forage height
Tall 0.403 0.206a 0.117a 0.138a 0.464 0.297a

Short 0.406 0.178b 0.093b 0.105b 0.446 0.266b
SEM 0.012 0.005 0.002 0.003 0.009 0.004

Interaction
Alfalfa-Tall 0.387b 0.200a 0.127a 0.148a 0.435c 0.294a

Alfalfa-Short 0.323c 0.152b 0.084c 0.073c 0.343d 0.230b
Tall fescue-Tall 0.420b 0.212a 0.107b 0.128b 0.492b 0.301a

Tall fescue-Short 0.488a 0.205a 0.102b 0.137ab 0.549a 0.301a
SEM 0.017 0.006 0.003 0.005 0.012 0.005

p-Value
Forage species <0.01 <0.01 0.79 <0.01 <0.01 <0.01
Forage height 0.89 <0.01 <0.01 <0.01 0.16 <0.01

Forage species × Forage height <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

a,b,c,d Values within the same treatment groups with different letters aside indicate significant difference exists among the treatment
means (p ≤ 0.05) according to Fischer’s LSD test. SEM is pooled standard error of the least square means. Amplitude is the normalized
amplitude (unitless).

3.2. Performance for Classifying the Ingestive Behaviors

The performance for classifying the ingestive behaviors using three deep learning
models is summarized in Table 3 and Figure 8. The precision, recall, and F1 score ranged
from 0.615–0.941, 0.533–0.932, and 0.599–0.932 for classifying the ingestive behaviors. The
precision, recall, and F1 score of the LSTM were averagely 0.08 higher than those of Conv1D,
and 0.02 higher than those of Conv2D. Overall, the classification performance for the
original dataset was similar to that of the filtered dataset with a <0.01 difference on average,
while the average performance for the imbalanced dataset was 0.07 higher than that for the
balanced dataset. Based on the confusion matrixes (Figure 8), chewing behavior was more
accurately classified than biting and chewing-biting behaviors. The Conv1D, Conv2D, and
LSTM spent 70.048–74.419, 59.408–75.120, 85.366–88.035 ms for processing 1-s acoustic data.
The LSTM with the filtered and imbalanced dataset was selected for further development
because of better performance and comparably faster processing speed for classifying the
three ingestive behaviors.
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Table 3. Precision, recall, and F1 score of the three deep learning models for classifying the ingestive behaviors in various datasets.

Model Behavior
Original-Imbalanced Original-Balanced Filtered-Imbalanced Filtered-Balanced

Precision Recall F1 Score Precision Recall F1 Score Precision Recall F1 Score Precision Recall F1 Score

Conv1D

Bite 0.782 0.819 0.800 0.827 0.819 0.823 0.783 0.790 0.786 0.837 0.781 0.808
Chew 0.893 0.901 0.897 0.753 0.638 0.691 0.865 0.932 0.897 0.667 0.857 0.750

Chew-bite 0.779 0.744 0.761 0.615 0.714 0.661 0.818 0.700 0.754 0.683 0.533 0.599
Overall 0.840 0.841 0.840 0.731 0.724 0.725 0.837 0.839 0.838 0.729 0.724 0.726

Conv2D

Bite 0.810 0.810 0.810 0.851 0.819 0.835 0.728 0.867 0.791 0.844 0.876 0.860
Chew 0.900 0.920 0.910 0.823 0.752 0.786 0.941 0.886 0.913 0.820 0.867 0.843

Chew-bite 0.821 0.789 0.805 0.712 0.800 0.753 0.821 0.817 0.819 0.821 0.743 0.780
Overall 0.861 0.862 0.861 0.795 0.790 0.792 0.869 0.862 0.865 0.828 0.829 0.828

LSTM

Bite 0.829 0.829 0.829 0.855 0.895 0.874 0.820 0.867 0.843 0.881 0.848 0.864
Chew 0.935 0.929 0.932 0.767 0.848 0.805 0.935 0.895 0.915 0.864 0.905 0.884

Chew-bite 0.841 0.850 0.845 0.831 0.705 0.763 0.824 0.861 0.842 0.837 0.829 0.833
Overall 0.889 0.888 0.888 0.818 0.816 0.817 0.883 0.880 0.881 0.860 0.860 0.860

Notes: Conv1D is one-dimensional convolutional neural network; Conv2D is two-dimensional convolutional neural network; and LSTM represents long short-term memory network. “Original” indicates the
original dataset without any filtering; “Filtered” indicates the original dataset was filtered with the bandstop filter to remove background beeping sounds; “imbalanced” indicates the dataset with unequal audio
file sizes for the three ingestive behaviors; and “balanced” indicates the dataset with equal audio file sizes for the three ingestive behaviors.



Sensors 2021, 21, 5231 12 of 17

Figure 8. Confusion matrixes of the three deep learning models for classifying the ingestive behaviors in various datasets.
Conv1D represents one-dimensional convolutional neural network; Conv2D represents two-dimensional convolutional
neural network; and LSTM represents long short-term memory network. “Original” indicates the original dataset without
any filtering; “Filtered” indicates the dataset was filtered with the bandstop filter to remove background beeping sounds;
“imbalanced” indicates the dataset with unequal audio file sizes for the three ingestive behaviors; and “balanced” indicates
the dataset with equal audio file sizes for the three ingestive behaviors.

3.3. Performance for Classifying the Ingestive Behaviors under Various Forage Conditions

The classification performance to identify particular ingestive behaviors associated
with key forage characteristics was further investigated with the LSTM and filtered-
imbalanced dataset (Table 4 and Figure 9). The overall precision, recall, and F1 score were
0.1–0.2 lower than those in Section 3.2. On average, the LSTM had similar classification per-
formance for the two forage species (0.758 for alfalfa and 0.738 for tall fescue) and heights
(0.620 for short and 0.620 for tall). By contrast, the overall classification performance of
the ingestive behaviors for the forage species was approximately 0.1 higher than for the
two forage heights. As for forage species (Figure 9), classifying biting behavior under tall
fescue had the lowest accuracy (0.436) while classifying chewing under tall fescue had
the highest accuracy (0.905). As for forage heights, the highest (0.804) and lowest (0.418)
accuracies were observed when classifying chewing and biting for short forage.
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Table 4. Precision, recall, and F1 score for classifying the ingestive behaviors under various forage conditions.

Behavior Forage Species Precision Recall F1 Score Behavior Forage Height Precision Recall F1 Score

Bite
Alfalfa 0.742 0.697 0.719

Bite
Short 0.590 0.418 0.489

Tall fescue 0.630 0.436 0.515 Tall 0.500 0.480 0.490

Chew
Alfalfa 0.720 0.753 0.736

Chew
Short 0.594 0.603 0.599

Tall fescue 0.784 0.835 0.809 Tall 0.771 0.723 0.746

Chew-bite
Alfalfa 0.838 0.801 0.819

Chew-bite
Short 0.723 0.804 0.761

Tall fescue 0.851 0.905 0.877 Tall 0.746 0.779 0.762
Overall 0.793 0.797 0.795 Overall 0.694 0.698 0.696

Notes: The model performance was investigated with the long short-term memory model and the filtered and imbalanced dataset.

Figure 9. Confusion matrixes for classifying the ingestive behaviors under various forage characteristics. The model
performance was investigated with the long short-term memory model and the filtered and imbalanced dataset.

4. Discussion
4.1. Effects of Forage on Ingestive Sound Characteristics

Dairy cows can generate different sounds when ingesting grass materials (e.g., dif-
ferent grass/hay species, multiple heights, etc.) based on this research and previous
investigations [5]. Understanding such information, especially the relationship between
the forage characteristics and ingestive behaviors, is important to provide good cattle graz-
ing strategies with appropriate welfare status. The ingestive sounds can be further linked
with forage intake for providing supplemental information on precision management of
grass utilization and animal health status [5,20]. Variations in ingestive sound character-
istics may be attributed to grass/feed bulk density [21], dry matter content [20], surface
area [22], diurnal pattern of intake [10], and many other options e.g., relative sheer strength
of the forage. However, due to a lack of detailed information about forage characteristics,
individual information, and animal status in the open-access dataset, the actual reason for
the variations remains unclear and should be researched in the future.

4.2. Overall Classification Performance

The overall positive classification performance of this study and previous literature
is presented in Table 5. The performance of previous studies was mainly obtained with
machine learning models or knowledge-based models. One possible reason for the slightly
reduced performance of the current study was the inclusion of all performance cases in
the analysis (i.e., Conv1D, Conv2D, balanced dataset, etc.). With the optimal case (LSTM
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with filtered and imbalanced dataset), the classification performance (0.820–0.867 for bites,
0.895–0.935 for chews, and 0.824–0.861 for chew-bites) outperformed or was comparable to
previous studies. The successful classification could be attributed to obvious differences
in the acoustic signals among bites, chews, and chew-bites, robust data cleaning, and
appropriate design of model architectures. Current forage characteristics may have little in-
fluence on model performance improvement. Perhaps, more diverse forage characteristics
should be included in future research for optimizing model performance.

Table 5. Performance comparison for classifying bites, chews, and chew-bites of dairy cows among
different studies.

Positive Performance
Reference

Bites Chews Chew-Bites

0.728–0.895 0.638–0.941 0.533–0.861 Current study
0.620–0.900 0.880–0.990 0.430–0.940 [11]
0.760–0.900 0.880–0.990 0.610–0.940 [14]

– 0.670–0.990 – [23]
Notes: The positive performance includes accuracy, precision, recall, and F1 score. “–" indicates missing information.

4.3. Deep Learning Models

To the authors’ knowledge, this paper is the first to assess the application of deep
learning models for classifying dairy cow ingestive behavior sounds. During model devel-
opment, key features for effective classification were learned directly from the dataset, and
exhaustive labeling and dedicated manual design were not required for feature extractors
that are typically required in machine learning or knowledge-based algorithms [24], en-
abling scientists in other domains without extensive computer science expertise applying
deep learning techniques. Deep CNNs are good at handling acoustic signals because
of their efficient computation and powerful learning ability [15,25]. In this study, the
Conv1D and Conv2D did not perform as well as the LSTM, due to two possible reasons.
Firstly, more efficient and accurate connection schemes (e.g., residual connection [26],
inception connection [27], etc.) were not applied in the CNNs. Secondly, the LSTM can
learn backward and feedforward features from acoustic signals, which is critical for deal-
ing with sequential data [28]. Besides acceptable detection accuracy, decent processing
speed (85.366–88.035 ms for processing 1-s acoustic data) was also achieved by the LSTM.
Although powerful computing devices (with GPU of RTX 3080) are crucial components,
the extremely light weight (≤2 MB) of the network architectures was the primary factor for
the fast processing speed [29]. Because current networks can balance detection accuracy
and processing speed, they offer new opportunities for real-time monitoring of animal
conditions [30], behaviors [31], etc. for cattle industry.

4.4. Other Factors Influencing Classification Performance

Other possible influencing factors should be considered as well for future model
development of sound classification. Currently, deep learning experts are switching their
attention from model-centric to data-centric to improve detection performance [32]. Data
quality plays a crucial role in deep learning, where improving the model hits a bottleneck
now. For instance, particularly for acoustic datasets, data challenges of noise, balance, and
quantity must be addressed. Considerable data noise can downgrade model performance
to varying degrees. The dataset was recorded in a controlled environment with minimal
introduced noises, and therefore, there was no significant model performance improvement
after noise filtering. However, such a controlled environment with minimal background
noise is hard to achieve in on-farm or in-field conditions. Imbalanced datasets can result in
biased inference for classes with the larger proportions [33]. However, in this study the
balanced dataset with the same number of audio files but uneven durations had poorer
performance than the imbalanced dataset. Thus, the length of audio files may play a more
important role in classification improvement than audio file quantity when selected for
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balancing classes. Uneven duration of audio files also downgraded the performance for
different forages. Sufficient data is necessary to explore the optimal performance of deep
learning models [34]. The current dataset contained only 27.5 min of useful data, and such
audio length became smaller when the dataset was split based on ingestive behaviors and
forage characteristics. The relatively small ingestive sound dataset is typical of studies
with dairy cows (i.e., 13 min in the study of Chelotti et al. [11]) because of their quick
ingestive actions, challenging environment for data collection, laborious manual labeling,
etc. A large ingestive sound dataset is recommended to be built in the future to improve
model performance.

Forage characteristics also influenced the automatic classification of ingestive sounds.
The best and poorest performance difference for classifying the ingestive behaviors was
0.4–0.5 among different forage characteristics. Chelotti et al. [11] reported a 0.11–0.41 per-
formance difference and Milone et al. [14] demonstrated a 0.11–0.33 performance difference
for classifying the ingestive behaviors under similar forage characteristics used in this
study. Apart from uneven class balance and small datasets, similar acoustic features be-
tween the alfalfa and tall fescue or the two forage heights could decrease the classification
performance. This may indicate that current techniques may not be sufficient or gener-
alizable to differentiate the ingestive behaviors for various forage characteristics. When
sound classification for specific forage is needed, the model may need re-development
with custom datasets for robust classification.

5. Conclusions

Classification of the three ingestive behaviors (bites, chews, and chew-bites) of dairy
cows using deep learning models was conducted in this study. The results showed that
forage species (alfalfa vs. tall fescue) and heights (tall and short) significantly influenced
the amplitude and duration of the ingestive sounds of dairy cows. The LSTM using a
filtered dataset with balanced duration and imbalanced audio files had better performance
than its counterparts. Currently, it is difficult to differentiate the bites, chews, and chew-
bites between alfalfa and tall fescue under two different heights. In addition to training
the LSTM with more temporal data, sophisticated feature extraction techniques will be
considered in a future study.
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